3.2. Monday for MAT3006

Reviewing.

- 1. Compactness/Sequential Compactness:
 - Equivalence for metric space
 - Stronger than closed and bounded
- 2. Completeness:
 - The metric space (*E*,*d*) is complete if every Cauchy sequence on *E* is convergent.
 - $\mathbb{P}[a,b] \subseteq \mathcal{C}[a,b]$ is not complete:

$$f_N(x) = \sum_{n=0}^{N} (-1)^n \frac{x^{2n}}{(2n)!} \to \cos x,$$

while $\cos x \notin \mathcal{P}[a,b]$.

3.2.1. Remarks on Completeness

Proposition 3.3 Let (X,d) be a metric space.

- 1. If *X* is complete and $E \subseteq X$ is closed, then *E* is complete.
- 2. If $E \subseteq X$ is complete, then *E* is closed in *X*.
- 3. If $E \subseteq X$ is compact, then *E* is complete.

Proof. 1. Every Cauchy sequence $\{e_n\}$ in $E \subseteq X$ is also a Cauchy sequence in E. Therefore we imply $\{e_n\} \rightarrow x \in X$, due to the completeness of X. Due to the closedness of E, the limit $x \in E$, i.e., E is complete.

- Consider any convergent sequence {e_n} in *E*, with some limit *x* ∈ *X*.
 We imply {e_n} is Cauchy and thus {e_n} → e ∈ E, due to the completeness of *E*.
 By the uniqueness of limits, we must have *x* = *z* ∈ *E*, i.e., *E* is closed.
- Consider a Cauchy sequence {e_n} in *E*. There exists a subsequence {e_{nj}} → e ∈ E, due to the sequential compactness of *E*.

It follows that for large *n* and *j*,

$$d(e_n,e) \stackrel{(a)}{\leq} d(e_n,e_{n_j}) + d(e_{n_j},e) \stackrel{(b)}{<} \varepsilon$$

where (a) is due to triangle inequality and (b) is due to the Cauchy property of $\{e_n\}$ and the convergence of $\{e_{n_j}\}$.

Therefore, we imply $\{e_n\} \rightarrow e \in E$, i.e., *E* is complete.

R Given any metric space that may not be necessarily complete, we can make the union of it with another space to make it complete, e.g., just like the completion from Q to R.

3.2.2. Contraction Mapping Theorem

The motivation of the contraction mapping theorem comes from solving an equation f(x). More precisely, such a problem can be turned into a problem for fixed points, i.e., it suffices to find the fixed points for g(x), with g(x) = f(x) + x.

Definition 3.3 Let (X,d) be a metric space. A map $T: (X,d) \to (X,d)$ is a contraction if there exists a constant $\tau \in (0,1)$ such that

$$d(T(x), T(y)) < \tau \cdot d(x, y), \quad \forall x, y \in X$$

A point x is called a fixed point of T if T(x) = x.

R

All contractions are continuous: Given any convergence sequence $\{x_n\} \to x$, for $\varepsilon > 0$, take N such that $d(x_n, x) < \frac{\varepsilon}{\tau}$ for $n \ge N$. It suffices to show the convergence of $\{T(x_n)\}$:

$$d(T(x_n),T(x)) < \tau \cdot T(x_n,x) < \tau \cdot \frac{\varepsilon}{\tau} = \varepsilon.$$

Therefore, the contraction is Lipschitz continuous with Lipschitz constant τ .

Theorem 3.2 — Contraction Mapping Theorem / Banach Fixed Point Theorem. Every contraction T in a complete metric space X has a unique fixed point.

- Example 3.5 1. The mapping f(x) = x + 1 is not a contraction in $X = \mathbb{R}$, and it has no fixed point.
 - 2. Consider an in-complete space X = (0,1) and a contraction $f(x) = \frac{x+1}{2}$. It doesn't admit a fixed point on X as well.

Proof. Pick any $x_0 \in X$, and define a sequence recursively by setting $x_{n+1} = T(x_n)$ for $n \ge 0$.

Firstly show that the sequence {*x_n*} is Cauchy.
 We can upper bound the term *d*(*Tⁿ*(*x*₀), *Tⁿ⁻¹*(*x*₀)):

$$d(T^{n}(x_{0}), T^{n-1}(x_{0})) \leq \tau d(T^{n-1}(x_{0}), T^{n-2}(x_{0})) \leq \dots \leq \tau^{n-1} d(T(x_{0}), x_{0})$$
(3.4)

Therefore for any $n \ge m$, where *m* is going to be specified later,

$$d(x_n, x_m) = d(T^n(x_0), T^m(x_0))$$
(3.5a)

$$\leq \tau d(T^{n-1}(x_0), T^{m-1}(x_0)) \leq \dots \leq \tau^m d(T^{n-m}(x_0), x_0)$$
(3.5b)

$$\leq \tau^{m} \sum_{j=1}^{n-m} \tau^{n-m-j} d(T(x_{0}), x_{0})$$
(3.5c)

$$<\frac{\tau^m}{1-\tau}d(T(x_0),x_0) \tag{3.5d}$$

$$\leq \varepsilon$$
 (3.5e)

where (3.5b) is by repeatedly applying contraction property of *d*; (3.5c) is by applying the triangle inequality and (3.4); (3.5e) is by choosing sufficiently large *m* such that $\frac{\tau^m}{1-\tau}d(T(x_0), x_0) < \varepsilon$.

Therefore, $\{x_n\}$ is Cauchy. By the completeness of *X*, we imply $\{x_n\} \rightarrow x \in X$.

2. Therefore, we imply

$$x = \lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} T(x_n) = T(\lim_{n \to \infty} x_n) = T(x),$$

i.e., *x* is a fixed point of *T*.

Now we show the uniqueness of the fixed point. Suppose that there is another fixed point $y \in X$, then

$$d(x,y) = d(T(x),T(y)) < \tau \cdot d(x,y) \Longrightarrow d(x,y) < \tau d(x,y), \quad \tau \in (0,1),$$

and we conclude that d(x,y) = 0, i.e., x = y.

• Example 3.6 [Convergence of Newton's Method] The Newton's method aims to find the root of f(x) by applying the iteration

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x)}$$

Suppose r is a root for f, the pre-assumption for the convergence of Newton's method is:

1. $f'(r) \neq 0$ 2. $f \in C^2$ on some neighborhood of r

Proof. 1. We first show that there exists $[r - \varepsilon, r + \varepsilon]$ such that the mapping

$$T: \mathcal{C}[r-\varepsilon, r+\varepsilon] \to \mathbb{R}, \quad f(x) \mapsto x - \frac{f(x)}{f'(x)}$$

satisfies |T'(x)| < 1 for $\forall x \in [r - \varepsilon, r + \varepsilon]$: Note that $T'(x) = \frac{f(x)}{[f'(x)]^2} f''(x)$, and we define h(x) = |T'(x)|. It's clear that h(r) = 0 and h(x) is continuous, which implies

$$r \in h^{-1}((-1,1)) \implies B_{\rho}(r) \subseteq h^{-1}((-1,1))$$
 for some $\rho > 0$.

Or equivalently, $h((r - \rho, r + \rho)) \subseteq (-1, 1)$. Take $\varepsilon = \frac{\rho}{2}$, and the result is obvious. 2. Therefore, any $x, y \in [r - \varepsilon, r + \varepsilon]$,

$$d(T(x), T(y)) := |T(x) - T(y)|$$
(3.6a)

$$= |T'(\xi)||x-y|$$
 (3.6b)

$$\leq \max_{\xi \in [r-\varepsilon, r+\varepsilon]} |T'(\xi)| |x-y|$$
(3.6c)

$$< m \cdot |x - y|$$
 (3.6d)

where (3.6b) is by applying MVT, and ξ is some point in $[r - \varepsilon, r + \varepsilon]$; we assume that $\max_{\xi \in [r - \varepsilon, r + \varepsilon]} |T'(\xi)| < m$ for some m < 1 in (3.6d).

Therefore, $T \in C[r - \varepsilon, r + \varepsilon]$ is a contraction. By applying the contraction mapping theorem, there exists a unique fixed point near $[r - \varepsilon, r + \varepsilon]$:

$$x - \frac{f(x)}{f'(x)} = x \implies \frac{f(x)}{f'(x)} = 0 \implies f(x) = 0,$$

i.e., we obtain a root x = r.

Summary: if we use Newton's method on any point between $[r - \varepsilon, r + \varepsilon]$ where f(r) = 0 and ε is sufficiently small, then we will eventually get close to r.

3.2.3. Picard Lindelof Theorem

We will use Banach fixed point theorem to show the existence and uniqueness of the solution of ODE

$$\begin{cases} \frac{dy}{dx} = f(x, y(x)) \\ y(x_0) = y_0 \end{cases}$$
 Initial Value Problem, IVP (3.7)

Example 3.7 Consider the IVP

$$\begin{cases} \frac{\mathrm{d}y}{\mathrm{d}x} = x^2 y^{1/5} \\ y(x_0) = c > 0 \end{cases} \implies y = \left(\frac{4x^3}{15} + c^{4/5}\right)^{5/4}$$

which can be solved by the separation of variables:

$$c > 0 \implies y = \left(\frac{4x^3}{15} + c^{4/5}\right)^{5/4}.$$

However, when c = 0, the ODE does not have a unique solution. One can verify that y_1, y_2 given below are both solutions of this ODE:

$$y_1 = (\frac{4x^3}{15})^{5/4}, \qquad y_2 = 0$$

This example shows that even when f is very nice, the IVP may not have unique solution. The Picard-Lindelof theorem will give a clean condition on f ensuring the unique solvability of the IVP (3.7).