
3.2. Monday for MAT3006
Reviewing.

1. Compactness/Sequential Compactness:

• Equivalence for metric space

• Stronger than closed and bounded

2. Completeness:

• The metric space (E,d) is complete if every Cauchy sequence on E is con-

vergent.

• P[a,b] ✓ C[a,b] is not complete:

fN(x) =
N

Â
n=0

(�1)n x2n

(2n)!
! cos x,

while cos x /2 P [a,b].

3.2.1. Remarks on Completeness
Proposition 3.3 Let (X,d) be a metric space.

1. If X is complete and E ✓ X is closed, then E is complete.

2. If E ✓ X is complete, then E is closed in X.

3. If E ✓ X is compact, then E is complete.

Proof. 1. Every Cauchy sequence {en} in E ✓ X is also a Cauchy sequence in E.

Therefore we imply {en}! x 2 X, due to the completeness of X.

Due to the closedness of E, the limit x 2 E, i.e., E is complete.

2. Consider any convergent sequence {en} in E, with some limit x 2 X.

We imply {en} is Cauchy and thus {en}! e 2 E, due to the completeness of E.

By the uniqueness of limits, we must have x = z 2 E, i.e., E is closed.

3. Consider a Cauchy sequence {en} in E. There exists a subsequence {enj}! e 2 E,

due to the sequential compactness of E.
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It follows that for large n and j,

d(en, e)
(a)
 d(en, enj) + d(enj , e)

(b)
< #

where (a) is due to triangle inequality and (b) is due to the Cauchy property of

{en} and the convergence of {enj}.

Therefore, we imply {en}! e 2 E, i.e., E is complete.

⌅

R Given any metric space that may not be necessarily complete, we can make

the union of it with another space to make it complete, e.g., just like the

completion from Q to R.

3.2.2. Contraction Mapping Theorem
The motivation of the contraction mapping theorem comes from solving an equation

f (x). More precisely, such a problem can be turned into a problem for fixed points,

i.e., it suffices to find the fixed points for g(x), with g(x) = f (x) + x.

Definition 3.3 Let (X,d) be a metric space. A map T : (X,d)! (X,d) is a contraction

if there exists a constant t 2 (0,1) such that

d(T(x), T(y)) < t · d(x,y), 8x,y 2 X

A point x is called a fixed point of T if T(x) = x. ⌅

R All contractions are continuous: Given any convergence sequence {xn}! x,

for # > 0, take N such that d(xn, x) < #
t for n � N. It suffices to show the

convergence of {T(xn)}:

d(T(xn), T(x)) < t · T(xn, x) < t · #

t
= #.

Therefore, the contraction is Lipschitz continuous with Lipschitz constant t.
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Theorem 3.2 — Contraction Mapping Theorem / Banach Fixed Point Theorem. Every

contraction T in a complete metric space X has a unique fixed point.

⌅ Example 3.5 1. The mapping f (x) = x + 1 is not a contraction in X = R, and it

has no fixed point.

2. Consider an in-complete space X = (0,1) and a contraction f (x) = x+1
2 . It doesn’t

admit a fixed point on X as well.

⌅

Proof. Pick any x0 2 X, and define a sequence recursively by setting xn+1 = T(xn) for

n � 0.

1. Firstly show that the sequence {xn} is Cauchy.

We can upper bound the term d(Tn(x0), Tn�1(x0)):

d(Tn(x0), Tn�1(x0))  td(Tn�1(x0), Tn�2(x0))  · · ·  tn�1d(T(x0), x0) (3.4)

Therefore for any n � m, where m is going to be specified later,

d(xn, xm) = d(Tn(x0), Tm(x0)) (3.5a)

 td(Tn�1(x0), Tm�1(x0))  · · ·  tmd(Tn�m(x0), x0) (3.5b)

 tm
n�m

Â
j=1

tn�m�jd(T(x0), x0) (3.5c)

<
tm

1 � t
d(T(x0), x0) (3.5d)

 # (3.5e)

where (3.5b) is by repeatedly applying contraction property of d; (3.5c) is by

applying the triangle inequality and (3.4); (3.5e) is by choosing sufficiently large

m such that tm

1�t d(T(x0), x0) < #.

Therefore, {xn} is Cauchy. By the completeness of X, we imply {xn}! x 2 X.
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2. Therefore, we imply

x = lim
n!•

xn+1 = lim
n!•

T(xn) = T( lim
n!•

xn) = T(x),

i.e., x is a fixed point of T.

Now we show the uniqueness of the fixed point. Suppose that there is another

fixed point y 2 X, then

d(x,y) = d(T(x), T(y)) < t · d(x,y) =) d(x,y) < td(x,y), t 2 (0,1),

and we conclude that d(x,y) = 0, i.e., x = y.

⌅

⌅ Example 3.6 [Convergence of Newton’s Method] The Newton’s method aims to find

the root of f (x) by applying the iteration

xn+1 = xn �
f (xn)
f 0(x)

Suppose r is a root for f , the pre-assumption for the convergence of Newton’s method is:

1. f 0(r) 6= 0

2. f 2 C2 on some neighborhood of r

Proof. 1. We first show that there exists [r � #,r + #] such that the mapping

T : C[r � #,r + #]! R, f (x) 7! x � f (x)
f 0(x)

satisfies |T0(x)| < 1 for 8x 2 [r � #,r + #]:

Note that T0(x) = f (x)
[ f 0(x)]2 f 00(x), and we define h(x) = |T0(x)|.

It’s clear that h(r) = 0 and h(x) is continuous, which implies

r 2 h�1((�1,1)) =) Br(r) ✓ h�1((�1,1)) for some r > 0.
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Or equivalently, h((r� r,r+ r))✓ (�1,1). Take # = r
2 , and the result is obvious.

2. Therefore, any x,y 2 [r � #,r + #],

d(T(x), T(y)) : = |T(x)� T(y)| (3.6a)

= |T0(x)||x � y| (3.6b)

 max
x2[r�#,r+#]

|T0(x)||x � y| (3.6c)

< m · |x � y| (3.6d)

where (3.6b) is by applying MVT, and x is some point in [r � #,r + #]; we

assume that maxx2[r�#,r+#] |T0(x)| < m for some m < 1 in (3.6d).

Therefore, T 2 C[r � #,r + #] is a contraction. By applying the contraction map-

ping theorem, there exists a unique fixed point near [r � #,r + #]:

x � f (x)
f 0(x)

= x =) f (x)
f 0(x)

= 0 =) f (x) = 0,

i.e., we obtain a root x = r. ⌅

Summary: if we use Newton’s method on any point between [r � #,r + #] where

f (r) = 0 and # is sufficiently small, then we will eventually get close to r. ⌅

3.2.3. Picard Lindelof Theorem
We will use Banach fixed point theorem to show the existence and uniqueness of the

solution of ODE

8
><

>:

dy
dx

= f (x,y(x))

y(x0) = y0

Initial Value Problem, IVP (3.7)
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⌅ Example 3.7 Consider the IVP

8
><

>:

dy
dx

= x2y1/5

y(x0) = c > 0
=) y =

✓
4x3

15
+ c4/5

◆5/4

which can be solved by the separation of variables:

c > 0 =) y =

✓
4x3

15
+ c4/5

◆5/4

.

However, when c = 0, the ODE does not have a unique solution. One can verify that y1,y2

given below are both solutions of this ODE:

y1 = (
4x3

15
)5/4, y2 = 0

This example shows that even when f is very nice, the IVP may not have unique solution.

The Picard-Lindelof theorem will give a clean condition on f ensuring the unique solvability

of the IVP (3.7). ⌅
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