
2.5. Wednesday for MAT3006

2.5.1. Compactness

This lecture will talk about the generalization of closeness and boundedness property

in R
n. First let’s review some simple definitions:

Definition 2.11 [Compact] Let (X,d) be a metric space, and {Ua}a2A a collection of

open sets.

1. {Ua}a2A is called an open cover of E ✓ X if E ✓ [a2AUa

2. A finite subcover of {Ua}a2A is a finite sub-collection {Ua1 , . . . ,Uan} ✓ {Ua}

covering E.

3. The set E ✓ X is compact if every open cover of E has a finite subcover.

⌅

A well-known result is talked in MAT2006:

Theorem 2.4 — Heine-Borel Theorem. The set E ✓ R
n is compact if and only if E is

closed and bounded.

However, there’s a notion of sequentially compact, and we haven’t identify its gap

and relation with compactness.

Definition 2.12 [Sequentially Compact] Let (X,d) be a metric space. Then E ✓ X is

sequentially compact if every sequence in E has a convergent subsequence with limit in

E. ⌅

A well-known result is talked in MAT2006:

Theorem 2.5 — Bolzano-Weierstrass Theorem. The set E ✓ R
n is closed and bounded

if and only if E is sequentially compact.

Actually, the definitions of comapctness and the sequential compactness are equiv-

alent under a metric space.
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Theorem 2.6 Let (X,d) be a metric space, then E ✓ X is compact if and only if E is

sequentially compact.

Proof. Necessity

Suppose {xn} is a sequence in E, it suffices to show it has a convergent subsequence.

Consider the tail of {xn}, say

Fn = {xk | k � n} =) F1 ◆ F2 ◆ · · · .

• Note that \•
i=1Fi 6= ∆. Assume not, then we imply [•

i=1(E \ Fi) = E, i.e., {E \ Fi}•
i=1

a open cover of E. By the compactness of E, we imply there exists a finite subcover

of E:

E =
r[

j=1
(E \ Fij) =)

r\

j=1
Fij = ∆ =) Fij = ∆,8j

which is a contradiction, and there must exist an element x 2 \•
n=1Fi.

• For any n � 1, the open ball B1/n(x) must intersect with the n-th tail of the

sequence {xn}:

B1/n(x) \ {xk | k � n} 6= ∆

Pick the r-th intersection, say xnr , which implies that the subsequence xnr ! x as

r ! •. The proof for necessity is complete.

Sufficiency

Firstly, let’s assume the claim below hold (which will be shown later):

Proposition 2.18 If E ✓ X is sequentially compact, then for any# > 0, there exists

finitely many open balls, say {B#(x1), . . . , B#(xn)}, covering E.

Suppose on the contrary that there exists an open cover {Ua}a2A of E, that has no

finite subcover.

• By proposition (2.18), for n � 1, there are finitely many balls of radius 1/n

covering E. Due to our assumption, there exists a open ball B1/n(yn) such that

B1/n(y) \ E cannot be covered by finitely many members in {Ua}a2A.
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• Pick xn 2 B1/n(yn) to form a sequence. Due to the sequential compactness of E,

there exists a subsequence {xnj}! x for some x 2 E.

• Since {Ua}a2A covers E, there exists a Ub containing x. Since Ub is open and the

radius of B1/nj(ynj) tends to 0, we imply that, for sufficiently large nj, the set

B1/nj(ynj) \ E is contained in Ub.

In oteher words, Ub forms a single subcover of B1/n(y) \ E, which contradicts to

our choice of B1/nj(ynj) \ E. The proof for sufficiency is complete.

⌅

Proof for proposition (2.18). Pick B#(x1) for some x1 2 E. Suppose E \ B#(x1) 6= ∆. We

can find x2 /2 B#(x1) such that d(x2, x1) � #.

Suppose E \ (B#(x1)
S

B#(x2)) is non-empty, then we can find x3 /2 B#(x1)
S

B#(x2)

so that d(xj, x3) � #, j = 1,2.

Keeping this procedure, we obtain a sequence {xn} in E such that

E \
n[

j=1
B#(xj) 6= ∆, and d(xj, xn) � #, j = 1,2, . . . ,n � 1.

By the sequential compactness of E, there exists {xnj} and x 2 E so that xnj ! x as

j ! •. But then d(xnj , xnk)< d(xnj , x) + d(xnk , x)! 0, which contradicts that d(xj, xn)�

# for 8j < n.

Therefore, one must have E \SN
j=1 B#(xj) = ∆ for some finite N.

The proof is complete. ⌅

R

1. Given the condition metric space,

Sequential Compactness () Compactness

2. Given the condition metric space, we will show that

Compactness =) Closed and Bounded
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However, the converse may not necessarily hold. Given the condition

the metric space is R
n, then

Compactness () Closed and Bounded

Proposition 2.19 Let (X,d) be a metric space. Then E ✓ X is compact implies that E

is closed and bounded.

Proof. 1. Let {xn} be a convergent sequence in E. By sequential compactness,

{xnj} ! x for some x 2 E. By the uniqueness of limits, under metric space,

{xn}! x for x 2 E. The closeness is shown

2. Take x 2 E and consider the open cover
S•

n=1 Bn(x) of E. By compactness,

E ✓
k[

i=1
Bni(x) = Bnk(x),

which implies that for any y,z 2 E,

d(y,z)  d(y, x) + d(x,z)  nk + nk = 2nk.

The boundness is shown.

⌅

Here we raise several examples to show that the coverse does not necessarily hold

under a metric space.

⌅ Example 2.14 Given the metric space C[0,1] and a set E = { f 2 C[0,1] | 0  f (x) 1}.

Notice that E is closed and bounded:

• E = \x2[0,1]Y�1
x ([0,1]), where Yx( f ) = f (x), which implies that E is closed.

• Note that E ✓ B2(000) = { f | | f | < 2}, i.e., E is bounded.
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However, E may not be compact. Consider a sequence { fn} with

fn(x) =

8
><

>:

nx, 0  x  1
n

1,
1
n
 x  1

Suppose on the contrary that E is sequentially compact, therefore there exists a

subsequence { fnk}! f under d• metric, which implies, { fnk} uniformly converges to f .

By the definition of fn(x), we imply

f (x) =

8
><

>:

0, x = 0

1, x 2 (0,1]

However, since d• indicates uniform convergence, the limit for { fnk}, say f , must be

continuous, which is a contradiction.

⌅

Theorem 2.7 Let the set E be compact in (X,d) and the function f : (X,d)! (Y,r)

is continuous. Then f (E) is compact in Y.

Note that the technique to show compactness by using the sequential compactness

is very useful. However, this technique only applies to the metric space, but fail in

general topological spaces.

Proof. Let {yn} = { f (xn)} be any sequence in f (E).

• By the compactness of X, {xn} has a convergent subsequence {xnr}! x as r ! •.

• Therefore, {ynr} := { f (xnr)}! f (x) by the continuity of f .

• Therefore, f (E) is sequentially compact, i.e., compact.

⌅

R The Theorem (2.7) is a generalization of the statement that a continuous

function on R
n admits its minimum and maximum. Note that such an extreme
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value property no longer holds for arbitrary closed, bounded sets in a general

metric space, but it continues to hold when the sets are strengthened to

compact ones.

Another characterization of compactness in C[a,b] is shown in the Ascoli-

Arzela Theorem (see Theorem (14.1) in MAT2006 Notebook).

2.5.2. Completeness

Definition 2.13 [Complete] Let (X,d) be metric space.

1. A sequence {xn} in (X,d) is a Cauchy sequence if for every # > 0, there exists

some N such that d(xn, xm) < # for all n,m � N.

2. A subset E ✓ X is said to be complete if every Cauchy sequence in E is convergent.

⌅

⌅ Example 2.15 The set X = C[a,b] is complete:

• Suppose { fn} is Cauchy in C[a,b], i.e., { fn(x)} is Cauchy in R for 8x 2 [a,b].

• By the compactness of R, the sequence fn(x)! f (x) for some f (x)2 R,8x 2 [a,b].

It suffices to show fn ! f uniformly:

– For fixed # > 0, there exists N > 0 such that

d•( fn, fn+k) <
#

2
, 8n � N,k 2 N

which implies that for 8x 2 [a,b], 8n � N,k 2 N,

| fn(x)� fn+k(x)| < #

2
=) lim

k!•
| fn(x)� fn+k(x)|  #

2
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Therefore, we imply

| fn(x)� f (x)| = lim
k!•

| fn(x)� fn+k(x)|  #

2
< #, 8n � N, x 2 [a,b]

The proof is complete.

⌅
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