2.2. Monday for MAT3006

Reviewing.

1. Equivalent Metric:

$$d_1(\boldsymbol{x},\boldsymbol{y}) \leq K d_2(\boldsymbol{x},\boldsymbol{y}) \leq K' d_1(\boldsymbol{x},\boldsymbol{y})$$

In C[0,1], the metric d_1 and d_{∞} are not equivalent:

For $f_n(x) = x^n n^2(1-x)$, $d_1(f_n, 0) \to 1$ and $d_{\infty}(f_n, 0) \to \infty$. Suppose on contrary that

$$d_1(f_n, 0) \leq K d_{\infty}(\boldsymbol{x}, \boldsymbol{y}) \leq K' d_1(\boldsymbol{x}, \boldsymbol{y}).$$

Taking limit both sides, we imply the immediate term goes to infinite, which is a contradiction.

- 2. Continuous functions: the function f is continuous is equivalent to say for $\forall x_n \rightarrow x$, we have $f(x_n) \rightarrow f(x)$.
- 3. Open sets: Let (X,d) be a metric space. A set $U \subseteq X$ is open if for each $x \in U$, there exists $\rho_x > 0$ such that $B_{\rho_x}(x) \subseteq U$.

R Unless stated otherwise, we assume that

$$\mathcal{C}[a,b] \longleftrightarrow (\mathcal{C}[a,b],d_{\infty})$$

$$\mathbb{R}^n \longleftrightarrow (\mathbb{R}^n, d_2)$$

2.2.1. Remark on Open and Closed Set

• Example 2.6 Let X = C[a,b], show that the set

$$U := \{ f \in X \mid f(x) > 0, \forall x \in [a, b] \} \text{ is open}$$

Take a point $f \in U$, then

$$\inf_{[a,b]} f(x) = m > 0.$$

Consider the ball $B_{m/2}(f)$, and for $\forall g \in B_{m/2}(f)$,

$$\begin{aligned} |g(x)| &\ge |f(x)| - |f(x) - g(x)| \\ &\ge \inf_{[a,b]} |f(x)| - \sup_{[a,b]} |f(x) - g(x)| \\ &\ge m - \frac{m}{2} \\ &= \frac{m}{2} > 0, \ \forall x \in [a,b] \end{aligned}$$

Therefore, we imply $g \in U$, i.e., $B_{m/2}(f) \subseteq U$, i.e., U is open in X.

Proposition 2.2 Let (X,d) be a metric space. Then

- 1. \emptyset , *X* are open in *X*
- 2. If $\{U_{\alpha} \mid \alpha \in A\}$ are open in *X*, then $\bigcup_{\alpha \in A}$ is also open in *X*
- 3. If U_1, \ldots, U_n are open in *X*, then $\bigcap_{i=1}^n U_i$ are open in *X*
- **R** Note that $\bigcap_{i=1}^{\infty} U_i$ is not necessarily open if all U_i 's are all open:

$$\bigcap_{i=1}^{\infty} \left(-\frac{1}{i}, 1 + \frac{1}{i} \right) = [0, 1]$$

Definition 2.2 [Closed] The closed set in metric space (X,d) are the complement of open sets in X, i.e., any closed set in X is of the form $V = X \setminus U$, where U is open.

For example, in \mathbb{R} ,

$$[a,b] = \mathbb{R} \setminus \{(-\infty,a) \bigcup (b,\infty)\}$$

Proposition 2.3 1. \emptyset , *X* are closed in *X*

- 2. If $\{V_{\alpha} \mid \alpha \in \mathcal{A}\}$ are closed subsets in *X*, then $\bigcap_{\alpha \in \mathcal{A}} V_{\alpha}$ is also closed in *X*
- 3. If V_1, \ldots, V_n are closed in X, then $\bigcup_{i=1}^n V_i$ is also closed in X.

 \bigcirc Whenever you say U is open or V is closed, you need to specify the underlying

space, e.g.,

Wrong : *U* is open

Right : *U* is open in *X*

Proposition 2.4 The following two statements are equivalent:

- 1. The set *V* is closed in metric space (X,d).
- 2. If the sequence $\{v_n\}$ in *V* converges to *x*, then $x \in V$

Proof. Necessity.

Suppose on the contrary that $\{v_n\} \to x \notin V$. Since $X \setminus V \ni x$ is open, there exists an open ball $B_{\varepsilon}(x) \subseteq X \setminus V$.

Due to the convergence of sequence, there exists *N* such that $d(v_n, x) < \varepsilon$ for $\forall n \ge N$, i.e., $v_n \in B_{\varepsilon}(x)$, i.e., $v_n \notin V$, which contradicts to $\{v_n\} \subseteq V$.

Sufficiency.

Suppose on the contrary that *V* is not closed in *X*, i.e., $X \setminus V$ is not open, i.e., there exists $x \notin V$ such that for all open $U \ni x$, $U \cap V \neq \emptyset$. In particular, take

$$U_n = B_{1/n}(x), \Longrightarrow \exists v_n \in B_{1/n}(x) \bigcap V,$$

i.e., $\{v_n\} \rightarrow x$ but $x \notin V$, which is a contradiction.

Proposition 2.5 Given two metric space (X, d) and (Y, ρ) , the following statements are equivalent:

- 1. A function $f: (X,d) \to (Y,\rho)$ is continuous on *X*
- 2. For $\forall U \subseteq Y$ open in *Y*, $f^{-1}(U)$ is open in *X*.
- 3. For $\forall V \subseteq Y$ closed in *Y*, $f^{-1}(V)$ is closed in *X*.

Example 2.7 The mapping $\Psi : \mathcal{C}[a, b] \rightarrow \mathbb{R}$ is defined as:

 $f \mapsto f(c)$

where $\boldsymbol{\Psi}$ is called a functional.

Show that Ψ is continuous by using d_{∞} metric on $\mathcal{C}[a,b]$:

- Any open set in ℝ can be written as countably union of open disjoint intervals, and therefore suffices to consider the pre-image Ψ⁻¹(a,b) = {f | f(c) ∈ (a,b)}. Following the similar idea in Example (2.6), it is clear that Ψ⁻¹(a,b) is open in (C[a,b],d_∞). Therefore, Ψ is continuous.
- 2. Another way is to apply definition.

We now study open sets in a subspace $(Y, d_Y) \subseteq (X, d_X)$, i.e.,

$$d_{Y}(y_1, y_2) := d_X(y_1, y_2).$$

Therefore, the open ball is defined as

$$B_{\varepsilon}^{Y}(y) = \{y' \in Y \mid d_{Y}(y,y') < \varepsilon\}$$
$$= \{y' \in Y \mid d_{X}(y,y') < \varepsilon\}$$
$$= \{y' \in X \mid d_{X}(y,y') < \varepsilon, y' \in Y\}$$
$$= B_{\varepsilon}^{X}(y) \bigcap Y$$

Proposition 2.6 All open sets in the subspace $(Y, d_Y) \subseteq (X, d_X)$ are of the form $U \cap Y$, where *U* is open in *X*.

Corollary 2.1 For the subspace $(Y, d_Y) \subseteq (X, d_X)$, the mapping $i : (Y, d_Y) \rightarrow (X, d_X)$ with $i(y) = y, \forall y \in Y$ is continuous.

Proof. $i^{-1}(U) = U \cap Y$ for any subset $U \subseteq X$. The results follows from proposition (2.5).

R It's important to specify the underlying space to describe an open set.

For example, the interval $[0, \frac{1}{2})$ is not open in \mathbb{R} , while $[0, \frac{1}{2})$ is open in [0, 1],

since

$$[0,\frac{1}{2}) = (-\frac{1}{2},\frac{1}{2}) \bigcap [0,1]$$

2.2.2. Boundary, Closure, and Interior

Definition 2.3 Let (X,d) be a metric space, then

- A point x is a boundary point of S ⊆ X (denoted as x ∈ ∂S) if for any open U ∋ x, then both U ∩ S, U \ S are non-empty.
 (one can replace U by B_{1/n}(x), with n = 1,2,...)
- 2. The closure of S is defined as $\overline{S} = S \bigcup \partial S$.
- A point x is an interior point of S (denoted as x ∈ S°) if there ∃U ∋ x open such that U ⊆ S. We use S° to denote the set of interior points.

Proposition 2.7 1. The closure of *S* can be equivalently defined as

$$\overline{S} = \bigcap \{ C \in X \mid C \text{ is closed and } C \supseteq S \}$$

Therefore, \overline{S} is the smallest closed set containing *S*.

2. The interior set of *S* can be equivalently defined as

$$S^{\circ} = \bigcup \{ U \subseteq X \mid U \text{ is open and } U \subseteq S \}$$

Therefore, S° is the largest open set contained in *S*.

• Example 2.8 For $S = [0, \frac{1}{2}] \subseteq X$, we have 1. $\partial S = \{0, \frac{1}{2}\}$ 2. $\overline{S} = [0, \frac{1}{2}]$ 3. $S^{\circ} = (0, \frac{1}{2})$ *Proof.* 1. (a) Firstly, we show that \overline{S} is closed, i.e., $X \setminus \overline{S}$ is open.

• Take $x \notin \overline{S}$. Since $x \notin \partial S$, there $\exists B_r(x) \ni x$ such that

$$B_r(x) \cap S$$
, or $B_r(x) \setminus S$ is \emptyset .

- Since $x \notin S$, the set $B_r(x) \setminus S$ is not empty. Therefore, $B_r(x) \cap S = \emptyset$.
- It's clear that $B_{r/2}(x) \cap S = \emptyset$. We claim that $B_{r/2}(x) \cap \overline{S}$ is empty. Suppose on the contrary that

$$y \in B_{r/2}(x) \bigcap \partial S$$
,

which implies that $B_{r/2}(y) \cap S \neq \emptyset$. Therefore,

$$B_{r/2}(y) \subseteq B_r(x) \implies B_r(x) \bigcap S \supseteq B_{r/2}(y) \bigcap S \neq \emptyset,$$

which is a contradiction.

Therefore, $x \in X \setminus \overline{S}$ implies $B_{r/2}(x) \cap \overline{S} = \emptyset$, i.e., $X \setminus \overline{S}$ is open, i.e., \overline{S} is closed.

(b) Secondly, we show that $\overline{S} \subseteq C$, for any closed $C \supseteq S$, i.e., suffices to show $\partial S \subseteq C$.

Take $x \in \partial S$, and construct a sequence

$$x_n \in B_{1/n}(x) \bigcap S.$$

Here $\{x_n\}$ is a sequence in $S \subseteq C$ converging to x, which implies $x \in C$, due to the closeness of C in X.

Combining (a) and (b), the result follows naturally. (Question: do we need to show the well-defineness?)

2. Exercise. Show that

$$S^{\circ} = S \setminus \partial S = X \setminus (\overline{X \setminus S}).$$

Then it's clear that S° is open, and contained in *S*.

The next lecture we will talk about compactness and sequential compactness.