
2.2. Monday for MAT3006
Reviewing.

1. Equivalent Metric:

d1(xxx,yyy)  Kd2(xxx,yyy)  K0d1(xxx,yyy)

In C[0,1], the metric d1 and d• are not equivalent:

For fn(x) = xnn2(1� x), d1( fn,0)! 1 and d•( fn,0)!•. Suppose on contrary

that

d1( fn,0)  Kd•(xxx,yyy)  K0d1(xxx,yyy).

Taking limit both sides, we imply the immediate term goes to infinite, which is a

contradiction.

2. Continuous functions: the function f is continuous is equivalent to say for

8xn! x, we have f (xn)! f (x).

3. Open sets: Let (X,d) be a metric space. A set U ✓ X is open if for each x 2 U,

there exists rx > 0 such that Brx(x) ✓U.

R Unless stated otherwise, we assume that

C[a,b] ! (C[a,b],d•)

R
n ! (Rn,d2)

2.2.1. Remark on Open and Closed Set

⌅ Example 2.6 Let X = C[a,b], show that the set

U := { f 2 X | f (x) > 0,8x 2 [a,b]} is open.
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Take a point f 2U, then

inf
[a,b]

f (x) = m > 0.

Consider the ball Bm/2( f ), and for 8g 2 Bm/2( f ),

|g(x)| � | f (x)|� | f (x)� g(x)|

� inf
[a,b]

| f (x)|� sup
[a,b]

| f (x)� g(x)|

� m� m
2

=
m
2
> 0, 8x 2 [a,b]

Therefore, we imply g 2U, i.e., Bm/2( f ) ✓U, i.e., U is open in X. ⌅

Proposition 2.2 Let (X,d) be a metric space. Then

1. ∆, X are open in X

2. If {Ua | a 2A} are open in X, then
S

a2A is also open in X

3. If U1, . . . ,Un are open in X, then
Tn

i=1 Ui are open in X

R Note that
T•

i=1 Ui is not necessarily open if all Ui’s are all open:

•\

i=1

✓
�1

i
,1 +

1
i

◆
= [0,1]

Definition 2.2 [Closed] The closed set in metric space (X,d) are the complement of

open sets in X, i.e., any closed set in X is of the form V = X \ U, where U is oepn. ⌅

For example, in R,

[a,b] = R \ {(�•, a)
[
(b,•)}

Proposition 2.3 1. ∆, X are closed in X

2. If {Va | a 2A} are closed subsets in X, then
T

a2A Va is also closed in X

3. If V1, . . . ,Vn are closed in X, then
Sn

i=1 Vi is also closed in X.

R Whenever you say U is open or V is closed, you need to specify the underlying
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space, e.g.,

Wrong :U is open

Right :U is open in X

Proposition 2.4 The following two statements are equivalent:

1. The set V is closed in metric space (X,d).

2. If the sequence {vn} in V converges to x, then x 2 V

Proof. Necessity.

Suppose on the contrary that {vn}! x /2 V. Since X \ V 3 x is open, there exists

an open ball B#(x) ✓ X \ V.

Due to the convergence of sequence, there exists N such that d(vn, x)< # for 8n� N,

i.e., vn 2 B#(x), i.e., vn /2 V, which contradicts to {vn} ✓ V.

Sufficiency.

Suppose on the contrary that V is not closed in X, i.e., X \ V is not open, i.e., there

exists x /2 V such that for all open U 3 x, U
T

V 6= ∆. In particular, take

Un = B1/n(x), =) 9vn 2 B1/n(x)
\

V,

i.e., {vn}! x but x /2 V, which is a contradiction. ⌅

Proposition 2.5 Given two metric space (X,d) and (Y,r), the following statements are

equivalent:

1. A function f : (X,d)! (Y,r) is continuous on X

2. For 8U ✓ Y open in Y, f�1(U) is open in X.

3. For 8V ✓ Y closed in Y, f�1(V) is closed in X.

⌅ Example 2.7 The mapping Y : C[a,b]!R is defined as:

f 7! f (c)
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where Y is called a functional.

Show that Y is continuous by using d• metric on C[a,b]:

1. Any open set in R can be written as countably union of open disjoint intervals,

and therefore suffices to consider the pre-image Y�1(a,b) = { f | f (c) 2 (a,b)}.

Following the similar idea in Example (2.6), it is clear that Y�1(a,b) is open in

(C[a,b],d•). Therefore, Y is continuous.

2. Another way is to apply definition.

⌅

We now study open sets in a subspace (Y,dY) ✓ (X,dX), i.e.,

dY(y1,y2) := dX(y1,y2).

Therefore, the open ball is defined as

BY
# (y) = {y0 2 Y | dY(y,y0) < #}

= {y0 2 Y | dX(y,y0) < #}

= {y0 2 X | dX(y,y0) < #,y0 2 Y}

= BX
# (y)

\
Y

Proposition 2.6 All open sets in the subspace (Y,dY) ✓ (X,dX) are of the form U
T

Y,

where U is open in X.

Corollary 2.1 For the subspace (Y,dY) ✓ (X,dX), the mapping i : (Y,dY)! (X,dX)

with i(y) = y,8y 2 Y is continuous.

Proof. i�1(U) = U
T

Y for any subset U ✓ X. The results follows from proposition (2.5).

⌅

R It’s important to specify the underlying space to describe an open set.

For example, the interval [0, 1
2 ) is not open in R, while [0, 1

2 ) is open in [0,1],
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since

[0,
1
2
) = (�1

2
,
1
2
)
\
[0,1].

2.2.2. Boundary, Closure, and Interior

Definition 2.3 Let (X,d) be a metric space, then

1. A point x is a boundary point of S✓ X (denoted as x 2 ∂S) if for any open U 3 x,

then both U
T

S,U \ S are non-empty.

(one can replace U by B1/n(x), with n = 1,2, . . . )

2. The closure of S is defined as S = S
S

∂S.

3. A point x is an interior point of S (denoted as x 2 S�) if there 9U 3 x open such

that U ✓ S. We use S� to denote the set of interior points.

⌅

Proposition 2.7 1. The closure of S can be equivalently defined as

S =
\
{C 2 X | C is closed and C ◆ S}

Therefore, S is the smallest closed set containing S.

2. The interior set of S can be equivalently defined as

S� =
[
{U ✓ X | U is open and U ✓ S}

Therefore, S� is the largest open set contained in S.

⌅ Example 2.8 For S = [0, 1
2 ] ✓ X, we have

1. ∂S = {0, 1
2}

2. S = [0, 1
2 ]

3. S� = (0, 1
2 )

⌅
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Proof. 1. (a) Firstly, we show that S is closed, i.e., X \ S is open.

• Take x /2 S. Since x /2 ∂S, there 9Br(x) 3 x such that

Br(x)
T

S, or Br(x) \ S is ∆.

• Since x /2 S, the set Br(x) \ S is not empty. Therefore, Br(x)
T

S = ∆.

• It’s clear that Br/2(x)
T

S = ∆. We claim that Br/2(x)
T

S is empty.

Suppose on the contrary that

y 2 Br/2(x)
\

∂S,

which implies that Br/2(y)
T

S 6= ∆. Therefore,

Br/2(y) ✓ Br(x) =) Br(x)
\

S ◆ Br/2(y)
\

S 6= ∆,

which is a contradiction.

Therefore, x 2 X \ S implies Br/2(x)
T

S = ∆, i.e., X \ S is open, i.e., S is

closed.

(b) Secondly, we show that S ✓ C, for any closed C ◆ S, i.e., suffices to show

∂S ✓ C.

Take x 2 ∂S, and construct a sequence

xn 2 B1/n(x)
\

S.

Here {xn} is a sequence in S ✓ C converging to x, which implies x 2 C, due

to the closeness of C in X.

Combining (a) and (b), the result follows naturally. (Question: do we need to

show the well-defineness?)

2. Exercise. Show that

S� = S \ ∂S = X \ (X \ S).

Then it’s clear that S� is open, and contained in S.
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⌅

The next lecture we will talk about compactness and sequential compactness.
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