1.5. Wednesday for MAT3006

Reviewing.

- Normed Space: a norm on a vector space
- Metric Space
- Open Ball

1.5.1. Convergence of Sequences

Since \mathbb{R}^n and $\mathcal{C}[a,b]$ are both metric spaces, we can study the convergence in \mathbb{R}^n and the functions defined on [a,b] at the same time.

Definition 1.14 [Convergence] Let (X,d) be a metric space. A sequence $\{x_n\}$ in X is **convergent** to x if $\forall \varepsilon > 0$, there exists $N \in \mathbb{N}$ such that

$$d(x_n, x) < \varepsilon, \forall n \ge N.$$

We can denote the convergence by

$$x_n \to x$$
, or $\lim_{n \to \infty} x_n = x$, or $\lim_{n \to \infty} d(x_n, x) = 0$

Proposition 1.10 If the limit of $\{x_n\}$ exists, then it is unique.

R Note that the proposition above does not necessarily hold for topology spaces.

Proof. Suppose $x_n \rightarrow x$ and $x_n \rightarrow y$, which implies

$$0 \le d(x,y) \le d(x,x_n) + d(x_n,y), \forall n$$

Taking the limit $n \to \infty$ both sides, we imply d(x, y) = 0, i.e., x = y.

Example 1.16 1. Consider the metric space (\mathbb{R}^k, d_∞) and study the convergence

$$\lim_{n \to \infty} \boldsymbol{x}_n = \boldsymbol{x} \Longleftrightarrow \lim_{n \to \infty} \left(\max_{i=1...,k} |x_{n_i} - x_i| \right) = 0$$
$$\iff \lim_{n \to \infty} |x_{n_i} - x_i| = 0, \forall i = 1, \dots, k$$
$$\iff \lim_{n \to \infty} x_{n_i} = x_i,$$

i.e., the convergence defined in d_∞ is the same as the convergence defined in d₂.
2. Consider the convergence in the metric space (C[a,b],d_∞):

$$\begin{split} \lim_{n \to \infty} f_n &= f \Longleftrightarrow \lim_{n \to \infty} \left(\max_{[a,b]} |f_n(x) - f(x)| \right) = 0 \\ &\iff \forall \varepsilon > 0, \forall x \in [a,b], \exists N_{\varepsilon} \text{ such that } |f_n(x) - f(x)| < \varepsilon, \forall n \ge N_{\varepsilon} \end{split}$$

which is equivalent to the uniform convergence of functions, i.e., the convergence defined in d_2 .

Definition 1.15 [Equivalent metrics] Let d and ρ be metrics on X.

1. We say ρ is stronger than d (or d is weaker than ρ) if

$$\exists K > 0$$
 such that $d(x,y) \leq K\rho(x,y), \forall x,y \in X$

2. The metrics d and ρ are equivalent if there exists $K_1, K_2 > 0$ such that

$$d(x,y) \le K_1 \rho(x,y) \le K_2 d(x,y)$$

The strongerness of ρ than *d* is depiected in the graph below:

R

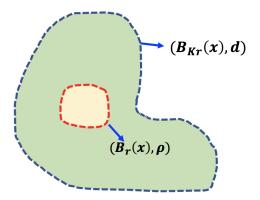


Figure 1.4: The open ball $(B_r(x), \rho)$ is contained by the open ball $(B_{Kr}(x), d)$

For each $x \in X$, consider the open ball $(B_r(x), \rho)$ and the open ball $(B_{Kr}(x), d)$:

$$B_r(x) = \{y \mid \rho(x,y) < r\}, \quad B_{Kr}(x) = \{z \mid d(x,z) < Kr\}.$$

For $y \in (B_r(x), \rho)$, we have $d(x, y) < K\rho(x, y) < Kr$, which implies $y \in (B_{Kr}(x), d)$, i.e, $(B_r(x), \rho) \subseteq (B_{Kr}(x), d)$ for any $x \in X$ and r > 0.

Example 1.17 1. d_1, d_2, d_∞ in \mathbb{R}^n are equivalent

$$d_1(\boldsymbol{x}, \boldsymbol{y}) \le d_{\infty}(\boldsymbol{x}, \boldsymbol{y}) \le nd_1(\boldsymbol{x}, \boldsymbol{y})$$
$$d_2(\boldsymbol{x}, \boldsymbol{y}) < d_{\infty}(\boldsymbol{x}, \boldsymbol{y}) < \sqrt{n}d_2(\boldsymbol{x}, \boldsymbol{y})$$

We use two relation depiected in the figure below to explain these two inequalities:

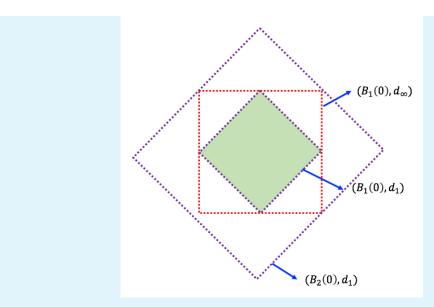


Figure 1.5: The diagram for the relation $(B_1(x), d_1) \subseteq (B_{\infty}(x), d_{\infty}) \subseteq (B_2(x), d_1)$ on \mathbb{R}^2

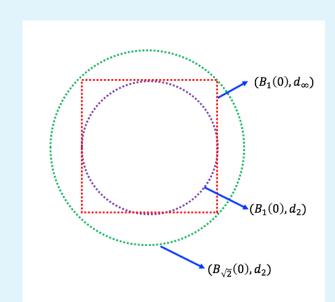


Figure 1.6: The diagram for the relation $(B_1(x), d_2) \subseteq (B_{\infty}(x), d_{\infty}) \subseteq (B_{\sqrt{2}}(x), d_2)$ on \mathbb{R}^2

It's easy to conclude the simple generalization for example (1.16):

Proposition 1.11 If *d* and ρ are equivalent, then

$$\lim_{n\to\infty} d(x_n, x) = 0 \iff \lim_{n\to\infty} \rho(x_n, x) = 0$$

Note that this does not necessarily hold for topology spaces.

2. Consider d_1, d_∞ in $\mathcal{C}[a, b]$:

$$d_1(f,g) := \int_a^b |f-g| \, \mathrm{d}x \le \int_a^b \sup_{[a,b]} |f-g| \, \mathrm{d}x = (b-a) d_\infty(f,g),$$

i.e., d_{∞} is stronger than d_1 . Question: Are they equivalent? No.

Justification. Consider $f_n(x) = n^2 x^n (1 - x)$. Check that

$$\lim_{n\to\infty} d_1(f_n(x),1) = 0, \quad \text{but } d_\infty(f_n(x),1) \to \infty$$

The peak of f_n may go to infinite, while the integration converges to zero. Therefore d_1 and d_{∞} have different limits. We will discuss this topic at Lebsegue integration again.

1.5.2. Continuity

Definition 1.16 [Continuity] Let $f: (X,d) \to (Y,d)$ be a function and $x_0 \in X$. Then f is continuous at x_0 if $\forall \varepsilon > 0$, there exists $\delta > 0$ such that

$$d(x,x_0) < \delta \implies \rho(f(x),f(x_0)) < \varepsilon$$

The function f is continuous in X if f is continuous for all $x_0 \in X$.

Proposition 1.12 The function *f* is continuous at *x* if and only if for all $\{x_n\} \to x$ under *d*, $f(x_n) \to f(x)$ under ρ .

Proof. Necessity: Given $\varepsilon > 0$, by continuity,

$$d(x, x') < \delta \implies \rho(f(x'), f(x)) < \varepsilon.$$
(1.3)

Consider the sequence $\{x_n\} \to x$, then there exists N such that $d(x_n, x) < \delta$ for $\forall n \ge N$. By applying (1.3), $\rho(f(x_n), f(x)) < \varepsilon$ for $\forall n \ge N$, i.e., $f(x_n) \to f(x)$. *Sufficiency*: Assume that *f* is not continuous at *x*, then there exists ε_0 such that for $\delta_n = \frac{1}{n}$, there exists x_n such that

$$d(x_n, x) < \delta_n$$
, but $\rho(f(x_n), f(x)) > \varepsilon_0$.

Then $\{x_n\} \to x$ by our construction, while $\{f(x_n)\}$ does not converge to f(x), which is a contradiction.

Corollary 1.2 If the function $f: (X,d) \to (Y,\rho)$ is continuous at x, the function $g: (Y,\rho) \to (Z,m)$ is continuous at f(x), then $g \circ f: (X,d) \to (Z,m)$ is continuous at x.

Proof. Note that

$$\{x_n\} \to x \stackrel{(a)}{\Longrightarrow} \{f(x_n)\} \to f(x) \stackrel{(b)}{\Longrightarrow} \{g(f(x_n))\} \to g(f(x)) \stackrel{(c)}{\Longrightarrow} g \circ f \text{ is continuous at } x.$$

where (a), (b), (c) are all by proposition (1.12).

1.5.3. Open and Closed Sets

We have open/closed intervals in \mathbb{R} , and they are important in some theorems (e.g, continuous functions bring closed intervals to closed intervals).

Definition 1.17 [Open] Let (X,d) be a metric space. A set $U \subseteq X$ is open if for each $x \in U$, there exists $\rho_x > 0$ such that $B_{\rho_x}(x) \subseteq U$. The empty set \emptyset is defined to be open.

• Example 1.18 Let $(\mathbb{R}, d_2 \text{ or } d_{\infty})$ be a metric space. The set U = (a, b) is open.

Proposition 1.13
1. Let (*X*,*d*) be a metric space. Then all open balls *B_r*(*x*) are open
2. All open sets in *X* can be written as a union of open balls.

Proof. 1. Let $y \in B_r(x)$, i.e., d(x,y) := q < r. Consider the open ball $B_{(r-q)/2}(y)$. It

suffices to show $B_{(r-q)/2}(y) \subseteq B_r(x)$. For any $z \in B_{(r-q)/2}(y)$,

$$d(x,z) \le d(x,y) + d(y,z) < q + \frac{r-q}{2} = \frac{r+q}{2} < r.$$

The proof is complete.

2. Let $U \subseteq X$ be open, i.e., for $\forall x \in U$, there exists $\varepsilon_x > 0$ such that $B_{\varepsilon_x}(x) \subseteq U$. Therefore

$$\{x\}\subseteq B_{\varepsilon_x}(x)\subseteq U, \forall x\in U$$

which implies

$$U = \bigcup_{x \in U} \{x\} \subseteq \bigcup_{x \in U} B_{\varepsilon_x}(x) \subseteq U,$$

i.e., $U = \bigcup_{x \in U} B_{\varepsilon_x}(x)$.