
1.5. Wednesday for MAT3006
Reviewing.

• Normed Space: a norm on a vector space

• Metric Space

• Open Ball

1.5.1. Convergence of Sequences

Since R
n and C[a,b] are both metric spaces, we can study the convergence in R

n and

the functions defined on [a,b] at the same time.

Definition 1.14 [Convergence] Let (X,d) be a metric space. A sequence {xn} in X is

convergent to x if 8# > 0, there exists N 2 N such that

d(xn, x) < #,8n � N.

We can denote the convergence by

xn ! x, or lim
n!•

xn = x, or lim
n!•

d(xn, x) = 0

⌅

Proposition 1.10 If the limit of {xn} exists, then it is unique.

R Note that the proposition above does not necessarily hold for topology spaces.

Proof. Suppose xn ! x and xn ! y, which implies

0  d(x,y)  d(x, xn) + d(xn,y),8n

Taking the limit n ! • both sides, we imply d(x,y) = 0, i.e., x = y. ⌅
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⌅ Example 1.16 1. Consider the metric space (Rk,d•) and study the convergence

lim
n!•

xxxn = xxx () lim
n!•

✓
max

i=1...,k
|xni � xi|

◆
= 0

() lim
n!•

|xni � xi| = 0,8i = 1, . . . ,k

() lim
n!•

xni = xi,

i.e., the convergence defined in d• is the same as the convergence defined in d2.

2. Consider the convergence in the metric space (C[a,b],d•):

lim
n!•

fn = f () lim
n!•

✓
max
[a,b]

| fn(x)� f (x)|
◆
= 0

() 8# > 0,8x 2 [a,b],9N# such that | fn(x)� f (x)| < #,8n � N#

which is equivalent to the uniform convergence of functions, i.e., the convergence

defined in d2.

⌅

Definition 1.15 [Equivalent metrics] Let d and r be metrics on X.

1. We say r is stronger than d (or d is weaker than r) if

9K > 0 such that d(x,y)  Kr(x,y),8x,y 2 X

2. The metrics d and r are equivalent if there exists K1,K2 > 0 such that

d(x,y)  K1r(x,y)  K2d(x,y)

⌅

R The strongerness of r than d is depiected in the graph below:
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Figure 1.4: The open ball (Br(x),r) is contained by the open ball (BKr(x),d)

For each x 2 X, consider the open ball (Br(x),r) and the open ball (BKr(x),d):

Br(x) = {y | r(x,y) < r}, BKr(x) = {z | d(x,z) < Kr}.

For y2 (Br(x),r), we have d(x,y)< Kr(x,y)< Kr, which implies y2 (BKr(x),d),

i.e, (Br(x),r) ✓ (BKr(x),d) for any x 2 X and r > 0.

⌅ Example 1.17 1. d1,d2,d• in R
n are equivalent

d1(xxx,yyy)  d•(xxx,yyy)  nd1(xxx,yyy)

d2(xxx,yyy)  d•(xxx,yyy) 
p

nd2(xxx,yyy)

We use two relation depiected in the figure below to explain these two inequalities:
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Figure 1.5: The diagram for the relation (B1(x),d1) ✓ (B•(x),d•) ✓ (B2(x),d1) on
R

2

Figure 1.6: The diagram for the relation (B1(x),d2) ✓ (B•(x),d•) ✓ (Bp
2(x),d2) on

R
2

It’s easy to conclude the simple generalization for example (1.16):

Proposition 1.11 If d and r are equivalent, then

lim
n!•

d(xn, x) = 0 () lim
n!•

r(xn, x) = 0
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Note that this does not necessarily hold for topology spaces.

2. Consider d1,d• in C[a,b]:

d1( f , g) :=
Z b

a
| f � g|dx 

Z b

a
sup
[a,b]

| f � g|dx = (b � a)d•( f , g),

i.e., d• is stronger than d1. Question: Are they equivalent? No.

Justification. Consider fn(x) = n2xn(1 � x). Check that

lim
n!•

d1( fn(x),1) = 0, but d•( fn(x),1)! •

The peak of fn may go to infinite, while the integration converges to zero.

Therefore d1 and d• have different limits. We will discuss this topic at Lebsegue

integration again. ⌅

⌅

1.5.2. Continuity

Definition 1.16 [Continuity] Let f : (X,d)! (Y,d) be a function and x0 2 X. Then f

is continuous at x0 if 8# > 0, there exists d > 0 such that

d(x, x0) < d =) r( f (x), f (x0)) < #

The function f is continuous in X if f is continuous for all x0 2 X. ⌅

Proposition 1.12 The function f is continuous at x if and only if for all {xn} ! x

under d, f (xn)! f (x) under r.

Proof. Necessity: Given # > 0, by continuity,

d(x, x0) < d =) r( f (x0), f (x)) < #. (1.3)

Consider the sequence {xn}! x, then there exists N such that d(xn, x)< d for 8n � N.

By applying (1.3), r( f (xn), f (x)) < # for 8n � N, i.e., f (xn)! f (x).
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Sufficiency: Assume that f is not continuous at x, then there exists #0 such that for

dn = 1
n , there exists xn such that

d(xn, x) < dn, but r( f (xn), f (x)) > #0.

Then {xn}! x by our construction, while { f (xn)} does not converge to f (x), which

is a contradiction. ⌅

Corollary 1.2 If the function f : (X,d) ! (Y,r) is continuous at x, the function g :

(Y,r)! (Z,m) is continuous at f (x), then g � f : (X,d)! (Z,m) is continuous at x.

Proof. Note that

{xn}! x
(a)
==) { f (xn)}! f (x)

(b)
==) {g( f (xn))}! g( f (x))

(c)
==) g � f is continuous at x.

where (a), (b), (c) are all by proposition (1.12). ⌅

1.5.3. Open and Closed Sets

We have open/closed intervals in R, and they are important in some theorems (e.g,

continuous functions bring closed intervals to closed intervals).

Definition 1.17 [Open] Let (X,d) be a metric space. A set U ✓ X is open if for each

x 2 U, there exists rx > 0 such that Brx(x) ✓ U. The empty set ∆ is defined to be open.

⌅

⌅ Example 1.18 Let (R,d2 or d•) be a metric space. The set U = (a,b) is open. ⌅

Proposition 1.13 1. Let (X,d) be a metric space. Then all open balls Br(x) are open

2. All open sets in X can be written as a union of open balls.

Proof. 1. Let y 2 Br(x), i.e., d(x,y) := q < r. Consider the open ball B(r�q)/2(y). It
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suffices to show B(r�q)/2(y) ✓ Br(x). For any z 2 B(r�q)/2(y),

d(x,z)  d(x,y) + d(y,z) < q +
r � q

2
=

r + q
2

< r.

The proof is complete.

2. Let U ✓ X be open, i.e., for 8x 2 U, there exists #x > 0 such that B#x(x) ✓ U.

Therefore

{x} ✓ B#x(x) ✓ U,8x 2 U

which implies

U =
[

x2U
{x} ✓

[

x2U
B#x(x) ✓ U,

i.e., U =
S

x2U B#x(x).

⌅
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