1.2. Monday for MAT3006

1.2.1. Overview on uniform convergence

Definition 1.3 [Convergence] Let $f_n(x)$ be a sequence of functions on an interval I = [a, b]. Then $f_n(x)$ converges **pointwise** to f(x) (i.e., $f_n(x_0) \rightarrow f(x_0)$) for $\forall x_0 \in I$, if

 $\forall \varepsilon > 0, \exists N_{x_0,\varepsilon} \text{ such that } |f_n(x_0) - f(x_0)| < \varepsilon, \forall n \geq N_{x_0,\varepsilon}$

We say $f_n(x)$ converges uniformly to f(x), (i.e., $f_n(x)
ightrightarrow f(x)$) for $\forall x_0 \in I$, if

$$\forall \varepsilon > 0, \exists N_{\varepsilon} \text{ such that } |f_n(x_0) - f(x_0)| < \varepsilon, \forall n \geq N_{\varepsilon}$$

• Example 1.6 It is clear that the function $f_n(x) = \frac{n}{1+nx}$ converges pointwise into $f(x) = \frac{1}{x}$ on $[0,\infty)$, and it is uniformly convergent on $[1,\infty)$.

Proposition 1.2 If $\{f_n\}$ is a sequence of continuous functions on *I*, and $f_n(x) \Rightarrow f(x)$, then the following results hold:

- 1. f(x) is continuous on *I*.
- 2. *f* is (Riemann) integrable with $\int_a^b f_n(x) dx \to \int_a^b f(x) dx$.
- 3. Suppose furthermore that $f_n(x)$ is **continuously differentiable**, and $f'_n(x) \Rightarrow g(x)$, then f(x) is differentiable, with $f'_n(x) \rightarrow f'(x)$.

We can put the discussions above into the content of series, i.e., $f_n(x) = \sum_{k=1}^n S_k(x)$.

Proposition 1.3 If $S_k(x)$ is continuous for $\forall k$, and $\sum_{k=1}^n S_k \Rightarrow \sum_{k=1}^\infty S_k$, then

- 1. $\sum_{k=1}^{\infty} S_k(x)$ is continuous,
- 2. The series $\sum_{k=1}^{\infty} S_k$ is (Riemann) integrable, with $\sum_{k=1}^{\infty} \int_a^b S_k(x) dx = \int_a^b \sum_{k=1}^{\infty} S_k(x) dx$
- 3. If $\sum_{k=1}^{n} S_k$ is continuously differentiable, and the derivative of which is uniform

convergent, then the series $\sum_{k=1}^{\infty} S_k$ is differentiable, with

$$\left(\sum_{k=1}^{\infty} S_k(x)\right)' = \sum_{k=1}^{\infty} S'_k(x)$$

Then we can discuss the properties for a special kind of series, say power series.

Proposition 1.4 Suppose the power series $f(x) = \sum_{k=1}^{\infty} a_k x^k$ has radius of convergence *R*, then

- 1. $\sum_{k=1}^{n} a_k x^k \Rightarrow f(x)$ for any [-L, L] with L < R.
- The function *f*(*x*) is continuous on (−*R*,*R*), and moreover, is differentiable and (Riemann) integrable on [−*L*,*L*] with *L* < *R*:

$$\int_0^x f(t) dt = \sum_{k=1}^\infty \frac{a_k}{k+1} x^{k+1}$$
$$f'(x) = \sum_{k=1}^\infty k a_k x^{k-1}$$

1.2.2. Introduction to MAT3006

What are we going to do.

- (a) Generalize our study of (sequence, series, functions) on ℝⁿ into a metric space.
 - (b) We will study spaces outside \mathbb{R}^n .

Remark:

- For (a), different metric may yield different kind of convergence of sequences.
 For (b), one important example we will study is X = C[a,b] (all continuous functions defined on [a,b].) We will generalize X into C_b(E), which means the set of bounded continuous functions defined on E ⊆ ℝⁿ.
- The insights of analysis is to find a **unified** theory to study sequences/series on a metric space *X*, e.g., *X* = Rⁿ, C[*a*,*b*]. In particular, for C[*a*,*b*], we will see that
 - most functions in C[a,b] are nowhere differentiable. (repeat part of

content in MAT2006)

- We will prove the existence and uniqueness of ODEs.
- the set poly[a,b] (the set of polynomials on [a,b]) is dense in C[a,b]. (analogy: $\mathbb{Q} \subseteq \mathbb{R}$ is dense)
- 2. Introduction to the Lebesgue Integration.

For convergence of integration $\int_a^b f_n(x) dx \to \int_a^b f(x)$, we need the pre-conditions (a) $f_n(x)$ is continuous, and (b) $f_n(x) \rightrightarrows f(x)$. The natural question is that can we relax these conditions to

- (a) $f_n(x)$ is integrable?
- (b) $f_n(x) \to f(x)$ pointwisely?

The answer is yes, by using the tool of Lebesgue integration. If $f_n(x) \rightarrow f(x)$ and $f_n(x)$ is Lebesgue integrable, then $\int_a^b f_n(x) dx \to \int_a^b f(x) dx$, which is so called the dominated convergence.

1.2.3. Metric Spaces

We will study the length of an element, or the distance between two elements in an arbitrary set X. First let's discuss the length defined on a well-structured set, say vector space.

Definition 1.4 Product $\|\cdot\|: X \to \mathbb{R}$ such that 1. $\|\mathbf{x}\| \ge 0$ for $\forall \mathbf{x} \in X$, with equality iff $\mathbf{x} = \mathbf{0}$ 2. $\|\alpha \mathbf{x}\| = |\alpha| \|\mathbf{x}\|$, for $\forall \alpha \in \mathbb{R}$ and $\mathbf{x} \in X$. 3. $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$ (triangular inequality) **Definition 1.4** [Normed Space] Let X be a vector space. A norm on X is a function

Any vector space equipped with $\|\cdot\|$ is called a normed space.

■ Example 1.7 1. For $X = \mathbb{R}^n$, define

 $\|\boldsymbol{x}\|_2 = \left(\sum_{i=1}^n x_i^2\right)^{1/2}$ (Euclidean Norm)

$$\|\boldsymbol{x}\|_{p} = (\sum_{i=1}^{n} |x_{i}|^{p})^{1/p}$$
 (p-norm)

2. For X = C[a, b], define

$$\|f\|_{\infty} = \max_{x \in [a,b]} |f(x)|$$
$$\|f\|_{p} = \left(\int_{a}^{b} |f(x)|^{p} dx\right)^{1/p}$$

Exercise: check the norm defined above are well-defined. Here we can define the distance in an arbitrary set:

Definition 1.5 A set X is a metric space with metric (X,d) if there exists a (distance) function $d: X \times X \rightarrow \mathbb{R}$ such that

- 1. $d(\mathbf{x}, \mathbf{y}) \ge 0$ for $\forall \mathbf{x}, \mathbf{y} \in X$, with equality iff $\mathbf{x} = \mathbf{y}$. 2. $d(\mathbf{x}, \mathbf{y}) = d(\mathbf{y}, \mathbf{x})$. 3. $d(\mathbf{x}, \mathbf{z}) \le d(\mathbf{x}, \mathbf{y}) + d(\mathbf{y}, \mathbf{z})$.

- 1. If X is a normed space, then define $d(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} \mathbf{y}\|$, which is ■ Example 1.8 so called the metric induced from the norm $\|\cdot\|$.
 - 2. Let X be any (non-empty) set with $\boldsymbol{x}, \boldsymbol{y} \in X$, the discrete metric is given by:

$$d(\boldsymbol{x}, \boldsymbol{y}) = \begin{cases} 0, & \text{if } x = y \\ 1, & \text{if } x \neq y \end{cases}$$

Exercise: check the metric space defined above are well-defined.

Adopting the infinite norm discussed in Example (1.7), we can define a metric R on C[a,b] by

$$d_{\infty}(f,g) = \|f - g\|_{\infty} := \max_{x \in [a,b]} |f(x) - g(x)|$$

which is the correct metric to study the uniform convergence for $\{f_n\} \subseteq C[a, b]$.

Definition 1.6 Let (X,d) be a metric space. An **open ball** centered at $x \in X$ of radius r is the set

$$B_r(\boldsymbol{x}) = \{ \boldsymbol{y} \in X \mid d(\boldsymbol{x}, \boldsymbol{y}) < r \}.$$

• Example 1.9 1. For $X = \mathbb{R}^2$, we can draw the $B_1(\mathbf{0})$ with respect to the metrics d_1, d_2 :

Figure 1.1: $B_1(\mathbf{0})$ w.r.t. the metric d_1

Figure 1.2: $B_1(\mathbf{0})$ w.r.t. the metric d_2