15.2. Monday for MAT 3006

15.2.1. Applications on the Tonell's and Fubini's

Theorem

Theorem 15.2 — Tonell. Let f:IR? — [0, ] be a measurable function (i.e., f~'((a,]) €

Me M), then

/fdn:/(/f(x,y)dx) dyzf(/f(x,y)dy) dx

Theorem 15.3 — Fubini. Let f:R? — [~c0,00] be integrable (i.e., f = f* — f~ with

f*:R? - [0,00] measurable and f f*dx < ), then

/fdn:/(/f(x,y)dx) dy:/(/f(x,y)dy) dx

Corollary 15.2  Suppose that f : IR? — [—o0, 0] is measurable, and either

/(/lf(x,y)ldx) dy (15.1a)
/(/lf(x,y)|dy) dx (15.1b)

exists, then f is integrable, and the result of Fubini follows. (i.e., one can switch the order

of integration as long as the integral of |f| exists)

Proof. If (15.1a) or (15.1b) exists (is finite), then Tonell’s Theorem implies that | f] is
integrable, which implies f is integrable.

Therefore, the assumption of Fubini’s theorem holds, and the proof is comptete. m

r) The advantage for corollary (15.2) is that computing (15.1a) or (15.1b) is easier

than showing the integrability of f in general.
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= Example 15.2 Compute the double integral

1 px _
//wfl ydydx.
0 J0 xX=y

Construct the function f(x,y):= }C%XE(x,y), with E shown in Fig. (15.1).

Figure 15.1: Illustration for integral domain E

We want to compute ff(x,y)dﬂ and show that

/olfox\/gdydx=/f(my)dn.

e Consider the integral

/ ( f f(x,y)dx) dy = / 1( / j:(x,y)XEy dx) X dy
_ /0 ( /y \/E dx) dy
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(15.2a)

(15.2b)

(15.2¢)
(15.2d)
(15.2¢)

(15.2f)

(15.2g)

e Therefore, f(f|f(x,y)|dx)dy < co. Mreover, f is continous on E°, i.e., measurable
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on E° (it's clear that a continous function is measurable). Since E is null, we imply

f is measurable on E := E° U JE.

e Therefore, the assumption of Corollary (15.2) holds, and we imply that

/ ( / f(x,y)dy) dx = / ( / f(x,y)dx) 0

It's clear that

/ol/ox\/gdyd“/(/f(x,y)dy) dx,

Process of Completion. We have two measures on R?:

and therefore

e M® M, and

o Mg, given by

Mgz ={E C R? | m*(A) = m* (AN E) + m*(AN E°) for all subsets A € R?}

Here Mp: equals the completion of M ® M, i.e, all E C Mg can be decomposed as

E=BU(E\B),

where Be M ® M and E \ B € My with n(E \ B) =0.
Question: does Tonell’s theorem holds for (Lebesgue) measurable functions f :
R? — [0,00] (ie., f71((a,0]) € M2 for any a € [0,00)?)

Answer: Yes. To see so, we just need the following proposition

Proposition 15.4  Let (R?, M2, ) be the Lebesgue measure on R?, and N € M. be

such that 7(N) = 0. Then for almost all values of x € R, N, € M and my(N,) =0.
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Proof. For N € Mp2. By hw3, there exists B € M ® M such that N C B’, with
n(B") = n(N).
If N is null, then n(B’) = 0. By Tonell’s theorem on M ® M, we imply
n(B’) = ‘/my(B;)dx = /mX(B;)dy =0

Therefore, my(Bj;,) = 0 for almost all x € R. Since N € B’, we imply N, C By, i.e., Ny is

also a null set. Therefore, N, € M and my(Ny) =0. [ |
= Example 15.3 Consider the integral

/0 ‘/0 ye_y2(1+x2) dydx

Define f(x,y) = ye‘y2(1+x2), which is continous on (0, 00) X (0,0), and therefore measurable.

It follows that

m /n f(x,y)dy) dx (15.3a)

/omfomf(xfy)dydxz (
= / i
_r

=3 (15.3d)

) (15.3b)

(15.3¢)

where (15.3a) is by applying MCT | on the function f(x,y)Xjo,.]; (15.3b) and (15.3d) is

by computation; (15.3c) is by applying MCT | on the function ; 2 2X[0 -

/ ) / ye N drdy = 1
o Jo 4
/00 ye_yz /‘00 e_xzyz dxdy _ z

0 0 4

By corollary (15.2),

Or equivalently,
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By applying MCT | on e—x2y2X[0’n], we have

0 . n T
/ ye'y2 lim e du dy=-
0 n—oo Jo 4

By change of variable with 7 = xy, we imply

00 1 ny
/ ye_y2 lim — e dr dy = il
0 4

n—oo y

Or equivalently,

/ ey/ dtdy——

Therefore, we conclude that

[ s [erunE
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