15.2. Monday for MAT3006

15.2.1. Applications on the Tonell's and Fubini's

Theorem

Theorem 15.2 — **Tonell.** Let $f : \mathbb{R}^2 \to [0, \infty]$ be a measurable function (i.e., $f^{-1}((a, \infty]) \in \mathcal{M} \otimes \mathcal{M}$), then

$$\int f \, \mathrm{d}\pi = \int \left(\int f(x, y) \, \mathrm{d}x \right) \mathrm{d}y = \int \left(\int f(x, y) \, \mathrm{d}y \right) \mathrm{d}x$$

Theorem 15.3 — **Fubini.** Let $f : \mathbb{R}^2 \to [-\infty, \infty]$ be integrable (i.e., $f = f^+ - f^-$ with $f^{\pm} : \mathbb{R}^2 \to [0, \infty]$ measurable and $\int f^{\pm} dx < \infty$), then

$$\int f \, \mathrm{d}\pi = \int \left(\int f(x, y) \, \mathrm{d}x \right) \mathrm{d}y = \int \left(\int f(x, y) \, \mathrm{d}y \right) \mathrm{d}x$$

Corollary 15.2 Suppose that $f : \mathbb{R}^2 \to [-\infty, \infty]$ is measurable, and either

$$\int \left(\int |f(x,y)| \, \mathrm{d}x \right) \, \mathrm{d}y \tag{15.1a}$$

or

$$\int \left(\int |f(x,y)| \, \mathrm{d}y \right) \mathrm{d}x \tag{15.1b}$$

exists, then f is integrable, and the result of Fubini follows. (i.e., one can switch the order of integration as long as the integral of |f| exists)

Proof. If (15.1a) or (15.1b) exists (is finite), then Tonell's Theorem implies that |f| is integrable, which implies f is integrable.

Therefore, the assumption of Fubini's theorem holds, and the proof is comptete.

R The advantage for corollary (15.2) is that computing (15.1a) or (15.1b) is easier than showing the integrability of f in general.

• Example 15.2 Compute the double integral

$$\int_0^1 \int_0^x \sqrt{\frac{1-y}{x-y}} \, \mathrm{d}y \, \mathrm{d}x.$$

Construct the function $f(x, y) := \sqrt{\frac{1-y}{x-y}} X_E(x, y)$, with *E* shown in Fig. (15.1).

$$E = \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ x \end{array}$$

Figure 15.1: Illustration for integral domain E

We want to compute $\int f(x,y) \mathrm{d}\pi$ and show that

$$\int_0^1 \int_0^x \sqrt{\frac{1-y}{x-y}} \,\mathrm{d}y \,\mathrm{d}x = \int f(x,y) \,\mathrm{d}\pi.$$

• Consider the integral

$$\int \left(\int f(x,y) dx \right) dy = \int \left(\int f(x,y) \mathcal{X}_{E_y} dx \right) \mathcal{X}_{E_x} dy$$
(15.2a)

$$= \int_{0}^{1} \left(\int_{y}^{1} \sqrt{\frac{1-y}{x-y}} \, \mathrm{d}x \right) \mathrm{d}y$$
 (15.2b)

$$= \int_{0}^{1} \sqrt{1-y} \left(\int_{y}^{1} \frac{1}{\sqrt{x-y}} \, \mathrm{d}x \right) \mathrm{d}y \qquad (15.2c)$$

$$= \int_{0}^{1} \sqrt{1 - y} \left(\int_{0}^{1 - y} \frac{1}{\sqrt{t}} dt \right) dy$$
 (15.2d)

$$= \int_{0}^{1} \sqrt{1 - y} \cdot (2\sqrt{1 - y}) \, \mathrm{d}y \tag{15.2e}$$

$$= 2 \int_0^1 (1 - y) \, \mathrm{d}y \tag{15.2f}$$

$$= 1$$
 (15.2g)

• Therefore, $\int (\int |f(x,y)| dx) dy < \infty$. Mreover, f is continous on E° , i.e., measurable

on E° (it's clear that a continous function is measurable). Since ∂E is null, we imply f is measurable on $E := E^{\circ} \cup \partial E$.

 $\bullet\,$ Therefore, the assumption of Corollary (15.2) holds, and we imply that

$$\int \left(\int f(x,y) \, \mathrm{d}y\right) \mathrm{d}x = \int \left(\int f(x,y) \, \mathrm{d}x\right) \mathrm{d}y$$

It's clear that

$$\int_0^1 \int_0^x \sqrt{\frac{1-y}{x-y}} \, \mathrm{d}y \, \mathrm{d}x = \int \left(\int f(x,y) \, \mathrm{d}y\right) \, \mathrm{d}x,$$

and therefore

$$\int_0^1 \int_0^x \sqrt{\frac{1-y}{x-y}} \, \mathrm{d}y \, \mathrm{d}x = 1.$$

Process of Completion. We have two measures on \mathbb{R}^2 :

- $\mathcal{M} \otimes \mathcal{M}$, and
- $\mathcal{M}_{\mathbb{R}^2}$, given by

$$\mathcal{M}_{\mathbb{R}^2} = \{ E \subseteq \mathbb{R}^2 \mid m^*(A) = m^*(A \cap E) + m^*(A \cap E^c) \text{ for all subsets } A \subseteq \mathbb{R}^2 \}$$

Here $\mathcal{M}_{\mathbb{R}^2}$ equals the completion of $\mathcal{M} \otimes \mathcal{M}$, i.e., all $E \subseteq \mathcal{M}_{\mathbb{R}^2}$ can be decomposed as

$$E = B \cup (E \setminus B),$$

where $B \in \mathcal{M} \otimes \mathcal{M}$ and $E \setminus B \in \mathcal{M}_{\mathbb{R}^2}$ with $\pi(E \setminus B) = 0$.

Question: does Tonell's theorem holds for (Lebesgue) measurable functions f: $\mathbb{R}^2 \to [0,\infty]$ (i.e., $f^{-1}((a,\infty]) \in \mathcal{M}_{\mathbb{R}^2}$ for any $a \in [0,\infty)$?)

Answer: Yes. To see so, we just need the following proposition

Proposition 15.4 Let $(\mathbb{R}^2, \mathcal{M}_{\mathbb{R}^2}, \pi)$ be the Lebesgue measure on \mathbb{R}^2 , and $N \in \mathcal{M}_{\mathbb{R}^2}$ be such that $\pi(N) = 0$. Then for almost all values of $x \in \mathbb{R}$, $N_x \in \mathcal{M}$ and $m_Y(N_x) = 0$.

Proof. For $N \in \mathcal{M}_{\mathbb{R}^2}$. By hw3, there exists $B' \in \mathcal{M} \otimes \mathcal{M}$ such that $N \subseteq B'$, with

$$\pi(B') = \pi(N).$$

If *N* is null, then $\pi(B') = 0$. By Tonell's theorem on $M \otimes M$, we imply

$$\pi(B') = \int m_Y(B'_x) \mathrm{d}x = \int m_X(B'_y) \mathrm{d}y = 0$$

Therefore, $m_Y(B'_x) = 0$ for almost all $x \in \mathbb{R}$. Since $N \subseteq B'$, we imply $N_x \subseteq B'_x$, i.e., N_x is also a null set. Therefore, $N_x \in \mathcal{M}$ and $m_Y(N_x) = 0$.

• Example 15.3 Consider the integral

$$\int_0^\infty \int_0^\infty y e^{-y^2(1+x^2)} \mathrm{d}y \mathrm{d}x$$

Define $f(x, y) = ye^{-y^2(1+x^2)}$, which is continous on $(0, \infty) \times (0, \infty)$, and therefore measurable. It follows that

$$\int_0^\infty \int_0^\infty f(x,y) \, \mathrm{d}y \, \mathrm{d}x = \int_0^\infty \left(\lim_{n \to \infty} \int_0^n f(x,y) \, \mathrm{d}y \right) \, \mathrm{d}x \tag{15.3a}$$

$$= \int_{0}^{\infty} \left(\frac{1}{1+x^2} \frac{1}{2} \right) dx$$
 (15.3b)

$$= \lim_{n \to \infty} \int_0^n \frac{1}{2} \frac{1}{1+x^2} \,\mathrm{d}x \tag{15.3c}$$

$$=\frac{\pi}{4}$$
 (15.3d)

where (15.3a) is by applying MCT I on the function $f(x, y)X_{[0,n]}$; (15.3b) and (15.3d) is by computation; (15.3c) is by applying MCT I on the function $\frac{1}{1+x^2}\frac{1}{2}X_{[0,n]}$.

By corollary (15.2),

$$\int_0^\infty \int_0^\infty y e^{-y^2(1+x^2)} dx \, dy = \frac{\pi}{4}$$

Or equivalently,

$$\int_0^\infty y e^{-y^2} \int_0^\infty e^{-x^2 y^2} \, \mathrm{d}x \, \mathrm{d}y = \frac{\pi}{4}$$

By applying MCT I on $e^{-x^2y^2} \mathcal{X}_{[0,n]}$, we have

$$\int_0^\infty y e^{-y^2} \lim_{n \to \infty} \int_0^n e^{-x^2 y^2} \, \mathrm{d}x \, \mathrm{d}y = \frac{\pi}{4}$$

By change of variable with t = xy, we imply

$$\int_0^\infty y e^{-y^2} \lim_{n \to \infty} \frac{1}{y} \int_0^{ny} e^{-t^2} dt \, dy = \frac{\pi}{4}$$

Or equivalently,

$$\int_0^\infty e^{-y^2} \int_0^\infty e^{-t^2} \, \mathrm{d}t \, \mathrm{d}y = \frac{\pi}{4}$$

Therefore, we conclude that

$$\left(\int_0^\infty e^{-y^2} \,\mathrm{d}y\right)^2 = \frac{\pi}{4} \implies \int_0^\infty e^{-x^2} \,\mathrm{d}x = \frac{\sqrt{\pi}}{2}$$