
15.2. Monday for MAT3006

15.2.1. Applications on the Tonell’s and Fubini’s

Theorem
Theorem 15.2 — Tonell. Let f : R2 ! [0,1] be a measurable function (i.e., f �1((a,1]) 2

M ⌦M), then

π
f d⇡ =

π ✓π
f (x, y)dx

◆
dy =

π ✓π
f (x, y)dy

◆
dx

Theorem 15.3 — Fubini. Let f : R2 ! [�1,1] be integrable (i.e., f = f + � f � with

f ± : R2 ! [0,1] measurable and

Ø
f ± dx <1), then

π
f d⇡ =

π ✓π
f (x, y)dx

◆
dy =

π ✓π
f (x, y)dy

◆
dx

Corollary 15.2 Suppose that f : R2 ! [�1,1] is measurable, and either

π ✓π
| f (x, y)|dx

◆
dy (15.1a)

or π ✓π
| f (x, y)|dy

◆
dx (15.1b)

exists, then f is integrable, and the result of Fubini follows. (i.e., one can switch the order

of integration as long as the integral of | f | exists)

Proof. If (15.1a) or (15.1b) exists (is finite), then Tonell’s Theorem implies that | f | is

integrable, which implies f is integrable.

Therefore, the assumption of Fubini’s theorem holds, and the proof is comptete. ⌅

R The advantage for corollary (15.2) is that computing (15.1a) or (15.1b) is easier

than showing the integrability of f in general.
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⌅ Example 15.2 Compute the double integral

π
1

0

π x

0

s
1 � y

x � y
dydx.

Construct the function f (x, y) :=
q

1�y
x�yXE (x, y), with E shown in Fig. (15.1).

Figure 15.1: Illustration for integral domain E

We want to compute
Ø

f (x, y)d⇡ and show that

π
1

0

π x

0

s
1 � y

x � y
dydx =

π
f (x, y)d⇡.

• Consider the integral

π ✓π
f (x, y)dx

◆
dy =

π ✓π
f (x, y)XEy dx

◆
XEx dy (15.2a)

=

π
1

0

 π
1

y

s
1 � y

x � y
dx

!
dy (15.2b)

=

π
1

0

p
1 � y

✓π
1

y

1px � y
dx

◆
dy (15.2c)

=

π
1

0

p
1 � y

✓π
1�y

0

1p
t

dt
◆

dy (15.2d)

=

π
1

0

p
1 � y · (2

p
1 � y)dy (15.2e)

= 2

π
1

0

(1 � y)dy (15.2f)

= 1 (15.2g)

• Therefore,
Ø
(
Ø
| f (x, y)|dx)dy <1. Mreover, f is continous on E�

, i.e., measurable
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on E�
(it’s clear that a continous function is measurable). Since @E is null, we imply

f is measurable on E := E� [ @E .

• Therefore, the assumption of Corollary (15.2) holds, and we imply that

π ✓π
f (x, y)dy

◆
dx =

π ✓π
f (x, y)dx

◆
dy

It’s clear that

π
1

0

π x

0

s
1 � y

x � y
dydx =

π ✓π
f (x, y)dy

◆
dx,

and therefore π
1

0

π x

0

s
1 � y

x � y
dydx = 1.

⌅

Process of Completion. We have two measures on R2
:

• M ⌦M, and

• MR2 , given by

MR2 = {E ✓ R2 | m⇤(A) = m⇤(A\ E) +m⇤(A\ Ec) for all subsets A ✓ R2}

Here MR2 equals the completion of M ⌦M, i.e., all E ✓ MR2 can be decomposed as

E = B [ (E \ B),

where B 2M ⌦M and E \ B 2MR2 with ⇡(E \ B) = 0.

Question: does Tonell’s theorem holds for (Lebesgue) measurable functions f :

R2 ! [0,1] (i.e., f �1((a,1]) 2MR2 for any a 2 [0,1)?)

Answer: Yes. To see so, we just need the following proposition

Proposition 15.4 Let (R2
,MR2 ,⇡) be the Lebesgue measure on R2

, and N 2 MR2 be

such that ⇡(N) = 0. Then for almost all values of x 2 R, Nx 2M and mY (Nx) = 0.
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Proof. For N 2MR2 . By hw3, there exists B0 2M ⌦M such that N ✓ B0
, with

⇡(B0) = ⇡(N).

If N is null, then ⇡(B0) = 0. By Tonell’s theorem on M ⌦M, we imply

⇡(B0) =
π

mY (B0
x)dx =

π
mX(B0

y)dy = 0

Therefore, mY (B0
x) = 0 for almost all x 2 R. Since N ✓ B0

, we imply Nx ✓ B0
x , i.e., Nx is

also a null set. Therefore, Nx 2M and mY (Nx) = 0. ⌅

⌅ Example 15.3 Consider the integral

π 1

0

π 1

0

ye�y
2(1+x2)

dydx

Define f (x, y)= ye�y
2(1+x2)

, which is continous on (0,1)⇥ (0,1), and therefore measurable.

It follows that

π 1

0

π 1

0

f (x, y)dydx =
π 1

0

✓
lim
n!1

π n

0

f (x, y)dy

◆
dx (15.3a)

=

π 1

0

✓
1

1 + x2

1

2

◆
dx (15.3b)

= lim
n!1

π n

0

1

2

1

1 + x2
dx (15.3c)

=
⇡

4
(15.3d)

where (15.3a) is by applying MCT I on the function f (x, y)X[0,n]; (15.3b) and (15.3d) is

by computation; (15.3c) is by applying MCT I on the function
1

1+x2

1

2
X[0,n].

By corollary (15.2), π 1

0

π 1

0

ye�y
2(1+x2)

dx dy =
⇡

4

Or equivalently, π 1

0

ye�y
2

π 1

0

e�x
2y2

dx dy =
⇡

4
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By applying MCT I on e�x
2y2X[0,n], we have

π 1

0

ye�y
2

lim
n!1

π n

0

e�x
2y2

dx dy =
⇡

4

By change of variable with t = xy, we imply

π 1

0

ye�y
2

lim
n!1

1

y

π ny

0

e�t
2

dt dy =
⇡

4

Or equivalently, π 1

0

e�y
2

π 1

0

e�t
2

dt dy =
⇡

4

Therefore, we conclude that

✓π 1

0

e�y
2

dy

◆2

=
⇡

4
=)

π 1

0

e�x
2

dx =
p
⇡

2

⌅
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