
13.5. Wednesday for MAT3006

13.5.1. Fubini’s and Tonell’s Theorem

Motivation. Given two measurable space (R,M, dx) and (R,M, dy), we have con-

structed the product measurable space (R2
,M ⌦M, d⇡). Suppose f : R

2 ! [�1,1] is

measurable on this space, now we want to show that

π
f (x, y)d⇡ =

π ✓π
fy(x)dx

◆
dy =

π ✓π
fx(y)dy

◆
dx

Easier Goal. The proof for the statement above is hard. Consider the easier case

where f is a simple function first, i.e., f (x, y) =XE (x, y), E 2M ⌦M, which follows that

π
XE (x, y)d⇡ = ⇡(E)π
(XE )y(x)dx =

π
XEy (x)dx = mX(Ey)π

(XE )x(y)dy =

π
XEx (y)dx = mY (Ex)

Therefore, our easier goal is to show that

⇡(E) =
π

mX(Ey)dy =

π
mY (Ex)dx, 8E 2M ⌦M. (13.1)

Easiest Goal. Consider the simplest case where E = A ⇥ B 2 M ⌦ M, where A 2

MX , B 2MY , which implies

• ⇡(A⇥ B) = mX(A)mY (B)

• As shown in the figure (13.1), for fixed y 2 Y ,

mX((A⇥ B)y) =
8>>><
>>>:

mX(A), if y 2 B

mX(;) = 0, if y < B
= mX(A)XB(y)
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Figure 13.1: Illustration for mX((A⇥ B)y)

Therefore, we imply

π
mX((A⇥ B)y)dy =

π
mX(A)XB(y)dy

= mX(A)
π

XB(y)dy

= mX(A)mY (B)

Similarly, π
mY ((A⇥ B)x)dx = mX(A)mY (B).

Therefore, the easier goal (Eq. (13.1)) holds for E = A⇥ B 2M ⇥M.

R Generalization from the easier goal to the real goal is trivial, i.e., applying

MCT is ok. The difficulty is that how to show the easier goal (Eq. (13.1))

holds for any E 2M ⌦M, given that the easier goal (Eq. (13.1)) holds for any

E 2M ⇥M.

Definition 13.2 [Monotone Class] Let X be a non-empty set. A monotone class T

is a collection of subsets of X closed under countable increasing unions and countable

decreasing intersections, i.e.,
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1. If Ei 2 T(i 2 N) and Ei ✓ Ei+1,8i, then

1ÿ
i=1

Ei 2 T

2. If Fi 2 T(i 2 N) with Fi ◆ Fi+1,8i, then

1Ÿ
i=1

Fi 2 T

⌅

R Every �-algebra is a monotone classs. In particular, for X =R, the collection

of subsets M and B are both monotone classes.

Definition 13.3 [Smallest Monotone Class] For any S ✓ P(X), denote

M(S) :=
Ÿ

T is a monotone class such that S ✓ T
T ,

which is also the monotone class. We call M(S) as the smallest monotone class containing

S. ⌅

R It’s clear that M(S) ✓ �(S), where �(S) is the smallest �-algebra containing S.

Question: when do we have M(S) = �(S)?

Theorem 13.5 — Monotone Class Theorem. Let X be a non-empty set. If S ✓ P(X) is

an algebra (i.e., E1, E2 2 S =) E1 [ E2 2 S, E1 \ E2 2 S, Ec
1
2 S), then M(S) = �(S).

We skip the proof for the monotone class theorem, but you may refer to the proof in

the blackboard.

⌅ Example 13.3 1. Let X =R, and S1 = {all intervals} is not an algebra, e.g.,

[1,2] 2 S1 =) [1,2]c = (�1,1)[ (2,1) < S1
.
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However, S = {finite disjoint union of intervals} is an algebra. Therefore,

M(S) = �(S) := B(Borel �-algebra).

2. Let X =R
2
, and define

S =

(
finite disjoint union of measurable rectangles

kÿ
i=1

(Ai ⇥ Bi)
����� Ai, Bi 2M

)

Then S is an algebra, for instance, as shown in the Fig. (13.2), (A⇥ B)c = (Ac ⇥

R)[ (A⇥ Bc) is a disjoint union of 2 measurable rectangles.

Figure 13.2: Illustration for (A⇥ B)c

Therefore, M(S) = �(S) :=M ⌦M

⌅

Proposition 13.8 For all E 2M ⌦M, we have

⇡(E) =
π

mY (Ex)dx =
π

mX(Ey)dy (13.2)

Proof. Construct

A =

8>>>>>><
>>>>>>:

E 2M ⌦M

����������

x 7! mY (Ex) is a measurable function of x

y 7! mX(Ey) is a measurable function of y

Eq. (13.2) holds

9>>>>>>=
>>>>>>;

• Claim 1: A is a monotone class
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• Claim 2: Any finite disjoint union of measurable rectangles is in A:

kÿ
i=1

(Ai ⇥ Bi) 2 A, k 2 N

If claim (1),(2) holds, then S ✓ A, where

S = {finite disjoint union of measurable rectangles}

which follows that

M(S) ✓ A.

By monotone class theorem, �(S) =M(S) ✓ A, i.e.,

M ⌦M = �(S) =M(S) ✓ A ✓ M ⌦M =) M ⌦M =A.

Therefore, (13.2) holds for all E 2 A =M ⇥M.

We left the proof for claim (1) in next class. Now we give a proof for claim (2):

• For any E = [k
i=1

(Ai ⇥ Bi),

mY (Ex) =
k’
i=1

mY (Bi)XAi (x)

is a simple function on x, and therefore measurable.

• Similarly,

mX(Ey) =
k’
i=1

mX(Ai)XBi (y)

is also measurable.

• By the easiest goal, (13.2) also holds.

Therefore, claim (2) is true. ⌅
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