13.2. Monday for MAT3006

Notations. In this lecture, we let $\int_{I} f(x, y) dx$ denote the Lebesgue integral.

Theorem 13.3 Let *I*, *J* be intervals in \mathbb{R} , and $f : I \times J \to \mathbb{R}$ be a function such that

- 1. For fixed $y \in J$, the function f(x) := f(x, y) is integrable on *I*
- 2. $\frac{\partial f}{\partial y}$ exists for any $(x, y) \in I \times J$
- 3. $\left|\frac{\partial f}{\partial y}(x, y)\right| \le g(x)$ for some integrable function g(x) on *I*.

Then $F(y) := \int_{I} f(x, y) dx$ is differentiable on *J*, with

$$F'(y) = \int_{I} \frac{\partial f}{\partial y}(x, y) dx$$

Proof. Fix $y \in J$, and consider any sequence $\{y_n\}$ (with $y_n \neq y$) in J converging to y.

Construct the function

$$g_n(x) := \frac{f(x, y_n) - f(x, y)}{y_n - y}$$

which follows that

- 1. The function g_n is integrable by hypothesis (1)
- 2. The function $g_n(x)$ converges to $\frac{\partial f}{\partial y}(x, y)$ as $n \to \infty$
- 3. By MVT, $|g_n(x)| = |\frac{\partial f}{\partial y}(x,\xi)|$, which is bounded by g(x) by hypothesis (3).

Therefore, the DCT applies, and

$$\int_{I} g_{n}(x) dx = \frac{1}{y_{n} - y} \left[\int f(x, y_{n}) dx - \int f(x, y) dx \right] \rightarrow \int_{I} \frac{\partial f}{\partial y}(x, y) dx$$

In other words, for all sequences $\{y_n\} \rightarrow y$ with $y_n \neq y$,

$$\lim_{n \to \infty} \frac{F(y_n) - F(y)}{y_n - y} = \int_I \frac{\partial f}{\partial y}(x, y) dx$$

From the elementary analysis knowledge, in particular, $\lim_{y'\to y} H(y')$ exists (equal to *L*) if and only if $\lim_{n\to\infty} H(y_n) = L$ for all sequences $\{y_n\} \to y$ with $y_n \neq y$. Therefore,

$$F'(y) := \lim_{y' \to y} \frac{F(y') - F(y)}{y' - y} = \int_I \frac{\partial f}{\partial y}(x, y) dx.$$

13.2.1. Double Integral

Definition 13.1 [Measure in \mathbb{R}^2] In \mathbb{R}^2 , we can define the **measure** of the rectangle $A \times B \subseteq \mathbb{R}^2$ with $A, B \in \mathcal{M}$ by

$$m^*(A \times B) = m(A)m(B)$$

In particular, we define

$$x \cdot \infty = \infty \cdot x = (-x) \cdot (-\infty) = \begin{cases} \infty, & \text{if } x > 0 \\ -\infty, & \text{if } x < 0 \\ 0, & \text{if } x = 0 \end{cases}$$

Definition 13.2 [Outer Measure in \mathbb{R}^2] Then the outer measure of any $E \subseteq \mathbb{R}^2$ is defined as

$$m^*(E) := \inf\left\{\sum_{i=1}^{\infty} m(R_i) \middle| E \subseteq \bigcup_{i=1}^{\infty} R_i, R_i = A_i \times B_i, A_i, B_i \in \mathcal{M}\right\}$$

Definition 13.3 [Lebesgue Measurable in \mathbb{R}^2] A subset $E \subseteq \mathbb{R}^2$ is Lebesgue measurable if E satisfies the Carathedory Property:

$$m^*(A) = m^*(A \cap E) + m^*(A \setminus E),$$

for any subset $A \subseteq \mathbb{R}^2$.

Construction of Measurable Space in \mathbb{R}^2 . Given two measurable spaces (*X*, \mathcal{A} , μ) and (*Y*, \mathcal{B} , λ), in particular, we are interested in

$$(X, \mathcal{A}, \mu) = (Y, \mathcal{B}, \lambda) = (\mathbb{R}, \mathcal{M}, m).$$

Now we want to construct the measurable space in $X \times Y := \mathbb{R}^2$.

1. Start from the "measurable rectangles"

$$\mathcal{A} \times \mathcal{B} = \{A \times B \mid A \in \mathcal{A}, B \in \mathcal{B}\}$$

2. Define the function $\pi : \mathcal{A} \times \mathcal{B} \to [0, \infty]$ by

$$\pi(A \times B) = \mu(A)\lambda(B).$$

- 3. Let $\mathcal{A} \otimes \mathcal{B}$ be the smallest σ -algebra containing $\mathcal{A} \times \mathcal{B}$. Then by Caratheodory extension theorem, we can extend $\pi : \mathcal{A} \times \mathcal{B} \to [0, \infty]$ to $\tilde{\pi} : \mathcal{A} \otimes \mathcal{B} \to [0, \infty]$ such that
 - (a) $(X \times Y, \mathcal{A} \otimes \mathcal{B}, \tilde{\pi})$ is a measurable space
 - (b) $\tilde{\pi} \mid_{\mathcal{A} \times \mathcal{B}} = \pi$.

```
R
```

- If further we have A and B are σ-finite, i.e., there exists E_i ∈ A such that X = ∪_{i=1}[∞]E_i, μ(E_i) < ∞, ∀i, then we can imply the extension π̃ is unique.
 (For instance, ℝ = ∪_{n∈ℤ}[n, n + 1] and m([n, n + 1]) = 1 < ∞, i.e., (ℝ, μ, m) is σ-finite.)
- Question: we can construct two measurable space (ℝ × ℝ, M ⊗ M, π̃) and (ℝ², M_{ℝ²}, m). Are they the same?

Answer : no, but the latter can be obtained from the former by completion process. In particular,

$$m\mid_{\mathcal{M}\otimes\mathcal{M}}=\tilde{\pi}.$$

Let's study the measurable space $(\mathbb{R} \times \mathbb{R}, \mathcal{M} \otimes \mathcal{M}, f)$ first, where $f : \mathbb{R}^2 \to [-\infty, \infty]$ is a measurable function, i.e., $f^{-1}((a, \infty]) \in \mathcal{A} \otimes \mathcal{B}$. In particular, we say $E \subseteq \mathbb{R} \times \mathbb{R}$ is measurable if $E \in \mathcal{M} \otimes \mathcal{M}$ for the moment being (but we will generalize the notion of measurable into $\mathcal{M}_{\mathbb{R}^2}$ in the future).

Definition 13.4 [x-section and y-section] Let $E \subseteq X \times Y$, with $(x, y) \in E$. Define

- the x-section E_x = {y ∈ Y | (x, y) ∈ E}, for fixed x ∈ X
 the y-section E_y = {x ∈ X | (x, y) ∈ E}, for fixed y ∈ Y.

Proposition 13.2 Suppose that $E \subseteq X \times Y$ is measurable (i.e., $E \in \mathcal{A} \otimes \mathcal{B}$), then $E_x \in \mathcal{B}$ and $E_y \in \mathcal{A}$.

Proof. Construct the set $\mathfrak{A} = \{E \in \mathcal{A} \otimes \mathcal{B} \mid E_x \in \mathcal{B}\}$. It suffices to show $\mathfrak{A} = \mathcal{A} \otimes \mathcal{B}$. We claim that

- 1. \mathfrak{A} is a σ -algebra
- 2. \mathfrak{A} contains all $A \times B \in \mathcal{A} \times \mathcal{B}$

If the claim (1) and (2) hold, and since $\mathcal{A} \otimes \mathcal{B}$ is the smallest- σ -algebra containing $\mathcal{A} \times \mathcal{B}$, we imply $\mathcal{A} \otimes \mathcal{B} \subseteq \mathfrak{A} \subseteq \mathcal{A} \otimes \mathcal{B}$, i.e., the proof is complete.

- 1. (a) Note that $\emptyset \in \mathfrak{A}$, and $X \times Y \in \mathfrak{A}$ since $(X \times Y)_x = Y \in \mathcal{B}$.
 - (b) Suppose that $E_i \in \mathfrak{A}$, $i \ge 1$, i.e., $(E_i)_x \in \mathcal{B}$. Observe that

$$\left(\bigcup_{i=1}^{\infty}E_i\right)_x=\bigcup_{i=1}^{\infty}(E_i)_x\in\mathcal{B},$$

since \mathcal{B} is a σ -algebra. Therefore, $\bigcup_{i=1}^{\infty} E_i \in \mathfrak{A}$.

(c) Suppose that $E \in \mathfrak{A}$, i.e., $(E)_x \in \mathcal{B}$, then

$$(E^{c})_{x} = \{ y \mid (x, y) \in E^{c} \}$$
$$= \{ y \mid (x, y) \notin E \}$$
$$= (E_{x})^{c} \in \mathcal{B}$$

which implies $E^c \in \mathfrak{A}$.

2. For any $A \times B \in \mathcal{A} \times \mathcal{B}$, since $(A \times B)_x = B \in \mathcal{B}$, we imply $(A \times B) \in \mathfrak{A}$.

In conclusion, $\mathfrak{A} = \mathcal{A} \otimes \mathcal{B}$. For all $E \in \mathcal{A} \otimes \mathcal{B}$, we imply $E \in \mathfrak{A}$, i.e., $E_x \in \mathcal{B}$.

Proposition 13.3 Sippose that $f : X \times Y \to [-\infty, \infty]$ is measurable. (i.e., $f^{-1}((a, \infty]) \in \mathcal{A} \otimes \mathcal{B}$), then the maps

$$\begin{cases} f_x : Y \to [-\infty, \infty] \\ \text{with } f_x(y) \coloneqq f(x, y) \end{cases} , \qquad \begin{cases} f_y : X \to [-\infty, \infty] \\ \text{with } f_y(x) \coloneqq f(x, y) \end{cases}$$

are measurable. More precisely, $f_x^{-1}((a,\infty]) \in \mathcal{B}$ and $f_y^{-1}((a,\infty]) \in \mathcal{A}$.

Proof.

$$f_x^{-1}((a,\infty]) = \{ y \in Y \mid f_x(y) \in (a,\infty] \}$$

= $\{ y \in Y \mid f(x,y) > a \}$
= $\{ (u,y) \in X \times Y \mid f(u,y) > a \}_x$
= $(f^{-1}((a,\infty]))_x \in \mathcal{B}$