
12.5. Wednesday for MAT3006
⌅ Example 12.7 Compute the integral

L = lim
n!1

π 1

0

nx log(x)
1 + n2x2 dx.

Let fn(x) = nx log(x)
1+n2x2 X(0,1], which is continuous on [0,1], i.e., integrable on [0,1]. The goal

is to show L = 0.

• Note that fn(x)! 0,8x 2 [0,1] pointwisely, as n !1.

• Note that t/(1 + t2)  1
2 ,8t � 0. Take t = nx, we imply

| fn(x)| 
1
2
| log(x)|X(0,1]

We claim that
1
2 | log(x)|X(0,1] := �1

2 log(x)X(0,1] is integrable: by MCT I,

π
�1

2
log(x)X(0,1] dm = lim

n!1

π 1

1/n
�1

2
log(x)dx =

1
2
<1.

Therefore, the DCT applies, and

lim
n!1

π 1

0

nx log(x)
1 + n2x2 dx =

π 1

0
lim
n!1

nx log(x)
1 + n2x2 dx =

π 1

0
0dx = 0

However, fn(x) does not converge to f (x) ⌘ 0 uniformly on [0,1]:

sup
0x1

| fn(x) � 0| � | fn(1/n) � 0| = 1
2

log(n)!1,as n !1

Therefore, we cannot switch integral symbol and limit by using the tools in MAT2006. ⌅

Proposition 12.5 Suppose that f (x) is a proper Riemann integrable function on [a, b].

Then f (x) is Lebesgue integrable on [a, b] with

π
[a,b]

f dm =
π b

a
f (x)dx.
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Proof. Since f is properly Riemann inregrable, we imply f (x) is bounded on [a, b], i.e.,

| f (x)|  K ,8x 2 [a, b]. Construct the Riemann lower and upper functions with 2n equal

subintervals, denoted as �n, n, which follows that

• �n(x)  f (x)   n(x),8n

• �n(x) is monotone increasing

•  n(x) is monotone decreasing

Now apply bounded convergence theorem on  n � �n:

• | n(x) � �n(x)|  2K on [a, b]

•  n � �n !  � �

which implies

π
| � �|dm =

π
 � �dm

= lim
n!1

π
 n � �n dm = lim

n!1

π
 n dm � lim

n!1

π
�n dm

= Riemann Upper Sum � Riemann Lower Sum

= 0

Therefore,
Ø
| � �|dm = 0 implies  (x) = �(x) a.e. By sandwich theorem,

 (x) = f (x) = �(x) a.e.

Therefore, π
f dm =

π
�dm = lim

n!1

π
�n dm =

π b

a
f (x)dx

where the second equality is by MCT II.

⌅

R The improper Riemann integrable functions f (x) is not necessarily Lebesgue

integrable. However, if we assume f (x) � 0, then f (x) is improper Riemann

integrable implies f (x) is Lebesgue integrable, with the same integral value.
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Proof Outline. Suppose f (x) is improper Riemann integrable on [a, b], where

a, b 2 R [ {±1}.

• Construct fn = fX[an ,bn], with [an, bn] ✓ [an+1, bn+1] ✓ · · · ✓ [a, b].

• By previous proposition, fn is proper Riemann integrable implies fn is

Lebesgue integrable.

• Then we apply the MCT I to { fn}.

⌅

Theorem 12.4 — Continous parameter DCT. Let I, J ✓ R be intervals, and f : I ⇥ J !

R be such that

1. for fixed y 2 J, the function f (x) := f (x, y) is an integrable function over I.

2. for fixed y 2 J,

lim
y0!y

f (x, y0) = f (x, y)

for almost all x 2 I

3. There exists integrable g(x) (do not depend on y) such that for all y 2 J,

| f (x, y)|  g(x)

for almost all x 2 I.

As a result,

F(y) =
π
I

f (x, y)dx

is a continuous function on J.

Proof. Let {yn} be a sequence on J such that yn ! y. It suffices to show F(yn)! F(y).

Construct fn(x) = f (x, yn), which follows that

• fn(x) is integrable for all n (by hypothesis (1)) (why check integrable)

• | fn(x)|  g(x) a.e. for all n, and g(x) is integrable (by hypothesis (3))
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• By hypothesis (2),

lim
n!1

fn(x) = f (x, y)

Therefore, the DCT applies, and

lim
n!1

π
I

fn(x, yn)dm =
π

lim
n!1

fn(x, yn)dm =
π
I

f (x, y)dm

Or equivalently,

lim
n!1

F(yn) = F(y)

⌅

⌅ Example 12.8 Consider f (x, y) = e�x xy�1
with I ⇥ J = (0,1) ⇥ [m, M], where 0 < m <

M <1. We will study the integral

�(y) =
π 1

0
e�x xy�1 dx

We check the hypothesis in the Theorem (12.4):

1. For fixed k 2 [m, M], f (x, y) is indeed integrable on (0,1):

⇣
e�x xk�1

⌘
X(0,1)  1 · xk�1X(0,K] + 10e�x/2X[K ,1)

where K is a sufficiently large number in (0,1).

2. The hypothesis (2) follows directly from the contiuity of f (x, y)

3.

| f (x, y)|  e�x xm�1X[0,1] + e�x xM�1X(1,1)

 xm�1X[0,1] + e�x xM�1X(1,1)

Here xm�1X[0,1] is integrable. Following the similar argument in (1), we imply

e�x xM�1X(1,1) is integrable as well.
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Therefore, �(y) is continuous for any m  y  M. Since the choice of 0 < m < M <1 is

arbitrary, we imply T(y) is continous on (0,1).

In the next lecture we wish to show that

F 0(y) =
π
I

@ f
@y

(x, y)dx

⌅
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