
12.2. Monday for MAT3006

12.2.1. Remarks on MCT
⌅ Example 12.2 The MCT can help us to compute the integral

lim
n!1

π n⇡

0
cos

⇣ x
2n

⌘
xe�x

2
dx

Construct fn(x) = cos
� x

2n
�

xe�x
2X[0,n⇡].

• Since cos(x/2n) < cos(x/2(n + 1)) for any x 2 [0,n⇡], we imply fn is monotone

increasing with n

• fn(x) is integrable for all n.

• fn converges pointwise to xe�x
2X[0,1)

Therefore, MCT I applies and

lim
n!1

π n⇡

0
cos

⇣ x
2n

⌘
xe�x

2
dx =

π ⇣
lim
n!1

fn
⌘

dm

with

lim
n!1

fn = xe�x
2X[0,1).

Moreover,

π ⇣
lim
n!1

fn
⌘

dm = lim
m!1

π m

0
xe�x

2
dx (12.1a)

=

π 1

0
xe�x

2
dx (12.1b)

=
1
2

(12.1c)

where (12.1a) is by applying MCT I with gm(x) = xe�x
2X[0,m]. ⌅

Then we discuss the Lebesgue integral for series:
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Corollary 12.3 [Lebesgue Series Theorem] Let { fn} be a series of measurable functions

such that
1’
n=1

π
| fn |dm <1,

then
Õk

n=1 fn converges to an integrable function f =
Õ1

n=1 fn a.e., with

π
f dm =

1’
n=1

π
fn dm

Proof. • For each fn, consider

fn = f +n � f �n , where f +n , f �n are nonnegative.

By proposition (11.6),

π 1’
n=1

f +n dm =
1’
n=1

π
f +n dm 

1’
n=1

π
| fn |dm <1.

Therefore, f + :=
Õ1

n=1 f +n = limk!1
Õk

n=1 f +n is integrable. The same follows by

replacing f + with f �. By corollary (9.6), f +(x), f �(x) < 1,8x 2 U, where Uc is

null.

• Therefore, construct

f (x) =
8>>><
>>>:

f +(x) � f �(x), x 2 U

0, x 2 Uc

Moreover, for x 2 U,

f (x) =
 

lim
k!1

k’
n=1

f +n (x)
!
�

 
lim
k!1

k’
n=1

f �n (x)
!

= lim
k!1

 
k’

n=1

f +n (x) �
k’

n=1

f �n (x)
!

= lim
k!1

"
k’

n=1

( f +n (x) � f �n (x))
#

=

1’
n=1

fn(x)
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where the first equality is because that both terms are finite.

• It follows that

π
f dm =

π
f +dm �

π
f � dm (12.2a)

=

π 1’
n=1

f +n dm �
π 1’

n=1

f �n dm (12.2b)

=

 1’
n=1

π
f +n dm

!
�

 1’
n=1

π
f �n dm

!
(12.2c)

=

1’
n=1

✓π
f +n dm �

π
f �n dm

◆
(12.2d)

=

1’
n=1

π
fn dm (12.2e)

where (12.2a),(12.2d) is because that summation/subtraction between series holds

when these series are finite; (12.2c) is by proposition (11.6); (12.2e) is by definition

of fn.

⌅

⌅ Example 12.3 Compute the integral

π 1

0
e�x x↵�1 dx, ↵ > 0.

• Construct fn(x) = (�1)n x↵+n�1

n! X(0,1],n � 0, and

N’
n=0

fn(x)! e�x x↵�1, pointwisely, x 2 (0,1].

By applying MCT I, π
| fn |dm =

1
(↵ + n)n!

Therefore,
1’
n=0

π
| fn |dm =

1’
n=0

1
(↵ + n)n!

<1
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• Applying the Lebesgue Series Theorem,

π 1

0
e�x x↵�1 dx =

π 1

0
(
1’
n=0

fn)dm =
1’
n=0

π
fn dm =

1’
n=0

(�1)n
(↵ + n)n!

⌅

R It’s essential to have
ÕØ

| f |dm <1 rather than
ÕØ

fn dm <1 in the Lebesgue

Series Theorem. For example, let

fn =
(�1)n+1

(n + 1) X[n,n+1) =)
1’
n=1

π
fn dm = log(2) <1

However, f :=
Õ

fn is not integrable.

12.2.2. Dominated Convergence Theorem

Theorem 12.2 Let { fn} be a sequence of measruable functions such that | fn |  g a.e.,

and g is integrable. Suppose that limn!1 fn(x) = f (x) a.e., then

1. f is integrable,

2. π
f dm = lim

n!1

π
fn dm

Proof. • Observe that

| fn |  g =) lim
n!1

| fn |  g =) | f |  g

By comparison test, g is integrable implies | f | is integrable, and further f is

integrable.

• Consider the sequence of non-negative functions {g � fn}n2N and {g + fn}n2N.
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By Fatou’s Lemma,

lim
n!1

inf
π

(g � fn)dm �
π

lim
n!1

inf(g � fn)dm

=

π
(g � f )dm

=

π
gdm �

π
f dm

which follows that

π
gdm � lim

n!1
sup

π
fn dm �

π
gdm �

π
f dm

i.e., π
f dm � lim

n!1
sup

π
fn dm

• Similarly,

lim
n!1

inf(g + fn)dm �
π

lim
n!1

inf(g + fn)dm =
π

gdm +
π

f dm

which implies

lim
n!1

inf
π

fn dm �
π

f dm

As a result,

lim
n!1

sup
π

fn dm 
π

f dm  lim
n!1

inf
π

fn dm,

which implies π
f dm = lim

n

π
fn dm

⌅

Corollary 12.4 [Bounded Convergence Theorem] Suppose that E 2 M be such that

m(E) <1. If

• | fn(x)|  K <1 for any x 2 E ,n 2 N
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• fn ! f a.e. in E ,

then f is integrable in E with

π
E

f dm = lim
n!1

π
fn dm

Proof. Take g = KXE in DCT. ⌅

Proposition 12.2 Every Riemann integrable function f on [a, b] is Lebesgue integrable,

without the condition that f is continuous a.e.

Proof. Since f is Riemann integrable, we imply f is bounded. We construct the Riemann

lower abd upper functions with 2n equal intervals, denoted as {�n} and { n}, which

follows that

• �n is monotone increasing;  n is monotone decreasing;

• �n  f   n, and

lim
n!1

π
[a,b]

�n =

π b

a
f (x)dx = lim

n!1

π
[a,b]

 n.

Construct g = supn �n and h = infn n. Now we can apply the bounded convergence

theorem:

• �n is bounded on [a, b]

• �n ! g on [a, b]

which implies g is Lebesgue integrable on [a, b], with

π
[a,b]

gdm = lim
n!1

π
[a,b]

�n =

π b

a
f (x)dx.

Similarly, h is Lebesgue integrable, with

π
[a,b]

h dm = lim
n!1

π
[a,b]

 n =

π b

a
f (x)dx.
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Moreover, g  f  h, and

π
[a,b]

(h � g)dm =
π
[a,b]

h dm �
π
[a,b]

gdm =
π b

a
f (x)dx �

π b

a
f (x)dx = 0,

which implies h = g a.e., and further f = g a.e., which implies

π
[a,b]

f dm =
π
[a,b]

gdm =
π b

a
f (x)dx.

⌅

R However, an improper Riemann integral does not necessarily has the corre-

sponding Lebesgue integral:

f (x) =
1’
n=1

(�1)nn · X(1/(n+1),1/n], x 2 [0,1]

In this case, f is Riemann integrable but not Lebesgue integrable.
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