11.2. Monday for MAT3006

Reviewing. Compute the integration

$$\int_0^1 (1-x)^{-1/2} \, \mathrm{d}x$$

Solution. 1. Construct $g_n(x) = (1 - x)^{-1/2} \mathcal{X}_{[0,1-1/n]}$, then g_n is monotone increasing and $g_n(x) \rightarrow (1 - x)^{-1/2} \mathcal{X}_{[0,1)}$ pointwisely.

2. By applying MCT I,

$$\int_{[0,1)} (1-x)^{-1/2} \, \mathrm{d}x = \lim_{n \to \infty} \int g_n \, \mathrm{d}m = 2.$$

Question: How to comptue $\int_{[0,1]} (1-x)^{-1/2} dx$?

Answer:

$$(1-x)^{-1/2}X_{[0,1]} = (1-x)^{-1/2}X_{[0,1]} + (1-x)^{-1/2}X_{[1]}$$

which follows that

$$\int (1-x)^{-1/2} \mathcal{X}_{[0,1]} dm = \int (1-x)^{-1/2} \mathcal{X}_{[0,1]} dm + \int (1-x)^{-1/2} \mathcal{X}_{\{1\}} dm$$
(11.1a)
= $\int_{[0,1]} (1-x)^{-1/2} dx + 0$ (11.1b)

where (11.1b) is because that $(1 - x)^{-1/2} X_{\{1\}} = 0$ a.e.

11.2.1. Consequences of MCT I

Proposition 11.4 If f, g are measurable non-negative functions, and f = g a.e., then

$$\int f \, \mathrm{d}m = \int g \, \mathrm{d}m$$

Proof. Let $U = \{x \in \mathbb{R} \mid f(x) = g(x)\}$, then

$$f = f \cdot \mathcal{X}_U + f \cdot \mathcal{X}_{U^c}$$

where U^c is null. As a result,

$$\int f \,\mathrm{d}m = \int f X_U + \int f X_{U^c} \tag{11.2a}$$

$$= \int g X_U + 0 \tag{11.2b}$$

$$= \int g X_U + \int g X_{U^c} \tag{11.2c}$$

$$= \int g \, \mathrm{d}m \tag{11.2d}$$

where (11.2b) is because that $f \cdot X_{U^c} = 0$ a.e., and $f \cdot X_U = g \cdot X_U$; (11.2c) is becasue that $g \cdot X_{U^c} = 0$ a.e.

Proposition 11.5 — Slight Generalization of MCT I. Suppose that $f_n(x)$ are nonnegative measurable functions such that

- 1. f_n is monotone increasing a.e.
- 2. $f_n(x) \rightarrow f(x)$ a.e.

then

$$\lim_{n\to\infty}\int f_n\,\mathrm{d}m=\int f\,\mathrm{d}m$$

Proof. Construct the set $V_n = \{x \mid f_n(x) \le f_{n+1}(x)\}$ and $V = \bigcap_{n=1}^{\infty} V_n$. Since $f_n(x)$ is monotone increasing a.e., we imply $m(V_n^c) = 0$, and $m(V^c) \le \sum_{n=1}^{\infty} m(V_n^c) = 0$.

1. Construct $\tilde{f}_n(x)$ as follows:

$$\tilde{f}_n(x) = \begin{cases} f_n(x), \text{ if } x \in V \\ 0, \text{ if } x \in V^c \end{cases}$$

As a result,

- \tilde{f}_n is monotone increasing
- Define a function $g : \mathbb{R} \to [0, \infty]$ such that $\lim_{n \to \infty} \tilde{f}_n(x) = g_n(x)$.

Apply the MCT I gives

$$\lim_{n \to \infty} \int \tilde{f}_n \, \mathrm{d}m = \int g \, \mathrm{d}m \tag{11.3a}$$

2. Note that $\{x \mid \tilde{f}_n(x) \neq f_n(x)\} \subseteq V^c$, where V^c is null. Therefore, $f_n = f$ a.e., which implies

$$\int \tilde{f}_n \,\mathrm{d}m = \int f_n \,\mathrm{d}m \tag{11.3b}$$

3. Consider $V' = \{x \mid \lim_{n \to \infty} f_n(x) = f(x)\}$, and $(V')^c$ is null by hyphothesis. For any $x \in V \cap V'$, we imply

$$f(x) = \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \tilde{f}_n(x).$$

Since $(V \cap V')^c$ is null, we imply $\tilde{f}_n(x) \to f$ a.e. Note that $\tilde{f}_n(x) \to g$, we imply g = f a.e., which follows that

$$\int g \, \mathrm{d}m = \int f \, \mathrm{d}m \tag{11.3c}$$

Combining (11.3a) to (11.3c), we conclude that

$$\lim_{n \to \infty} \int f_n \, \mathrm{d}m = \lim_{n \to \infty} \int \tilde{f}_n \, \mathrm{d}m = \int g \, \mathrm{d}m = \int f \, \mathrm{d}m$$

Proposition 11.6 Let $\{f_k\}$ be non-negative measurable and

$$f := \sum_{k=1}^{\infty} f_k,$$

then

$$\int f \, \mathrm{d}m = \sum_{k=1}^{\infty} \int f_k \, \mathrm{d}m$$

Proof. Firstly, $\int f \, dm$ is well-defined since $f = \lim_{n \to \infty} \sum_{k=1}^{n} f_k$ is measurable.

Secondly, take $g_n = \sum_{k=1}^n f_k$, which implies g_n is monotone increasing and $g_n \to f$. Apply MCT I gives the desired result.

• Example 11.3 Consider

$$(1-x)^{-1/2} = \sum_{n=0}^{\infty} \frac{(2n)!}{4^n (n!)^2} x^n, \quad x \in [0,1)$$

Take $f_k = \frac{(2k)!}{4^k (k!)^2} x^k$. Applying proposition (11.6) gives

$$\int_{[0,1)} (1-x)^{-1/2} \, \mathrm{d}x = \sum_{n=0}^{\infty} \int_0^1 \frac{(2n)!}{4^n \cdot (n!)^2} x^n \, \mathrm{d}x$$

Or equivalently,

$$2 = \sum_{n=0}^{\infty} \frac{(2n)!}{4^n (n!)(n+1)!}$$

11.2.2. MCT II

We now extend our study to all measurable functions instead of non-negativity.

Definition 11.4 [Lebesgue integrable] Let f be a measurable function, then let

$$f^{+}(x) = \begin{cases} f(x), & \text{if } f(x) > 0\\ 0, & \text{if } f(x) \le 0 \end{cases} = f(x)X_{f^{-1}((0,\infty])}$$

and

$$f^{-}(x) = \begin{cases} -f(x), & \text{if } f(x) \le 0\\ 0, & \text{if } f(x) > 0 \end{cases} = -f(x)\mathcal{X}_{f^{-1}([-\infty,0])}$$

As a result, $f^{\rm +}$ and $f^{\rm -}$ are both measurable.

Note that

•
$$f(x) = f^+(x) - f^-(x)$$

•
$$|f|(x) = f^+(x) + f^-(x)$$

Now we define the Lebesgue integral of f as

$$\int f \,\mathrm{d}m = \int f^+ \,\mathrm{d}m - \int f^- \,\mathrm{d}m$$

We say f is **Lebesgue integrable** if both f^+ and f^- are integrable, i.e., $\int f^{\pm} dm < \infty$ **Proposition 11.7** 1. If f is measurable, then f is integrable if and only if |f| is integrable

2. If *f* is measurable, and $|f| \le g$ with *g* integrable, then *f* is also integrable

Proof. 1. If *f* is integrable, then $\int f^+ dm$, $\int f^- dm < \infty$. As a result,

$$\int |f| \,\mathrm{d}m = \int (f^+ + f^-) \,\mathrm{d}m = \int f^+ \,\mathrm{d}m + \int f^- \,\mathrm{d}m < \infty$$

For the reverse direction, if |f| is integrable, then

$$\int |f| = \int f^+ + \int f^-$$

therefore $\int f^{\pm} < \infty$, and hence *f* is interable.

2. Since $0 \le |f| \le g$, by proposition (9.8), $\int |f| dm \le \int g dm < \infty$. Therefore, $\int |f| dm < \infty$, and hence |f| is integrable, which implies f is integrable.

R If $|f| \le g$, and $\int |f| dm = \infty$, then by proposition (9.8), we imply $\int g dm = \infty$.