10.5. Wednesday for MAT3006

Proposition 10.10 — Fatou’s Lemma. Suppose {f,} is a sequence of measurable, non-

negative functions.

lim inf [ f,dm > / lim inf(f,,) dm

n—oo

Proof. Define

0= Jim int £, = i (0 7)) 5= Jimn 6

To study the integral f fdm, we will only focus on f(x) on E C R, where f(x)>0,VxeE.

It suffices to show that fE¢dm < lim, 0 inf fE fudm for all simple ¢ satisfying

0 < ¢(x) < f(x),Vx € E. (Then taking supremum both sides leads to the desired result.)
1. Construct the simple function ¢’ on E such that

o(x)—¢g, if p(x)>0
¢'(x) =
0, if p(x)=0

in which we pick & small enough such that ¢(x) —& > 0.
As aresult, ¢’ < f,Vx € E (why?).
2. Note that g,(x) is monotone increasing with n, and therefore convergent to f(x).

Consider A, := {x € E | ¢’(x) < gn(x)}, which follows that
(a) An c An+1
(b) U™ |An = E (We do need ¢ is strictly less than f to obtain this condition).

Therefore, for any & > n,
/ ¢ dm < / gndm < / Jidm,
A, A, An
which implies / " ¢ dm < fE fedm since fiXa, < fiXg. Or equivalently,
/ ¢'dm<inf [ fidm (10.2)
An k>n JE

3. Taking limits n — oo both sides for (10.2):
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e For LHS, suppose that ¢’ = }; @;X,,, then fA ¢'dm=3; a;m(c; N A,), which
follows that

lim ¢ dm = Zal lim m(cl NA,) = Zalm(cl) = / ¢’ dm

n—oo

e The limit of RHS equals lim,,_, inf fE fdm, and therefore

¢ dm < lim inf fn dm

n—oo

Note that the goal is to show fE dpdm < lim,,_, inf fE fndm, and therefore we need
to evaluate ¢’ in terms of ¢.

4. (a) Consider the case where m(¢~1(0,00)) = P < oo, then

/d) dm = ¢dm &P < lim inf fndm

n—oo

for all small & > 0. Then the desired result holds.
(b) Consider the case where m(¢~1(0,)) = co, and we write the canonical form

=Y @;X;, with a¢; > 0. Define C = U;¢; such that m(c) = c.

Construct the simple function ¢’ = aXc, where a := %min{ai}, which implies
¢y <o
° /E ¢’ dm = am(c) = oo, which follows that fE ¢dm = co.

Our goal is to show lim,,_,. inf fE fndm = oo.

Consider B, ={x € E | gn(x) > a}, then UB,, = E,B,, C B,,11-

Observe the inequality

/ ade/ ade/ gndmsinf/fndm
CnB, B, B, k>n JE

Taking n — oo both sides. For LHS, by definition of B,, the limit equals
/Cadm = / ¢’dm = c0; and the limit of RHS equals to lim,,_,. inf fE fndm,
ie.,

liminf [ f,dm = o0
E

n—oo
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Theorem 10.2 — Monotone Convergence Theorem I. Let {f,} be a sequence of non-

negative measurable functions, with
¢ f.(x) being monotone increasing
o fu(x) — f(x) pointwisely

Then we have

31_{210 fndm=/(r}i_1&fn) dm::/fdm

Proof. e On the one hand, for all n € IN, we have
hf = /fndms/fdm = limsup/fndms/fdm

e On the other hand, applying the Fatou’s lemma,

/fdm :=/(lim inffn) dm < lim inf/fndm

Togehter with the previous inequality, we imply

limsup/fnde/fdmsliminf/fn

Therefore, all inequalities above are equalities, and the limit exists since limsup

and liminf coincides. Moreover,

lim [ f,dm= /fdm.

From MCT I, the Lebesgue integral [ f dm can be computed as follows:
e Construct simple functions ¢,, < ¢,,41 with ¢,, — f

e Evaluate f ¢, dm and then / fdm=lim,_« f ¢ndm
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10.5.1. Consequences of MCT

Proposition 10.11  The Lebesgue integral is finitely addictive for measurable non-

negative functions. In other words, suppose f,g are measurable and nonnegative,

/fdm+/gdm=/(f+g)dm

Proof. Suppose we have simple increasing functions {¢,} and {¢,} such that ¢,, — f

then

and ¢, — f. Then

[+ gdm=tim [@,+w)am (1032)
—lim [ ¢pdm+lim [ w,dm (10.3b)

_ / Fdm+ / edm (10.3¢)

where (10.3a) and (10.3¢) is by applying MCT I; and (10.3b) is by definition of simple

function. ]

Corollary 10.1 The Lebesgue integral is linear defined for measurable, nonnegative

functions. In other words, suppose f,g are measurable and nonnegative, then

/(af+bg)dm=a/fdm+b/gdm,

for any a,b > 0.

Proposition 10.12  The Lebesgue integral for non-negative continuous function on a
bounded closed interval coincides with the Riemann integral. In other words, let f be

a non-negative continuous function on [a, b]. then

b
]fdm:/a f(x)dx.

[a,b

We will extend this result into all proper Riemann integrable functions on [a, b] soon.

Proof. Let ¢, be the simple function giving the Riemann lower sum of f(x) with 2"
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equal subintervals:

Z k-1 k
4=, (ryrgl_gﬂy)) Xi, where I = [a+ (b= )=, a + (b= a) ;]

e ¢,(x) > 0 is monotone increasing (that’s the reason we should divde intervals

into 2" pieces instead of n pieces)

o ¢n(x) — f(x) pointwisely: for any x € [a,b] and & > 0, by (uniform) continuity of

f, there exists ¢ > 0 such that

ly—xl <6 = |f(») - f)l <e.

Therefore, for sufficiently large n, we imply for any x € Iy ., |Ix,n| < 6. As a result,

<é&.

’min fO) = fx)
y EIk,n
Therefore,

/ fdm=1im [ ¢,dm
[a,b] n—oo

n—oo

= ‘/abf(x)dx

b
= lim [Riemann lower integral of / f(x)dx

» Example 10.5 The Lebesgue integral gives us an alternative way to compute improper

integrals. Suppose that we want to compute the integral

1
/ (1-x)"Y24dx.
0
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. The old method is that we know the integral
1-1/n
/ (1 - x)"Y2 exists for any n.
0
Then we extend the definition of Riemann integration by taking limit of xn:

1 1-1/n
/ f(x)dx = lim / (1-x)"1/2
0 n—o0o O

. The Lebesgue integration does not require us to extend the definition. Consider

fax) = (1= %) X[0.1-1m)

Then

* fu(x) = f(x) on [0,1)
e f.(x) is monotone increasing

Therefore, by applying MCT 1,

1 1-1/n
/ (1 - x)—1/2 dx = lim /fn dm = lim / (1- x)—1/2 dx.
0 n—oo n—oo Jo
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