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SUMMARY

In this thesis, we develop computationally efficient algorithms with statistical guarantees

for problems of decision-making under uncertainty, particularly in the presence of large-

scale, noisy, and high-dimensional data. In Chapter 2, we propose a kernelized projected

Wasserstein distance for high-dimensional hypothesis testing, which finds the nonlinear

mapping that maximizes the discrepancy between projected distributions. In Chapter 3, we

provide an in-depth analysis of the computational and statistical guarantees of the kernelized

projected Wasserstein distance. In Chapter 4, we study the variable selection problem in

two-sample testing, aiming to select the most informative variables to determine whether

two datasets follow the same distribution. In Chapter 5, we present a novel framework

for distributionally robust stochastic optimization (DRO), which seeks an optimal decision

that minimizes expected loss under the worst-case distribution within a specified set. This

worst-case distribution is modeled using a variant of the Wasserstein distance based on

entropic regularization. In Chapter 6, we incorporate Phi-divergence regularization into the

infinity-type Wasserstein DRO, which is a formulation particularly useful for adversarial

machine learning tasks. Chapter 7 concludes with an overview of promising future research

directions.
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CHAPTER 1

INTRODUCTION

Problems of decision making under uncertainty frequently occur in real-life applications,

such as industrial engineering, computer science, and management. The existing literature

proposed to formulate, analyze and solve these problems through the lens of optimization,

in which they assume that the input optimization parameters can be obtained or estimated

accurately from the data. However, this is not usually the case in the era of Big Data. Big

data formulations usually contain a large amount of uncertain parameters such that the

estimated ones may not be representative of the ground truth. Strategies solely based on

naively estimated parameters may have poor out-of-sample performance. Even worse, they

can be risky or unethical and lead to severe consequences. Therefore, it is important to

establish reliable decision-making modeling to handle data uncertainty due to measurement

error, insufficient sample size, contamination, anomalies, or model misspecification.

In this thesis, we propose solutions to address this challenge in various decision-making

problems with large-scale, noisy, and high-dimensional data. On the one hand, we focus on

developing computationally efficient methodologies through the lens of modern optimization

techniques. On the other hand, we provide strong performance guarantees for the proposed

modeling using tools from statistics.

In Chapter 2, we consider the problem of two-sample testing: given two sets of samples,

aiming to determine whether they are from the same distribution. We propose a kernel

projected Wasserstein distance (KPW) to develop a new two-sample test, which operates

by finding the nonlinear mapping in the data space which maximizes the distance between

projected distributions. Specially,

(I) We develop a computationally efficient algorithm for computing the KPW distance. By

developing a representer theorem, we reformulate the problem as a finite-dimensional
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optimization and employ a block coordinate descent algorithm that is guaranteed to

find an ϖ-stationary point with complexity O(ϖ↑3
).

(II) To quantify the false detection rate, which is essential in setting the detection threshold,

we develop non-asymptotic bounds for empirical KPW distance, and therefore demon-

strate our proposed two-sample test efficiently circumvents the curse of dimensionality.

In Chapter 3, we study a special class of the KPW distance in which the data is pro-

jected into one dimension — termed the kernel max-sliced (KMS) Wasserstein distance.

We establish sharp statistical and computational guarantees for this distance, which have

practical implications for applications such as hypothesis testing, generative modeling, and

distributionally robust optimization. Specifically:

(I) We provide a non-asymptotic estimate on the KMS p-Wasserstein distance between two

empirical distributions based on n samples, referred to as the finite-sample guarantees.

Our result shows that when the samples are drawn from identical populations, the

rate of convergence is n↑1/(2p), which is dimension-free and optimal in the worst case

scenario.

(II) We analyze the computation of KMS 2-Wasserstein distance between two empirical

distributions based on n samples. First, we show that computing this distance exactly

is NP-hard. Consequently, we are prompted to propose a semidefinite relaxation (SDR)

as an approximate heuristic with various guarantees.

• We develop an efficient first-order method with biased gradient oracles to solve

the SDR, the complexity of which for finding a φ-optimal solution is Õ (n3φ↑3
).

In comparison, the complexity of the interior point method for solving SDR is

Õ(n6.5
) [25].

• We derive theoretical guarantees for the optimal solutions from the SDR. We

show that there exists an optimal solution from SDR that is at most rank-k, where
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k ↭ 1 + ↔
√

2n + 9/4 ↗ 3/2↘, whereas computing the KMS distance exactly

requires a rank-1 solution. We also provide a corresponding rank reduction

algorithm designed to identify such low-rank solutions from the pool of optimal

solutions of SDR.

In Chapter 4, we consider the variable selection problem for two-sample tests, aiming to

select the most informative variables to determine whether two collections of samples follow

the same distribution. Our approach involves maximizing a variance-regularized kernel

maximum mean discrepancy (MMD) statistic, which in turn approximately maximizes

testing power. We focus on three kernel types: linear, quadratic, and Gaussian. Specifically:

(I) From the computational perspective, we leverage mixed-integer programming tech-

niques to solve the MMD optimization problem for variable selection. For linear

kernel, we reformulate the optimization as an inhomogeneous quadratic maximiza-

tion with ϱ2 and ϱ0 norm constraints (see Section 4.4.1), called Sparse Trust Region

Subproblem (STRS). Despite its NP-hardness, we provide an exact mixed-integer

semi-definite programming formulation together with exact and approximation algo-

rithms for solving this problem. To the best of our knowledge, this study is new in

the literature. For quadratic and Gaussian kernels, the MMD optimization becomes a

sparse maximization of a non-concave function (see Section 4.4.1), which is intractable

in general. We propose a heuristic algorithm that iteratively optimizes a quadratic

approximation of the objective function, which is also a special case of STRS.

(II) From the statistical perspective, we derive the rate of testing power of our framework

under appropriate conditions. We demonstrate that when the training sample size nTr is

sufficiently large, the type-II error decays in the order of n↑1/2
Te , where nTe denotes the

testing sample size. For the three focused types of kernels, the training sample size re-

quirement is almost independent of the data dimension D but dependent on the number

of selected variables d: For linear, quadratic, and Gaussian kernels, to achieve satisfac-
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tory performance, the training sample sizes are at least !(d2
log

D

d
),!(d4

log
D

d
), and

!(d log
D

d
), respectively.

(III) By combining both viewpoints, it becomes evident that there exists a balance between

computational tractability and statistical guarantees. While the Gaussian kernel requires

a smaller sample size to be statistically powerful, the corresponding MMD optimization

is challenging. Conversely, the linear or quadratic kernel may require more samples to

be statistically powerful, but the optimization is easier to solve.

In Chapter 5, we consider the distributionally robust stochastic optimization (DRO)

problem: aiming to find a robust optimal decision that minimizes the expected loss under the

most adverse distribution within a given set of relevant distributions, called the ambiguity

set. We propose a new framework for this problem by constructing the ambiguity set using

Sinkhorn distance – a variant of Wasserstein distance based on entropic regularization.

Specifically,

(I) We derive a strong duality reformulation for Sinkhorn DRO when the nominal distribu-

tion is any arbitrary distribution. The Sinkhorn dual objective smooths the maximiza-

tion subproblem in the Wasserstein dual objective, and converges to Wasserstein dual

objective as the entropic regularization parameter goes to zero.

(II) As a byproduct of our duality proof, we characterize the worst-case distribution of

the Sinkhorn DRO, which is absolutely continuous with respect to some reference

measures such as Lebesgue or counting measure. Compared with Wasserstein DRO,

the worst-case distribution of Sinkhorn DRO is not necessarily finitely supported even

when the nominal distribution is a finitely supported distribution. This indicates that

Sinkhorn DRO is a more flexible modeling choice for many applications.

(III) On the algorithmic aspect, we propose and analyze an efficient stochastic mirror

descent method using biased gradient oracles with bisection search for solving the
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Sinkhorn DRO problem. By adequately balancing the trade-off between bias and

variance of stochastic gradient estimators with low computation cost, we show the

proposed algorithm achieves computation cost Õ(φ↑3
) and memory cost Õ(φ↑2

) for

finding φ-optimal solution for convex loss, and the computation cost improves to Õ(φ↑2
)

for convex and smooth loss. Compared with Wasserstein DRO, the dual problem of

Sinkhorn DRO is computationally tractable for a broader class of loss functions, cost

functions, nominal distributions, and probability support.

In Chapter 6, we incorporate ↼-divergence regularization, which includes entropic

regularization as a special case, into the ↓-type Wasserstein DRO formulation. The ↓-type

Wasserstein DRO has important connections with the adversarial robsut machine learning

approach. We demonstrate several notable properties of this new formulation, as summarized

below:

(I) The dual formulation of the regularized ↓-type Wasserstein DRO is a variant of

optimized certainty equivalent (OCE) risk measure studied in [26]. It can also be

interpreted as a smooth approximation of the pointwise maximization of the loss

function over a compact set. The worst-case distribution that corresponds to the

regularized ↓-type Wasserstein DRO is also derived. In contrast to the un-regularized

formulation that deterministically transports each data to its extreme perturbation,

the worst-case distribution of our formulation transports each data towards the entire

domain set through specific absolutely continuous distributions. This observation

indicates that our formulation is well-suited for adversarial defense where the data

distribution after adversarial attack manifests as absolutely continuous, such as through

the addition of white noise to the data.

(II) We adopt the idea of stochastic approximation to solve our reformulation by iteratively

obtaining a stochastic gradient estimator and next performing projected gradient update.

To tackle the difficulty that one cannot obtain the unbiased gradient estimator, we
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introduce and analyze stochastic gradient methods with biased oracles inspired from

Hu et al. [155]. Our proposed algorithm achieves Õ(ϖ↑2
) sample complexity for finding

ϖ-optimal solution for convex loss and general choices of ↼-divergence, and Õ(ϖ↑4
)

sample complexity for finding ϖ-stationary point for nonconvex loss and KL-divergence.

These sample complexity results are near-optimal up to a near-constant factor.

(III) We derive several statistical properties of our proposed formulation. First, we ana-

lyze the regularization effects of our formulation and show that it is asymptotically

equivalent to regularized ERM formulations under three different scalings of the regu-

larization parameter and the robustness level. Second, we investigate the generalization

properties of our adversarial training framework. In particular, the optimal value of

the optimization with empirical data acts as a confidence upper bound for its popu-

lation counterpart, with only a negligible residual error. We further derive specific

generalization error bounds for both linear and neural network function classes.
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CHAPTER 2

KERNEL PROJECTED WASSERSTEIN DISTANCE WITH APPLICATIONS TO

HYPOTHESIS TESTING

In this chapter, we develop a kernel projected Wasserstein distance for the two-sample test,

an essential building block in statistics and machine learning: given two sets of samples, to

determine whether they are from the same distribution. This method operates by finding

the nonlinear mapping in the data space which maximizes the distance between projected

distributions. In contrast to existing works about projected Wasserstein distance, the pro-

posed method circumvents the curse of dimensionality more efficiently. We present practical

algorithms for computing this distance function together with the non-asymptotic uncer-

tainty quantification of empirical estimates. Numerical examples validate our theoretical

results and demonstrate good performance of the proposed method. This work is mainly

summarized in [307].

2.1 Background

As a fundamental problem in statistical inference [331], two-sample hypothesis testing aims

to determine whether two sets of samples come from the same distribution or not. This

problem has broad applications in scientific discovery fields. For example, it can be applied

in anomaly detection [3, 66, 264] to identify abnormal observations that follow a distinct

distribution compared with typical observations. Similarly, in change-point detection [252,

322, 323], two-sample testing is essential to detect abrupt changes in streaming data. Other

notable examples include model criticism [36, 79, 204], causal inference [206], and health

care [266].

Parametric or low-dimensional testing scenarios have been the main focus in classical

literature. When extra knowledge about the data distributions is available, one can design
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parametric tests, such as Hotelling’s two-sample test [149], Student’s t-test [248], etc. Non-

parametric two-sample tests are more attractive when the exact parametric form of the data

distributions is hard to specify. It is popular to design non-parametric tests using integral

probability metrics, since the evaluation of the corresponding test statistics can be obtained

based on samples without knowing the densities of data distributions. Some earlier works

design tests using Kolmogorov-Smirnov distance [216, 254], total variation distance [141],

and Wasserstein distance [93, 256]. However, it is not proper to use these tests for high-

dimensional settings since the sample complexity for estimating those distance functions

based on empirical samples suffers from the curse of dimensionality.

There is a strong need for developing non-parametric tests for high-dimensional data,

especially for modern applications. A notable contribution is the two-sample test based

on Maximum Mean Discrepancy (MMD) [76, 138, 139]. Although the power of MMD

test with the median choice of kernel bandwidth decays quickly when the dimension of

distributions increases [257], this test with properly chosen bandwidth does not have the

curse of dimensionality issue for low-dimensional manifold data as pointed out in [76].

Unfortunately, the MMD test with optimized bandwidth still does not demonstrate good

testing power for the small-sampled case as demonstrated numerically in this paper. In

addition, recent works [306, 322] leverage the idea of dimensionality reduction for dealing

with high-dimensional settings, which use the projected Wasserstein distance as the test

statistic, i.e., the test statistic works by finding the linear projector such that the distance

between projected distributions is maximized. However, a linear projector may not serve

as an optimal design for maximizing the power of tests as demonstrated numerically in

Section 2.5.

In this paper, we present a new non-parametric two-sample test statistic aiming for the

high-dimensional setting based on a kernel projected Wasserstein (KPW) distance, with

a nonlinear projector based on the reproducing kernel Hilbert space (RKHS) designed to

optimize the test power via maximizing the probability distance between the distributions
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after projection. In addition, our contributions include the following:

• We develop a computationally efficient algorithm for evaluating the KPW using a

representer theorem to reformulate the problem into a finite-dimensional optimization

problem and a block coordinate descent optimization algorithm which is guaranteed

to find an ϖ-stationary point with complexity O (ϖ↑3
).

• To quantify the false detection rate, which is essential in setting the detection threshold,

we develop non-asymptotic bounds for empirical KPW distance based on the covering

number argument.

• We present numerical experiments to validate our theoretical results as well as demon-

strate the competitive performance of our proposed test using both synthetic and real

data.

Related Work. It is helpful to understand the structure of high-dimension distributions

by low-dimensional projections. Notable methodologies include the principal component

analysis (PCA) [171], kernel PCA [268], factor analysis [91], etc. Several works leverage

this idea to design tests for high-dimensional data. [228] and [322] first design tests by

finding the worst-case linear projector that maximizes the distance between projected sample

points in one dimension. Later [199] and [306] naturally extend this idea by developing a

projector that maps sample points into d dimensional linear subspace with d ≃ 1, called

projected Wasserstein distance. Efficient optimization algorithms and statistical properties

of this distance have been investigated in recent works [163, 201]. However, a linear

projector cannot efficiently capture features from data with nonlinear patterns, limiting the

performance of tests mentioned above for practical applications. It is therefore promising

to use nonlinear dimensionality reduction for two-sample testing. Although nonlinear

projectors can be obtained using neural networks [130], the sample complexity of the

corresponding test statistic will have slow convergence rates since the neural network

function class usually has high complexity in terms of the covering number. Recently kernel
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method has been demonstrated to be beneficial for understanding data [60, 150, 172, 223]

because of sharp sample complexity rate, low computational cost, and flexible representation

of features. This fact motivates us to use a nonlinear projector based on kernels to design tests.

Compared with the linear projector, computing the corresponding statistic and analyzing

its performance is more challenging since the function space cannot be parameterized by

finite-dimensional coefficients. We leverage the kernel trick to finish these two parts.

The remaining of this paper is organized as follows. Section 2.2 introduces some pre-

liminary knowledge on two-sample testing and related probability distances, Section 2.3

outlines a practical algorithm for computing KPW distance, Section 2.4 studies the uncer-

tainty quantification of empirical KPW distance, Section 2.5 demonstrates some numerical

experiments, and Section 2.6 presents some concluding remarks.

2.2 Problem Setup

Let xn
:= {xi}n

i=1 and ym
:= {yi}m

i=1 be i.i.d. samples generated from distributions µ and ε

supported on RD, respectively. Our goal is to design a two-sample test which, given samples

xn and ym, decides to accept the null hypothesis H0 : µ = ε or reject H0 in favor of the

alternative hypothesis H1 : µ ⇐= ε. Denote by T : (xn, ym
) ⇒ {t0, t1} the two-sample test,

where t0 means we reject H1 and t1 means we accept H1 and reject H0. Define the type-I

risk as the probability of rejecting hypothesis H0 when it is true, and the type-II risk as the

probability of accepting H0 when µ ⇐= ε:

ϖ(I)
n,m

= Pxn↓µ,ym↓ε

(
T (xn, ym

) = t1

)
, under H0,

ϖ(II)
n,m

= Pxn↓µ,ym↓ε

(
T (xn, ym

) = t0

)
, under H1.

Given parameters ω, ↽ ↑ (0, 1
2), we aim at building a two-sample test such that, when

applied to n-observation samples xn and m-observation samples ym, it has the type-I risk at

most ω (i.e., at level ω) and the type-II risk at most ↽ (i.e., of power 1 ↗ ↽). Moreover, we
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want to ensure these specifications with sample sizes n,m as small as possible.

We propose a non-parametric test by considering the probability distance functions

between two empirical distributions constructed from observed samples. Specifically, we

design a test T such that the null hypothesis H0 is rejected when

D(µ̂n, ε̂m) > ⇀,

where D(·, ·) is a divergence quantifying the differences of two distributions, ⇀ is a data-

dependent threshold, and µ̂n and ε̂m are empirical distributions from n samples in µ and

m samples in ε, respectively. Several existing tests can be unified into this framework by

taking D(·, ·) as some special probability distances, including the MMD test, total variation

distance test, etc. In this paper, we will design the divergence D based on the Wasserstein

distance, and we specify the cost function c(x, y) = →x ↗ y→2
2.

Definition 1 (Wasserstein Distance). Given two distributions µ and ε, the Wasserstein

distance is defined as

W (µ, ε) = min
ϑ↔!(µ,ε)

∫
c(x, y) d⇁(x, y),

where c(·, ·) denotes the cost function quantifying the distance between two points, and

”(µ, ε) denotes the joint distribution with marginal distributions µ and ε.

Although Wasserstein distance has wide applications in machine learning, the finite-

sample convergence rate of Wasserstein distance between empirical distributions is slow

in high-dimensional settings [116]. Therefore, it is not suitable for high-dimensional two-

sample tests. Instead, existing works use the projection idea to rescue this issue.

Definition 2 (Projected Wasserstein Distance). Given two distributions µ and ε, define the
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projected Wasserstein distance as

PW (µ, ε) = max
A: RD↗Rd

,A
T

A=Id

W (A#µ,A#ε) ,

where the operator # denotes the push-forward operator, i.e.,

A(z) ⇑ A#µ for z ⇑ µ,

and we denote A as a linear operator such that A(z) = ATz with z ↑ RD and A ↑ RD↘d.

This idea is demonstrated to be useful for breaking the curse of dimensionality for the

original Wasserstein distance [201, 306]. However, a linear projector is not an optimal

choice for dimensionality reduction. Instead, we will consider a nonlinear projector to

obtain a more powerful two-sample test, and we use functions in vector-valued reproducing

kernel Hilbert space (RKHS) for projection.

Definition 3 (Vector-valued RKHS). A function K : RD ⇓ RD ⇒ Rd↘d is said to be a

positive semi-definite kernel if

N∑

i=1

N∑

j=1

⇔ȳi, K(x̄i, x̄j)ȳj↖ ≃ 0

for any finite set of points {x̄i}N

i=1 in RD and {ȳi}N

i=1 in Rd. Given such a kernel, there exists

an unique Rd-valued Hilbert space HK with the reproducing kernel K. For fixed x ↑ RD

and y ↑ Rd, define the kernel section Kx with the action y as the mapping Kxy : RD ⇒ Rd

such that

(Kxy)(x
≃
) = K(x≃, x)y, ↙x≃ ↑ RD.

In particular, the Hilbert space HK satisfies the reproducing property, i.e., ⇔f,Kxy↖HK =

⇔f(x), y↖ for ↙f ↑ HK .

Definition 4 (Kernel Projected Wasserstein Distance). Consider a Rd-valued RKHS H with
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the corresponding kernel function K. Given two distributions µ and ε, define the kernel

projected Wasserstein (KPW) distance as

KPW (µ, ε) = max
f↔F

W (f#µ, f#ε)

where the function class F = {f ↑ H : →f→H ∝ 1}.

Remark 1. For d = 1, when the kernel function K(x, y) = ⇔x, y↖, the KPW distance

reduces into the PW distance. However, these two distances are not the same for general d.

Moreover, existing works [18, 62, 219, 223] consider the design of the matrix-valued kernel

function for d > 1 as

K(x, x≃
) = k(x, x≃

) · P, (2.1)

where k(·, ·) denotes a scalar-valued kernel function and P ↑ Rd↘d is a positive semi-

definite matrix that encodes the relation between the output space. Such a design reduces

the computational cost for applying vector-valued RKHS.

In this paper, we design the two-sample test as follows. We split the data points into

training and testing datasets. We first use the training set to train a nonlinear projector

that maps data points into Rd-subspace, and then perform the permutation test on testing

data points that are projected based on the trained projector. The detailed algorithm is

presented in Algorithm 1. This test is guaranteed to exactly control the type-I error [136]

because we evaluate the p-value of the test via the permutation approach. To obtain reliable

two-sample tests, we also require the KPW distance satisfies the discriminative property that

KPW (µ, ε) = 0 if and only if µ = ε. The following proposition reveals that this property

holds by considering the vector-valued RKHS satisfying the universal property, the proof

of which is provided in Appendix A.3. We also study how to compute the kernel projected

distance and its related statistical properties in the following sections.
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Algorithm 1 Permutation two-sample test using the KPW distance
Require: Level ω, number of permutation times Np, collected samples xn and ym.

1: Split data as xn
= xTr ′ xTe and ym

= yTr ′ yTe.
2: Formulate empirical distributions (µ̂Tr, ε̂Tr

) corresponding to (xTr, yTr
).

3: Obtain f as the (approximate) optimal projector to KPW (µ̂Tr, ε̂Tr
).

4: Compute the statistic T = W (f#µ̂Te, f#ε̂Te
).

5: for t = 1, . . . , Np do
6: Shuffle xTe ′ yTe to obtain xTe

(t) and yTe
(t).

7: Formulate empirical distributions (µ̂Te
(t), ε̂

Te
(t)) corresponding to (xTe, yTe

).
8: Compute the statistic for permuted samples Tt = W (f#µ̂Te

(t), f#ε̂Te
(t)).

9: end for
Return the p-value 1

Np

∑
Np

t=1 1{Tt ≃ T}.

Proposition 1 (Discriminative Property of KPW). Denote by Cb(X ) the space of bounded

and continuous Rd-valued functions on X . Assume that H is a universal vector-valued

RKHS so that for any ε > 0 and f ↑ Cb(X ), there exists g ↑ H so that

→f ↗ g→→ ↭ sup
x↔X

→f(x) ↗ g(x)→2 < ε.

Then the KPW distance KPW (µ, ε) = 0 if and only if µ = ε.

2.3 Computing KPW Distance

By the definition of Wasserstein distance, computing KPW (µ̂n, ε̂m) is equivalent to the

following max-min problem:

max
f↔H: ⇐f⇐2

H
⇒1

{
min
ϑ↔”

∑

i,j

⇁i,j→f(xi) ↗ f(yj)→2
2

}
, (2.2)

where # =

{
⇁ ↑ Rn↘m

+ :
∑

j
⇁i,j =

1
n
,
∑

i
⇁i,j =

1
m

}
.

The computation of KPW distance has numerous challenges. It is crucial to design

a suitable kernel function to obtain low computational complexity and reliable testing

power, which will be discussed in Section 2.5. Moreover, the function f ↑ H is a countable

combination of basis functions, i.e., the problem (2.2) is an infinite-dimensional optimization.
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By developing the representer theorem in Theorem 1, we are able to convert this problem into

a finite-dimensional problem. Finally, there is no theoretical guarantee for finding the global

optimum since it is a non-convex non-smooth optimization problem. Moreover, Sion’s

minimax theorem is not applicable because the problem (2.2) is not a convex programming:

the inner minimization of quadratic function makes the objective in (2.2) not concave in f

in general. Based on this observation, we only focus on optimization algorithms for finding

a local optimum point in polynomial time.

Theorem 1 (Representer Theorem for KPW Distance). There exists an optimal solution to

(2.2) that admits the following expression:

f̂ =

n∑

i=1

Kxiax,i ↗
m∑

j=1

Kyjay,j,

where Kx(·) denotes the kernel section and ax,i, ay,j ↑ Rd for i = 1, . . . , n, j = 1, . . . ,m

are coefficients to be determined.

The proof of Theorem 1 is provided in Appendix A.4, in which standard representer

theorem in literature [267, Theorem 1] is not applicable since the RKHS norm serves as a

hard constraint instead of the regularization of the objective function. In order to express

the optimal solution as the compact matrix form, define ax ↑ Rnd as the concatenation of

coefficients ax,i for i = 1, . . . , n and

Kz(x
n
) =

(
K(z, x1) · · · K(z, xn)

)
↑ Rd↘nd.

We also define the vector ay and matrix Kz(ym
) likewise. Then we have

f̂(z) = Kz(x
n
)ax ↗ Kz(y

m
)ay, ↙z ↑ X .

Define the gram matrix K(xn, xn
) as the n ⇓ n block matrix with the (i, j)-th block

being K(xi, xj). The gram matrices K(xn, ym
), K(ym, xn

) and K(ym, ym
) can be defined
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likewise. Denote by G the concatenation of gram matrices:

G =




K(xn, xn

) ↗K(xn, ym
)

↗K(ym, xn
) K(ym, ym

)



 ,

and we assume that G is positive definite. Otherwise, we add the gram matrix with a

small number times identity matrix to make it invertible. Substituting the expression of

f̂(z), z ↑ X into (2.2), we obtain a finite-dimensional optimization problem:

max
ϖ

{
min
ϑ↔”

∑

i,j

⇁i,jci,j : ωTGω ∝ 1

}
,

where ω = [aT
x
, aT

y
]
T ↑ Rd(n+m), ci,j = →Ai,jω→2

2, and

Ai,j = [Kxi(x
n
) ↗ Kyj(x

n
), Kyj(y

m
) ↗ Kxi(y

m
)].

Suppose that the inverse of G admits the Cholesky decomposition G↑1
= UUT, then by

the change of variable technique s = U↑1ω, we obtain the norm-constrained optimization

problem:

max
s↔Rd(n+m)

{
min
ϑ↔”

∑

i,j

⇁i,jci,j : sTs ∝ 1

}
, (2.3)

and we can replace the constraint sTs ∝ 1 with sTs = 1 based on the fact that the norm

function satisfies the linear property. In other words, the decision variable s belongs to the

Euclidean ball Sd(n+m)↑1
= {s ↑ Rd(n+m)

: sTs = 1}.

For the ease of optimization, we consider the entropic regularization of the problem (2.3):

max
s↔Sd(n+m)→1

{
min
ϑ↔”

∑

i,j

⇁i,jci,j ↗ ςH(⇁)

}
, (2.4)

in which we denote the entropy function H(⇁) = ↗
∑

i,j
⇁i,j(log ⇁i,j ↗ 1). By the duality

theory of entropic optimal transport [127] and the change-of-variable technique, (2.4) is
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equivalent to the following minimization problem:

min
s↔Sd(n+m)→1

,u↔Rn
,v↔Rm

F (u, v, s), (2.5)

where

ci,j = →Ai,jUs→2
2,

⇁i,j(u, v, s) = exp

(
↗1

ς
ci,j + ui + vj

)
,

F (u, v, s) =

∑

i,j

⇁i,j(u, v, s) ↗ 1

n

n∑

i=1

ui ↗ 1

m

m∑

j=1

vj.

The details for this deviation is deferred in Appendix A.4. Based on this formulation, we

consider a Riemannian block coordinate descent (BCD) method [148] for optimization,

which updates a block of variables by minimizing the objective function with respect to that

block while fixing values of other blocks:

ut+1
= min

u↔Rn
F (u, vt, st

), (2.6a)

vt+1
= min

v↔Rm
F (ut+1, v, st

), (2.6b)

▷t+1
=

∑

i,j

∞s⇁i,j(u
t+1, vt+1, st

), (2.6c)

◁t+1
= Pst


▷t+1


, (2.6d)

st+1
= Retrst


↗ 0◁t+1


, (2.6e)

where the operator Ps(▷) denotes the orthogonal projection of the vector ▷ onto the tangent

space of the manifold Sd(n+m)↑1 at s:

Ps


▷


= ▷ ↗ ⇔s, ▷↖s, s ↑ Sd(n+m)↑1,
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Algorithm 2 BCD Algorithm for Solving (2.5)
Require: Empirical distributions µ̂n and ε̂m.

1: Initialize v0, s0

2: for t = 0, 1, 2, . . . , T ↗ 1 do
3: Update ut+1 according to (2.6g)
4: Update vt+1 according to (2.6h)
5: Update the Euclidean and Riemannian gradient ▷t+1 and ◁t+1, according to (2.6i) and

(2.6d), respectively.
6: Update st+1 according to (2.6e)
7: end for

Return u⇑
= uT , v⇑

= vT , s⇑
= sT .

and the retraction on this manifold is defined as

Retrs


↗ 0◁


=
s ↗ 0◁

→s ↗ 0◁→ , s ↑ Sd(n+m)↑1. (2.6f)

Note that the update steps (2.6a) and (2.6b) have closed-form expressions:

ut+1
= ut

+

{
log

1/n∑
j
⇁i,j(ut, vt, st)

}

i↔[n]

, (2.6g)

vt+1
= vt

+


log

1/m∑
i
⇁i,j(ut+1, vt, st)



j↔[m]

, (2.6h)

and the Euclidean gradient ▷t+1 in (2.6c) can be computed using the chain rule:

▷t+1
= ↗1

ς
UT


∑

i,j

⇁i,j(u
t+1, vt+1, st

)AT
i,j
Ai,j


Ust. (2.6i)

The overall algorithm for solving the problem (2.5) is summarized in Algorithm 2. We

provide details for efficient implementation of the proposed algorithms in Appendix A.6. We

also give a brief introduction to Riemannian optimization in Appendix A.2. The following

theorem gives a convergence analysis of our proposed algorithm.The proof of this result is

provided in Appendix A.4, which follows similar procedure in [163]. The main difference

lies in establishing the descent lemma for updating the variable s on sphere instead of Stiefel

manifold. Specifically, the procedure for finding the upper bound on the cost function ci,j ,
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the Lipschitz constant for ⇁i,j(u, v, s) in s, and the Lipschitz constants of the retraction

operator (2.6f) will be different.

Theorem 2 (Convergence Analysis for BCD). We say that (û, v̂, ŝ) is a (ϖ1, ϖ2)-stationary

point of (2.5) if

→GradsF (û, v̂, ŝ)→ ∝ ϖ1,

F (û, v̂, ŝ) ↗ min
u,v

F (u, v, ŝ) ∝ ϖ2,

where GradsF (u, v, s) denotes the derivative of F with respect to s on the sphere Sd(n+m)↑1.

Let {ut, vt, st} be the sequence generated by Algorithm 2, then Algorithm 2 returns an

(ϖ1, ϖ2)-stationary point in

T = O
(

log(mn) ·


1

ϖ32
+

1

ϖ21ϖ2

)
,

iterations, where the notation O(·) hides constants related to the initial guess (v0, s0
) and

the term maxi,j →Ai,jU→.

Remark 2 (Complexity of Algorithm 2). Denote N = n∈m1. Note that the iteration (2.6g)

and (2.6h) can be implemented in O(N) iterations. Second, the retraction step in (2.6e)

requires O(dN) arithmetic operations. Third, the computation of the Euclidean vector in

(2.6c) can be implemented in O(d3N3
) operations, and the projection step can be done in

O(dN) operations. Therefore, the number of arithmetic operations in each iteration is of

O(d3N3
). In summary, Algorithm 2 returns an (ϖ1, ϖ2)-stationary point in

O
(
d3N3

log(N) ·


1

ϖ32
+

1

ϖ21ϖ2

)

arithmetic operations. Note that this computational complexity is independent of the

dimension D of samples since we only need to compute the gram matrix as an input. The
1We denote a ∈ b for max{a, b} and a ∋ b for min{a, b}.
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storage cost is of O(d2N2
), in which the most expensive step is to store the gram matrix G.

2.4 Performance Guarantees

In this section, we build statistical properties of the empirical KPW distance, though in

practice we may not succeed in finding a global optimum solution to the non-convex

optimization problem (2.2). We assume the cost function for the Wasserstein distance has

the form c(x, y) = →x ↗ y→p

2 with p ↑ [1,↓). Moreover, results throughout this section are

based on the following assumption.

Assumption 1. For any x, x≃ ↑ X , the matrix-valued kernel K(x, x≃
) is symmetric and

satisfies

0 △ K(x, x≃
) △ BId.

Definition 5 ((Projection) Poincare Inequality). (I) A distribution µ is said to satisfy a

Poincare inequality if there exists an M > 0 for X ⇑ µ so that Var[f(X)] ∝

ME[→∞f(X)→2
] for any f satisfying E[f(X)

2
] < ↓ and E[→∞f(X)→2

] < ↓.

(II) A distribution µ is said to satisfy a projection Poincare inequality if there exists an

M > 0 for any f ↑ F and X ⇑ f#µ so that Var[f(X)] ∝ ME[→∞f(X)→2
] for any

f satisfying E[f(X)
2
] < ↓ and E[→∞f(X)→2

] < ↓.

Remark 3. The Poincare inequality characterizes the relation about the variance of a

function and its derivative in the spirit of the Sobolev inequality. It is a standard technical

assumption for investigating the empirical convergence of Wasserstein distance [190, 201],

and is satisfied for various exponential measures such as the Gaussian distribution. See

[189] for more examples.

Lemma 1. Assume that the distribution µ satisfies a projection Poincare inequality. Then

E[(KPW (µ̂n, µ))
1/p

] ↫ n↑ 1
(2p)↑d (log n)

ϱp,d/p
+ n↑1/(2⇓p)

√
log(n) + n↑1/p

log(n),
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Figure 2.1: Average values of KPW distances between empirical distributions µ̂n and ε̂n as
the sample size n varies. Results are averaged for 10 independent trials and the shaded areas
show the corresponding error bars.

where ▷p,d = 1{d = 2p}, and ↫ refers to "less than" with a constant depending only on

(p,B).

Lemma 2. Assume that the distribution µ satisfies a Poincare inequality, and any f ↑ F is

L-Lipschitz. Then with probability at least 1 ↗ ω, it holds that

(KPW (µ̂n, µ))
1/p ↗ E[(KPW (µ̂n, µ))

1/p
]



∝ max

{
1 log(1/ω),

√
1 log(1/ω)

}
n↑1/(2⇓p)L1/p,

where 1 > 0 is a constant that depends on M .

Proof of two lemmas above follows similar covering number arguments in [201], the

details of which are deferred in Appendix A.5. The main difference is that we incorporate

the reproducing property of vector-valued RKHS to give a valid bound on the covering

number of the RKHS ball F . Based on these two lemmas and the triangular inequality for

Wasserstein distance, we give a finite-sample guarantee for the convergence of the KPW

distance in Theorem 3. Compared with the sample complexity of estimating Wasserstein

distance, KPW distance does not suffer from the curse of dimensionality as the RKHS ball

F has low complexity.

Theorem 3 (Finite-sample Guarantee). Suppose the target distributions µ = ε, which

satisfies projection Poincare inequality and Poincare inequality. Moreover, any f ↑ F is
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L-Lipschitz. Take N = n ∋ m, then with probability at least 1 ↗ 2ω, it holds that

(KPW (µ̂n, ε̂m))
1/p ↫ N↑ 1

(2p)↑d (logN)
ϱp,d/p

+ N↑1/(2⇓p)
√

log(N)

+ N↑1/p
log(N) + max

{
1 log(1/ω),

√
1 log(1/ω)

}
N↑1/(2⇓p)L1/p.

2.4.1 Performance Guarantees for p ↑ [1, 2)

When showing concentration results for p-Wasserstein distance with p ↑ [1, 2), however, it

is not necessary to rely on the Poincare inequality assumption. The main result for this case

is summarized in Theorem 4 (see details in Appendix A.5.3).

Theorem 4 (Finite-sample Guarantee). Suppose the target distributions µ = ε. Then with

probability at least 1 ↗ 2ω, it holds that

(KPW (µ̂n, εm))
1/p ↫ N↑ 1

(2p)↑d (logN)
ϱp,d/p

+ N1/2↑1/p
√

log(N) + N↑1/p
+ N1/2↑1/p


log

2

ω
.

where N = n ∋ m and ↫ refers to "less than" with a constant depending only on (p,B).

2.4.2 Sample Complexity

We also numerically examine the sample complexity of the empirical KPW distance

KPW (µ̂n, ε̂n) with µ = ε = N (0, ID), where n ↑ {10, 50, 125, 250, 500} and D ↑

{30, 50, 70, 100}. Figure 2.1 reports the average distances and the shaded areas show the

corresponding error bars over 10 independent trials. We defer the detailed experiment setup

and the plots of the computation time in Appendix A.7.1. From the plot we can see that the

empirical KPW distances decay to zero quickly when the sample size n increases. Moreover,

the distances with smaller values of d have faster decaying rates. Finally, the convergence

behavior of the empirical KPW distances is nearly independent of the choice of D, which

alleviates the issue of the curse of dimensionality for the original Wasserstein distance.
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Figure 2.2: Testing results on Gaussian distributions across different choices of dimension
D. Left: power for Gaussian distributions, where the shifted covariance matrix is still
diagonal; Middle: power for Gaussian distributions, where the shifted covariance matrix is
non-diagonal; Right: Type-I error.

Table 2.1: Average test power and standard error about detecting distribution abundance
change in MNIST dataset across different choices of sample size.

N MMD-NTK MMD-O ME PW KPW

200 0.639±0.029 0.696±0.006 0.298±0.031 0.302±0.033 0.663±0.015
250 0.763±0.010 0.781±0.002 0.472±0.017 0.369±0.030 0.785±0.014
300 0.813±0.016 0.869±0.002 0.630±0.025 0.524±0.023 0.928±0.001
400 0.881±0.013 0.956±0.003 0.779±0.020 0.591±0.044 0.978±0.000
500 0.950±0.002 0.988±0.000 0.927±0.006 0.782±0.040 1.000±0.000

Avg. 0.809 0.858 0.621 0.513 0.870

These facts confirm the finite-sample guarantee discussed in Theorem 3.

2.5 Numerical Experiments

Throughout this section, we compare the performance of tests with the following procedures.

(i) PW: the projected Wasserstein test where the projector is a linear mapping [306]; (ii)

MMD-O: the MMD test with a Gaussian kernel whose bandwidth is optimized [202]; (iii)

MMD-NTK: the test that combines both neural networks and MMD [77]; and (iv) ME:

the mean embedding test with optimized hyper-parameters [170]. Implementation details

on those baseline methods are omitted in Appendix A.7.2. When dealing with synthetic

datasets, we generate a single sample set as the training set to learn parameters for each

method. Then we evaluate the power of tests on 100 new sample sets generated from the

same distribution. When dealing with real datasets, we randomly take part of samples as the
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training set, and evaluate the power on 100 randomly chosen subsets from the remaining

samples. The number of permutations in Algorithm 1 is set to be Np = 100. We control the

type-I error for all tests at ω = 0.05.

When using the KPW distance, we follow (2.1) to design kernels to decrease the

computational complexity. More specifically, we choose the scalar-valued kernel k(·, ·) to

be a standard Gaussian kernel with the bandwidth ϑ2, and

P = (1 ↗ 2)11T
+ 2Id, with 2 ↑ [0, 1].

We use the cross-validation approach to select the hyper-parameters 2 and ϑ2, the details of

which are deferred in Appendix A.7.3. The dimension d is pre-specified and fixed into 3

in all experiments. We also present a study on the impact of hyper-parameters such as the

projected dimension d and regularization parameter ς in Appendix A.8.

2.5.1 Tests for Synthetic Datasets

We first investigate the performance when µ and ε are Gaussian distributions with diagonal

covariance matrices. Specifically, we take µ = N (0, ID) and ε = N (0,$) is the covariance

shifted Gaussian, where the matrix $ = diag(4, 4, 4, 1, . . . , 1). In other words, we only

scale the first three entries of the covariance matrix to make the high-dimensional testing

problem challenging to handle. Fig. 2.2 reports the type-I and type-II errors for various

tests across different choices of dimension D. We observe that both PW and KPW tests

perform the best, while the power for other benchmark methods degrades quickly when the

dimension D increases.

Next, we examine the case where ε has a non-diagonal covariance matrix. We take

µ = N (0, ID) and ε = N (0, V $V T
), where V is an orthogonal matrix with Vi,j =

√
2/(D + 1) sin(ij⇁/(D + 1)) and $ = diag(5, 5, 5, 1, . . . , 1). Testing results for various

choices of dimension D is reported in the middle of Fig. 2.2. In this case, the PW test
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Figure 2.3: Testing results on Gaussian-mixture distributions. Left two: type-I and type-II
errors across different choices of dimension D with fixed sample size n = m = 200; Right
two: type-I and type-II errors across different choices of sample size n = m with fixed
dimension D = 140.

performs slightly better than the KPW test. One possible explanation is that linear mapping

seems to be the optimal choice for two-sample testing with covariance shifted Gaussian

distributions. It is promising to design other types of matrix-valued kernel functions to

improve performances of the KPW test.

Finally, we study the case where sample points are generated from high-dimensional

Gaussian mixture distributions. We take µ =
1
2N (0, ID) +

1
2N (%2, ID) with %2 =

(1, 1, . . . , 1) and ε =
1
2N (0,$1)+

1
2N (%3,$2) with %3 = (1+0.8/

▽
D, . . . , 1+0.8/

▽
D).

Covariance matrix $1 is defined with $1[1, 1] = $1[2, 2] = 4,$1[1, 2] = $1[2, 1] =

↗0.9,$1[i, i] = 1, 3 ∝ i ∝ D, and $1[i, j] = 0 for indexes elsewhere. Covariance matrix

$2 is defined with $2[1, 2] = $2[2, 1] = 0.9, $2[i, i] = 1, 1 ∝ i ∝ D, and $2[i, j] = 0

for indexes elsewhere. Testing results (type-I and type-II errors) across different choices

of dimension D for fixed sample size n = m = 200 is presented in the left two plots in

Fig. 2.3. We also report results for increasing sample sizes n = m by fixing the dimension

D = 140 in the right two plots in Fig. 2.3. From the plot, we can see that all approaches

have expected type-I error rates. Moreover, the tests based on PW and KPW distances

outperform other benchmark methods, which indicates that the idea of dimension reduction

is helpful for high-dimensional testing. The KPW test generally has the highest power in

this case, since the nonlinear projector in the unit ball of RKHS is flexible enough to capture

the differences between distributions. Other experiment details of this subsection is omitted
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Table 2.2: Delay time for detecting the transition in MSRC-12 that corresponds to four users.

User MMD-NTK MMD-O ME PW KPW

1 36 73 82 47 33
2 8 7 97 9 1
3 15 13 27 2 20
4 22 83 69 16 12

Mean 20.25 44.0 68.8 18.50 16.5
Std 12.0 39.5 30.1 19.8 13.5

in Appendix A.7.4.

2.5.2 Tests for MNIST handwritten digits

We now perform two-sample tests on the MNIST dataset [187]. Let p be the distribution

uniformly generated from the dataset, and q = 0.85p + 0.15pcohort, where pcohort is the

distribution from a class with digit 1. Both training and testing sample sizes are set to be

N ↑ {200, 250, . . . , 500}. Before performing two-sample tests, we pre-process this dataset

by taking the sigmoid transformation of each image such that all scaled pixels are within

the interval [0, 1]. Table 2.1 presents the testing power of various tests across different

choices of N , from which we can see that the KPW test is competitive compared with other

methods. We observe that performances of MMD-O in MNIST dataset are significantly

better than that in synthetic datasets provided in Section 2.5.1. One possible explanation

is that isotropic kernel functions will limit the power of MMD tests in some numerical

examples [202, Section 3]. Average type-I error for various tests is presented in Table A.1

in Appendix A.7.5, from which we can see all tests have the type-I error close to ω = 0.05.

2.5.3 Human activity detection

Finally, we apply the KPW test to perform online change-point detection for human activity

transition. We use a real-world dataset called the Microsoft Research Cambridge-12 (MSRC-

12) Kinect gesture dataset [115]. After pre-processing, this dataset consists of actions from

four people, each with 855 samples in R60, and with a change of action from bending to
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throwing at the time index 500. More experimental details are omitted in Appendix A.7.6.

Fix the window size W = 100. We pre-train a nonlinear projector using the data (sample

size as the window) before time index 300 and compute the null statistics for many times to

obtain the true threshold such that the false alarm rate is controlled within ω = 0.05. Then

we perform online change-point detection based on a sliding window that moves forward

with time. We compute the detection statistic by comparing the distribution between the

block of data before time 300 and the data from the sliding window. We reject the null

hypothesis and claim a change is happened if the statistic is above the threshold. Table 2.2

reports the delay time for detecting the behavior transition, from which we observe that the

KPW test detects the change in the shortest time.

2.6 Conclusion

We proposed the KPW distance for the task of two-sample testing, which operates by

finding the nonlinear mapping in the data space to maximize the distance between projected

distributions. Practical algorithms, together with uncertainty quantification of empirical

estimates, are discussed to help with this task. The extension of this work is as follows.

First, it is of research interest to determine the optimal hyper-parameters for the KPW test,

including the projected subspace dimension d and the matrix-valued kernel function K.

Second, it is desirable to study how to systematically pick the regularization parameter ς

to balance the trade-off between computational efficiency and accuracy of the obtained

solution.
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CHAPTER 3

STATISTICAL AND COMPUTATIONAL GUARANTEES OF KERNEL

MAX-SLICED WASSERSTEIN DISTANCES

In this chapter, we study the kernel max-sliced (KMS) Wasserstein distance that finds an

optimal nonlinear mapping that reduces data into 1 dimension before computing the Wasser-

stein distance. Its theoretical properties have not yet been fully developed. To fill the gap,

we provide sharp finite-sample guarantees under milder technical assumptions compared

with state-of-the-art for the KMS p-Wasserstein distance between two empirical distribu-

tions with n samples for general p ↑ [1,↓). Algorithm-wise, we show that computing

the KMS 2-Wasserstein distance is NP-hard, and then we further propose a semidefinite

relaxation (SDR) formulation (which can be solved efficiently in polynomial time) and

provide a relaxation gap for the obtained solution. We provide numerical examples to

demonstrate the good performance of our scheme for high-dimensional two-sample testing.

This work is mainly summarized in [302].

3.1 Introduction

Optimal transport (OT) has achieved much success in various areas, such as generative

modeling [130, 208, 244, 246], distributional robust optimization [124, 126, 305], non-

parametric testing [256, 303, 309, 314, 322], domain adaptation [17, 85, 86, 88, 313],

etc. See [247] for comprehensive reviews on these topics. The sample complexity of the

Wasserstein distance has been an essential building block for OT in statistical inference. It

studies the relationship between a population distribution µ and its empirical distribution

1
n

∑
n

i=1 φxi with xi ⇑ µ in terms of the "Wasserstein distance". Unfortunately, the sample

size n needs to be exponentially large in data dimension to achieve an accurate enough

estimation [116], called the curse of dimensionality issue.
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To tackle the challenge of high dimensionality, it is meaningful to combine OT with

projection operators in low-dimensional spaces. Researchers first attempted to study the

sliced Wasserstein distance [55, 64, 98, 177, 178, 230, 235], which computes the average of

the Wasserstein distance between two projected distributions using random one-dimensional

projections. Since a single random projection contains little information to distinguish two

high-dimensional distributions, computing the sliced Wasserstein distance requires a large

number of linear projections. To address this issue, more recent literature considered the

Max-Sliced (MS) Wasserstein distance that seeks the optimal projection direction such that

the Wasserstein distance between projected distributions is maximized [97, 199, 201, 245,

306]. Later, Wang et al. [307] modified the MS Wasserstein distance by seeking an optimal

nonlinear projection belonging to a ball of reproducing kernel Hilbert space (RKHS),

which we call the Kernel Max-Sliced (KMS) Wasserstein distance. The motivation is

that a nonlinear projector can be more flexible in capturing the differences between two

high-dimensional distributions; it is worth noting that KMS Wasserstein reduces to MS

Wasserstein when specifying a dot product kernel.

Despite promising applications of the KMS Wasserstein distance, its statistical and

computational results have not yet been fully developed. From a statistical perspective,

Wang et al. [307] built concentration properties of the empirical KMS Wasserstein distance

for distribution that satisfies the Poincar’e inequality projection and the Poincar’e inequal-

ity [189], which could be difficult to verify in practice. From a computational perspective,

the authors therein developed a gradient-based algorithm to approximately compute the

empirical KMS Wasserstein distance. However, there is no theoretical guarantee on the

quality of the local optimum solution obtained. In numerical experiments, the quality of the

solution obtained is highly sensitive to the initialization.

To address the aforementioned limitations, this paper provides new statistical and compu-

tational guarantees for the KMS Wasserstein distance. Our key contributions are summarized

as follows.
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• We provide a non-asymptotic estimate on the KMS p-Wasserstein distance between

two empirical distributions based on n samples, referred to as the finite-sample guar-

antees. Our result shows that when the samples are drawn from identical populations,

the rate of convergence is n↑1/(2p), which is dimension-free and optimal in the worst

case scenario.

• We analyze the computation of KMS 2-Wasserstein distance between two empirical

distributions based on n samples. First, we show that computing this distance exactly

is NP-hard. Consequently, we are prompted to propose a semidefinite relaxation

(SDR) as an approximate heuristic with various guarantees.

– We develop an efficient first-order method with biased gradient oracles to solve

the SDR, the complexity of which for finding a φ-optimal solution is Õ (n3φ↑3
).

In comparison, the complexity of the interior point method for solving SDR is

Õ(n6.5
) [25].

– We derive theoretical guarantees for the optimal solutions from the SDR. We

show that there exists an optimal solution from SDR that is at most rank-k, where

k ↭ 1 + ↔
√

2n + 9/4 ↗ 3/2↘, whereas computing the KMS distance exactly

requires a rank-1 solution. We also provide a corresponding rank reduction

algorithm designed to identify such low-rank solutions from the pool of optimal

solutions of SDR.

• We exemplify our theoretical results in non-parametric two-sample testing, human

activity detection, and generative modeling. Our numerical results showcase the stable

performance and quick computational time of our SDR formulation, as well as the

desired sample complexity rate of the empirical KMS Wasserstein distance.

In the following, we compare our work with the most closely related literature, and defer

the detailed comparision of KMS Wasserstein distance with other variants of OT divergences

in Appendix B.1.
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Literature Review. The study on the statistical and computational results of MS and KMS

Wasserstein distances is popular in the existing literature. From a statistical perspective, ex-

isting results on the rate of empirical MS/KMS Wasserstein are either dimension-dependent,

suboptimal or require regularity assumptions (e.g., log-concavity, Poincaré inequality, projec-

tion Bernstein tail condition) on the population distributions [19, 199, 238, 306], except for

the very recent literature [50] that provides a sharp, dimension-free rate for MS Wasserstein

with data distributions supported on a compact subspace but without regularity assumptions.

From the computational perspective, there are two main approaches to compute such dis-

tances. One is to apply gradient-based algorithms to find local optimal solutions or stationary

points, see, e.g., [162, 163, 168, 199, 307]. Unfortunately, due to the highly non-convex

nature of the optimization problem, the quality of the estimated solution is unstable and

highly depends on the choice of initial guess. The other is to consider solving its SDR

instead [245], yet theoretical guarantees on the solution from convex relaxation are missing.

Inspired by existing reference [21, 102, 198, 243] that studied the rank bound of SDR for

various applications, we adopt their proof techniques to provide similar guarantees for

computing KMS in Theorem 10. Besides, all listed references add entropic regularization to

the inner OT problem and solve the regularized version of MS/KMS Wasserstein distances

instead, while the gap between the solutions from regularized and original problems could

be non-negligible.

3.2 Background

We first introduce the definition of Wasserstein and KMS Wasserstein distances below.

Definition 6 (Wasserstein Distance). Let p ↑ [1,↓). Given a normed space (V , → · →), the

p-Wasserstein distance between two probability measures µ, ε on V is defined as

Wp(µ, ε) =

(
min

ϑ↔”(µ,ε)

∫
→x ↗ y→p

d⇁(x, y)

)1/p

,
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where #(µ, ε) denotes the set of all probability measures on V ⇓ V with marginal distribu-

tions µ and ε.

Definition 7 (RKHS). Consider a symmetric and positive definite kernel K : B ⇓ B ⇒ R,

where B ̸ Rd. Given such a kernel, there exists a unique Hilbert space H, called RKHS,

associated with the reproducing kernel K. Denote by Kx the kernel section at x ↑ B defined

by Kx(y) = K(x, y), ↙y ↑ B. Any function f ↑ H satisfies the reproducing property

f(x) = ⇔f,Kx↖H, ↙x ↑ B. For x, y ↑ B, it holds that K(x, y) = ⇔Kx, Ky↖H.

Definition 8 (KMS Wasserstein Distance). Let p ↑ [1,↓). Given two distributions µ and ε,

define the p-KMS Wasserstein distance as

KMSp(µ, ε) = max
f↔H, ⇐f⇐H⇒1

Wp(f#µ, f#ε),

where f#µ and f#ε are the pushforward measures of µ and ε by f : B ⇒ R, respectively.

In particular, for dot product kernel K(x, y) = xTy, the RKHS H = {f : f(x) =

xT↽, ∃↽ ↑ Rd}. In this case, the KMS Wasserstein distance reduces to the max-sliced

Wasserstein distance [97]. A more flexible choice is the Gaussian kernel K(x, y) =

exp(↗ 1
2ς2 →x ↗ y→2

2), where ϑ > 0 denotes the temperature hyper-parameter. In this case,

the function class H satisfies the universal property as it is dense in the continuous function

class with respect to the ↓-type functional norm. It is easy to see the following theorem

holds.

Theorem 5 (Metric Property of KMS). Let H be a universal RKHS. Then KMSp(µ, ε) = 0

if and only if µ = ε.

Example 1. We present a toy example that highlights the flexibility of the KMS Wasserstein

distance. Fig.3.1(a) displays a scatter plot of the circle dataset, which consists of two

groups of samples distributed along inner and outer circles, perturbed by Gaussian noise.

Since the data exhibit a nonlinear structure, distinguishing these groups using a linear
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projection is challenging. As shown in Fig.3.1(b), the density plot of the projected samples

using the MS Wasserstein distance with a linear projector is not sufficiently discriminative.

In contrast, Fig. 3.1(c) demonstrates that the KMS Wasserstein distance is better suited

for distinguishing these two groups. Intuitively, the optimal nonlinear projector should

take the form f ⇑
(x) ∀ →x→c

2 for some scalar c > 0, as illustrated in Fig.3.1(d). We plot

the nonlinear projector by computing the empirical KMS Wasserstein distance, shown in

Fig.3.1(e), which closely resembles the circular landscape depicted in Fig. 3.1(d). This result

demonstrates that the KMS Wasserstein distance provides a data-driven, non-parametric

nonlinear projector capable of effectively distinguishing distinct data groups.

Figure 3.1: Results on a 2-dimensional toy example. (a) Scatter plot of circle dataset; (b)
Density plot using MS Wasserstein; (c) Density plot using KMS Wasserstein; (d) Plot of
f(x) = →x→2, x ↑ [0, 1]

2; (e) Plot of estimated projector using KMS Wasserstein.

Given the RKHS H, let the canonical feature map that embeds data to H as

& : B ⇒ H, x ∃⇒ &(x) = Kx. (3.1)

Define the functional uf : H ⇒ R by uf (g) = ⇔f, g↖H for any g ↑ H, which can be viewed

as a linear projector that maps data from the Hilbert space H to the real line. In light of this,
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for two probability measures µ and ε on H, we define the MS p-Wasserstein distance

MSp(µ, ε) = sup
f↔H: ⇐f⇐H⇒1

Wp


(uf )#µ, (uf )#ε


, (3.2)

where (uf )#µ denotes the pushforward measure of µ by the map uf , i.e., if µ is the

distribution of a random element X of H, then (uf )#µ is the distribution of the random

variable uf (X) = ⇔f,X↖H, and (uf )#ε is defined likewise. In the following, we show that

the KMS Wasserstein distance in Definition 8 can be reformulated as the MS Wasserstein

distance between two distributions on (infinite-dimensional) Hilbert space.

Remark 4 (Reformulation of KMS Wasserstein). By the reproducing property, we can see

that f(x) = ⇔f,Kx↖H = uf (&(x)), which implies f = uf ¬ &. As a consequence,

KMSp(µ, ε)

= sup
f↔H: ⇐f⇐H⇒1

Wp


(uf )#


&#µ


, (uf )#


&#ε



=MSp


&#µ,&#ε


.

(3.3)

In other words, the KMS Wasserstein distance first maps data points into the infinite-

dimensional Hilbert space H through the canonical feature map &, and next finds the

linear projector to maximally distinguish data from two populations. Compared with

the traditional MS Wasserstein distance [97] that performs linear projection in Rd, KMS

Wasserstein distance is a more flexible notion.

Remark 5 (Connections with Kernel PCA). Given data points x1, . . . , xn on B, denote by

µ̂n the corresponding empirical distribution. Assume 1
n

∑
i↔[n] &(xi) = 0, since otherwise

one can center those data points as a preprocessing step. Kernel PCA [221] is a popular

tool for nonlinear dimensionality reduction. When seeking the first principal nonlinear

projection function f , Mairal and Vert [215] presents the following reformulation of kernel
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PCA:

arg max
f↔H: ⇐f⇐H⇒1

Var

(uf )#(&#µ̂n)


, (3.4)

where Var(·) denotes the variance of a given probability measure. In comparison, the

KMS Wasserstein distance aims to find the optimal nonlinear projection that distinguishes

two populations and replaces the variance objective in (3.4) with the Wasserstein distance

between two projected distributions in (3.3). Also, kernel PCA is a special case of KMS

Wasserstein by taking p = 2, µ ∅ µ̂n, ε ∅ φ0 in (3.3).

Notations. Let ⇔·, ·↖ denote the inner product operator. For any positive integer n, denote

[n] = {1, 2, . . . , n}. Define #n as the set

{
⇁ ↑ Rn↘n

+ :

n∑

i=1

⇁i,j =
1

n
,

n∑

j=1

⇁i,j =
1

n
, ↙i, j ↑ [n]

}
. (3.5)

Let Conv(P ) denote a convex hull of the set P , and S+
n

denote the set of positive semidefinite

matrices of size n ⇓ n. We use Õ(·) as a variant of O(·) to hide logarithmic factors.

3.3 Statistical Guarantees

Suppose samples xn
:= {xi}i↔[n] and yn

:= {yi}i↔[n] are given and follow distributions

µ, ε, respectively. Denote by µ̂n and ε̂n the corresponding empirical distributions from

samples xn and yn. In this section, we provide a finite-sample guarantee on the p-KMS

Wasserstein distance between µ̂n and ε̂n with p ↑ [1,↓). This guarantee can be helpful

for KMS Wasserstein distance-based hypothesis testing that has been studied in [307]:

Suppose one aims to build a non-parametric test to distinguish two hypotheses H0 : µ = ε

and H1 : µ ⇐= ε. Thus, it is crucial to control the high-probability upper bound of

KMSp(µ̂n, ε̂n) under H0 as it serves as the critical value to determine whether H0 is

rejected or not. We first make the following assumption on the kernel.

Assumption 2. There exists some constant A > 0 such that the kernel K(·, ·) satisfies
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√
K(x, x) ∝ A, ↙x ↑ B.

Assumption 2 is standard in the literature (see, e.g., [138]), and is quite mild: Gaussian

kernel K(x, y) = exp(↗→x ↗ y→2
2/ϑ

2
) naturally fits into this assumption. For dot product

kernel K(x, y) = xTy, if we assume the support B has a finite diameter, this assumption

can also be satisfied. Define the critical value

%(n,ω) = 4A

C + 4


log

2

ω

1/p

· n↑1/(2p),

where C ≃ 1 is a universal constant. We show the following finite-sample guarantees on

KMS p-Wassersrein distance.

Theorem 6 (Finite-Sample Guarantees). Fix p ↑ [1,↓), level ω ↑ (0, 1), and suppose

Assumption 2 holds.

(I) (One-Sample Guarantee) With probability at least 1 ↗ ω, it holds that

KMSp(µ̂n, µ) ∝ 1

2
%(n,ω).

(II) (Two-Sample Guarantee) With probability at least 1 ↗ ω, it holds that

KMSp(µ̂n, ε̂n) ∝ KMSp(µ, ε) + %(n,ω).

The dimension-free upper bound %(n,ω) = O(n↑1(/2p)
) is optimal in the worst case.

Indeed, in the one-dimension case B = [0, 1] and K(x, y) = xy, the kernel max-sliced

Wasserstein distance KMSp coincides with the classical Wasserstein distance Wp. In this

case, it is easy to see that if µ = (φ0 + φ1)/2 is supported on the two points 0 and 1, the

expectation of KMS(µ̂n, ε̂n) is of order n↑1/(2p) [116]. We also compare this bound with

other OT divergences in Appendix B.1.
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We design a two-sample test TKMS such that H0 is rejected if KMSp(µ̂n, ε̂n) > %(n,ω).

By Theorem 6, we have the following performance guarantees of TKMS.

Corollary 1 (Testing Power of TKMS). Fix a level ω ↑ (0, 1/2), p ↑ [1,↓), and suppose

Assumption 2 holds. Then the following result holds:

(I) (Risk): The type-I risk of TKMS is at most ω;

(II) (Power): Under H1 : µ ⇐= ε, suppose the sample size n is sufficiently large such that

1n := KMSp(µ, ε) ↗ %(n,ω) > 0, the power of TKMS is at least 1 ↗ c · n↑1/(2p),

where c is a constant depending on A,C, p, 1n.

Remark 6 (Comparision with Maximum Mean Discrepancy (MMD)). MMD has been a

popular kernel-based tool to quantify the discrepancy between two probability measures (see,

e.g., [28, 118, 138, 175, 202, 227, 270, 271, 291, 304]), which, for any two probability

distributions µ and ε, is defined as

MMD(µ, ε) = max
f↔H,

⇐f⇐H⇒1

Eµ[f ] ↗ Eε [f ]

= max
f↔H,

⇐f⇐H⇒1

(uf )#


&#µ


↗ (uf )#


&#ε


,

(3.6)

where ◁ denotes the mean of a given probability measure ◁. The empirical (biased) MMD

estimator also exhibits dimension-free finite-sample guarantee as in Theorem 6: it decays

in the order of O(n↑1/2
), where n is the number of samples. However, the KMS Wasser-

stein distance is more flexible as it replaces the mean difference objective in (3.6) by the

Wasserstein distance, which naturally incorporates the geometry of the sample space and is

suitable for hedging against adversarial data perturbations [124].

3.4 Computing 2-KMS Wasserstein Distance

Let µ̂n and ε̂n be two empirical distributions supported on n points, i.e., µ̂n =
1
n

∑
i
φxi , ε̂n =

1
n

∑
j
φyj , where {xi}i, {yj}j are data points in Rd. This section focuses on the computation
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of 2-KMS Wasserstein distance between these two distributions. By Definition 8 and

monotonicity of square root function, it holds that

KMS2(µ̂n, ε̂n)

=



 max
f↔H, ⇐f⇐2

H
⇒1




min
ϑ↔”n

∑

i,j↔[n]

⇁i,j|f(xi) ↗ f(yj)|2








1/2

,
(KMS)

where #n is defined in (3.5).

Although the outer maximization problem is a functional optimization that contains

uncountably many parameters, one can apply the representer theorem (see below) to refor-

mulate Problem (KMS) as a finite-dimensional optimization.

Theorem 7 (Theorem 1 in [307]). There exists an optimal solution to (KMS), denoted as f̂ ,

such that for any z,

f̂(z) =

n∑

i=1

ax,iK(z, xi) ↗
n∑

i=1

ay,iK(z, yi), (3.7)

where ax = (ax,i)i↔[n], ay = (ay,i)i↔[n] are coefficients to be determined.

Define gram matrix K(xn, xn
) = (K(xi, xj))i,j↔[n] and other gram matrices K(xn, yn

),

K(yn, xn
), K(yn, yn

) likewise, then define the concatenation of gram matrics

G =




K(xn, xn

) ↗K(xn, yn
)

↗K(yn, xn
) K(yn, yn

)



 ↑ R2n↘2n. (3.8)

Assume G is positive definite 1 such that it admits the Cholesky decomposition G↑1
= UUT.

By substituting the expression (3.7) into (KMS) and calculation (see Appendix B.4), we
1In Appendix B.3, we provide its sufficient condition.
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obtain the exact reformulation of (KMS):

max
ϖ↔R2n: ⇐ϖ⇐2=1

{
min
ϑ↔”n

∑

i,j

⇁i,j(M
T
i,j
ω)

2

}
. (3.9)

Here, we omit taking the square root of the optimal value of the max-min optimization

problem for simplicity of presentation and define the vector Mi,j = UTM ≃
i,j

, where

M ≃
i,j

=




(K(xi, xl) ↗ K(yj, xl))l↔[n]

(K(yj, yl) ↗ K(xi, yl))l↔[n]



 ↑ R2n.

Since Problem (3.9) is a non-convex program, it is natural to question its computational hard-

ness. The following gives an affirmative answer, whose proof is provided in Appendix B.5.

Theorem 8 (NP-hardness). Problem (3.9) is NP-hard for the worst-case instances of

{Mi,j}i,j .

The proof idea of Theorem 8 is to find an instance of {Mi,j}i,j that depends on a generic

collection of n vectors {Ai}i such that solving (3.9) is at least as difficult as solving the

fair-PCA problem [263] with rank-1 matrices (or fair beamforming problem [283]) and

has been proved to be NP-hard [283]. Interestingly, the computational hardness of the MS

Wasserstein distance arises from both the data dimension d and the sample size n, whereas

that of the KMS Wasserstein distance arises from the sample size n only.

To tackle the computational challenge of solving (3.9), in the subsequent subsections,

we present an SDR formula and propose an efficient first-order algorithm to solve it. Next,

we analyze the computational complexity of our proposed algorithm and the theoretical

guarantees on SDR.
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3.4.1 Semidefinite Relaxation with Efficient Algorithms

We observe the simple reformulation of the objective in (3.9):

∑

i,j

⇁i,j(M
T
i,j
ω)

2
=

∑

i,j

⇁i,j⇔Mi,jM
T
i,j
,ωωT↖.

Inspired by this relation, we use the change of variable approach to optimize the rank-1

matrix S = ωωT, i.e., it suffices to consider the equivalent reformulation of (3.9):

max
S↔S2n

+ ,

Trace(S)=1,rank(S)=1

{
F (S) = min

ϑ↔”n

∑

i,j

⇁i,j⇔Mi,jM
T
i,j
, S↖

}
. (3.10)

An efficient SDR is to drop the rank-1 constraint to consider the semidefinite program (SDP):

max
S↔S2n

F (S), where S2n =

{
S ↑ S2n

+ : Trace(S) = 1

}
. (SDR)

Remark 7 (Connection with [322]). We highlight that Xie and Xie [322] considered the

same SDR heuristic to compute the MS 1-Wasserstein distance. However, the authors

therein apply the interior point method to solve a large-scale SDP, which has expansive

complexity O(n6.5polylog(
1
φ
)) (up to φ-accuracy) [25]. In the following, we present a first-

order method that exhibits much smaller complexity Õ (n2φ↑3
) in terms of the problem size

n (see Theorem 9). Besides, theoretical guarantees on the solution from SDR have not been

explored in [322], and we are the first literature to provide these results.

The constraint set S2n is called the Spectrahedron and admits closed-form Bregman

projection. Inspired by this, we propose an inexact mirror ascent algorithm to solve (SDR).

Its high-level idea is to iteratively construct an inexact gradient estimator and next perform

the mirror ascent on iteration points. By properly balancing the trade-off between the

bias and cost of querying gradient oracles, this type of algorithm is guaranteed to find a

near-optimal solution [155, 157, 158, 159].
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We first discuss how to construct supgradient estimators of F . By Danskin’s theo-

rem [29],

3F (S) = Conv
{ ∑

i,j

⇁⇑
i,j

(S)Mi,jM
T
i,j

: ⇁⇑
(S) ↑ ”(S)

}
,

where ”(S) denotes the set of optimal solutions to the following OT problem:

min
ϑ↔”n

∑

i,j

⇁i,j⇔Mi,jM
T
i,j
, S↖. (3.11)

The main challenge of constructing a supgradient estimator is to compute an optimal solution

⇁⇑
(S) ↑ #(S). Since computing an exactly optimal solution is too expensive, we derive

its near-optimal estimator, denoted as ⇁̂, and practically use the following supgradient

estimator:

v(S) =

∑

i,j

⇁̂i,jMi,jM
T
i,j
. (3.12)

We adopt the stochastic gradient-based algorithm with Katyusha momentum in [325] to com-

pute a ϖ-optimal solution ⇁̂ to (3.11). It achieves the state-of-the-art complexity Õ (n2ϖ↑1
).

See the detailed algorithm in Appendix B.6. Next, we describe the main algorithm for solv-

ing (SDR). Define the (negative) von Neumann entropy h(S) =
∑

i↔[2n] 4i(S) log 4i(S),

where {4i(S)}i are the eignevalues of S, and define the von Neumann Bregman divergence

V (S1, S2) = h(S1) ↗ h(S2) ↗ ⇔S1 ↗ S2,∞h(S2)
T↖

= Trace(S1 logS1 ↗ S1 logS2).

Iteratively, we update Sk+1 by performing mirror ascent with constant stepsize 5 > 0:

Sk+1 = arg max
S↔S2n

5⇔v(Sk), S↖ + V (S, Sk),
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Algorithm 3 Inexact Mirror Ascent for solving (SDR)
1: Input: Max iterations T , initial guess S1, tolerance ϖ, constant stepsize 5.
2: for k = 1, . . . , T ↗ 1 do
3: Obtain a ϖ-optimal solution (denoted as ⇁̂) to (3.11)
4: Construct inexact supgradient v(Sk) by (3.12)
5: Perform mirror ascent by (3.13)
6: end for
7: Return Ŝ1:T =

1
T

∑
T

k=1 Sk

which admits the following closed-form update:

S̃k+1 = exp (log Sk + 5v(Sk)) , Sk+1 =
S̃k+1

Trace(S̃k+1)
. (3.13)

The general procedure for solving (SDR) is summarized in Algorithm 3.

3.4.2 Theoretical Analysis

In this subsection, we establish the complexity and performance guarantees for solving

(SDR). Since the constraint set S2n is compact and the objective in (SDR) is continuous, an

optimal solution, denoted by S⇑, is guaranteed to exist with a finite optimal value. A feasible

solution Ŝ ↑ S2n is said to be φ-optimal if it satisfies the condition F (Ŝ) ↗ F (S⇑
) ∝ φ.

Define the constant C = maxi,j →Mi,j→2
2.

Theorem 9 (Complexity Bound). Fix the precision φ > 0 and specify hyper-parameters

T =

⌈
16C2

log(2n)

φ2

⌉
, ϖ =

φ

4
, 5 =

log(2n)

C
▽
T

.

Then, the complexity of Algorithm 3 for finding φ-optimal solution to (SDR) is

O

C3n3

(log n)
3/2φ↑3


.

Next, we analyze the quality of the solution to (SDR). Recall the exact reformulation (3.9)

requires that the optimal solution to be rank-1 while the tractable relaxation (SDR) does not
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enforce such a constraint. Therefore, it is of interest to provide theoretical guarantees on the

low-rank solution of (SDR), i.e., we aim to find the smallest integer k ≃ 1 such that there

exists an optimal solution to (SDR) that is at most rank-k. The integer k is called a rank

bound on (SDR), which is characterized in the following theorem.

Problem (14) Fix S ⌘ bS Step 1: Find optimal (!, #) with $ binding constraints

Step 2-1: Eigen-decomposition of !" = $Λ$!
with Λ = &'() *", … , *# ≻ 0Step 2-2: Determine if 

nonzero direction / =
$Δ$! exists such that 
12(34 / = 0 and 
5$,& $ 5$,& $

! , /	 = 0

Step 2-3-1: Terminate and return !"
No

Yes

Step 2-3-2: Find maximum stepsize 7 ≥ 0 such 
that !"' 7 = !" + 7/ satisfies	!"' 7 ≽ 0, e.g., 
*($) !"' 7 = 0)

Update !" ← !"' 7

Step 2: Greedy rank reduction algorithm

<$ + )&($) ≤ 5$,& $ 5$,& $
! , !" , ' ∈ [@]

Figure 3.2: Diagram of the rank reduction algorithm. Here ϑ(·) denotes the permutation
operator on [n], Step 1 can be implemented using the Hungarian algorithm [184], and
Step 2-2 finds a direction that lies in the null space of the constraint of Problem (3.14).

Theorem 10 (Rank Bound on (SDR)). There exists an optimal solution to (SDR) of rank at

most k ↭ 1 +

⌊√
2n +

9
4 ↗ 3

2

⌋
. As a result,

Optval(3.9) = max
S↔S2n

+ ,Trace(S)=1,rank(S)=1
F (S)

∝Optval(SDR) ∝ max
S↔S2n

+ ,Trace(S)=1,rank(S)=k

F (S).

The trivial rank bound on (SDR) should be 2n, as the matrix S is of size 2n ⇓ 2n.

Theorem 10 provides a novel rank bound that is significantly smaller than the trivial one.

Proof. Proof Sketch of Theorem 10. We first reformulate (SDR) by taking the dual of the
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Figure 3.3: Comparison of SDR-Efficient with the baseline methods SDR-IPM and BCD

in terms of computational time and solution quality. The columns, from left to right,
correspond to the synthetic Gaussian dataset (100-dimensional), MNIST, and CIFAR-10. The
top plots display the computational time, where the y-axis is labeled as "unbounded" if the
running time exceeds the 1-hour time limit. The bottom plots present the estimated KMS
2-Wasserstein distance for each method.

inner OT problem:

max
S↔S2n
f,g↔Rn

{
1

n

n∑

i=1

(fi + gi) : fi + gj ∝ ⇔Mi,jM
T
i,j
, S↖, ↙i, j

}
. (3.14)

By Birkhoff’s theorem [37] and complementary slackness of OT, there exists an optimal

solution of (f, g) such that at most n constraints of (3.14) are binding, and with such an

optimal choice, one can adopt the convex geometry analysis from [195, 198] to derive the

desired rank bound for any feasible extreme point of variable S. As the set of optimal

solutions of (SDR) has a non-empty intersection with the set of feasible extreme points, the

desired result holds. ↬

It is noteworthy that Algorithm 3 only finds a near-optimal solution Ŝ1:T of (SDR),

which is not guaranteed to satisfy the rank bound in Theorem 10. To fill the gap, we develop

a rank-reduction algorithm that further converts Ŝ1:T to the feasible solution that maintains

the desired rank bound. See the general diagram that outlines this algorithm in Fig. 3.2 and
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the detailed description in Appendix B.10. We also provide its complexity analysis in the

following theorem, though in numerical study the complexity is considerably smaller than

the theoretical one.

Theorem 11. The rank reduction algorithm in Fig. 3.2 satisfies that (I) for a φ-optimal

solution to (SDR), it outputs another φ-optimal solution with rank at most k; (II) its worst-

case complexity is O(n5
).

Additionally, by adopting the proof from Luo et al. [210], we show the optimality gap

guarantee in Theorem 12. Although the approximation ratio seems overly conservative, we

find (SDR) has good numerical performance.

Theorem 12 (Relaxation Gap of (SDR)). Denote by ε = 4 · (0.33)
3 an universal constant.

Then

εn↑4 · Optval(SDR) ∝ Optval(KMS) ∝ Optval(SDR).
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Figure 3.4: Testing power with a controlled type-I error rate of 0.05 across four datasets.
Figures from left to right correspond to (a) Gaussian covariance shift, (b) Gaussian mixture
distribution shift, (c) MNIST, and (d) CIFAR-10 with distribution abundance changes.
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3.5 Numerical Study

This section presents experiment results for KMS 2-Wasserstein distance that is solved

using SDR with first-order algorithm and rank reduction (denoted as SDR-Efficient).

Baseline approaches include the block coordinate descent (BCD) algorithm [307], which

finds stationary points of KMS 2-Wasserstein, and using interior point method (IPM) by

off-the-shelf solver cvxpy [103] for solving SDR relaxation (denoted as SDR-IPM). Each

instance is allocated a maximum time budget of one hour. All experiments were conducted

on a MacBook Pro with an Intel Core i9 2.4GHz and 16GB memory. Unless otherwise

stated, error bars are reproduced using 20 independent trials. Throughout the experiments,

we specify the kernel as Gaussian, with the bandwidth being the median of pairwise

distances between data points. Other details and extra numerical studies can be found in

Appendices B.11 and B.12.

Computational Time and Solution Quality. We first compare our approach to baseline

methods in terms of running time and solution quality. The quality of a given nonlinear

projector is assessed by projecting testing data points from two groups and calculating their

2-Wasserstein distance. The experimental results, shown in the top of Fig. 3.3, indicate

that for small sample size instances, SDR-IPM requires significantly more time than the

other two approaches. Additionally, for small sample size instances, the running time of

BCD is slightly shorter than that of SDR-Efficient. However, for larger instances, BCD

outperforms SDR-Efficient in terms of running time. This observation aligns with our

theoretical analysis, which shows that the complexity of SDR is Õ(n2φ↑3
), lower than the

complexity of BCD [307], which is Õ(n3φ↑3
). The plots in the bottom of Fig. 3.3 show

the quality of methods SDR-Efficient and BCD. We find the performance of solving SDR

outperforms BCD, as indicated by its larger means and smaller variations. One possible

explanation is that BCD is designed to find a local optimum solution for the original non-

convex problem, making it highly sensitive to the initial guess and potentially less effective
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in achieving optimal performance.

High-dimensional Hypothesis Testing. Then we validate the performance of KMS 2-

Wasserstein distance for high-dimensional two-sample testing using both synthetic and real

datasets. Baseline approaches include the two-sample testing with other statistical diver-

gences, such as (i) Sinkhorn divergence (Sinkhorn Div) [130], (ii) maximum mean discrep-

ancy with Gaussian kernel and median bandwidth heuristic (MMD) [138], (iii) sliced Wasser-

stein distance (SW) [55], (iv) generalized-sliced Wasserstein distance (GSW) [177], (v) max-

sliced Wasserstein distance (MS) [97], and (vi) optimized mean-embedding test (ME) [170].

The baselines KMS, MS, ME partition data into training and testing sets, learn parameters

from the training set, and evaluate the testing power on the testing set. Other baselines

utilize both sets for evaluation. Synthetic datasets include the high-dimensional Gaussian

distributions with covariance shift, or Gaussian mixture distributions. Real datasets include

the MNIST [96] and CIFAR-10 [179] with changes in distribution abundance. The type-I

error is controlled within 0.05 for all methods.

We report the testing power for all these approaches and datasets in Fig. 3.4. For

the Gaussian covariance shift scenario the MS method achieves the best performance,

which can be explained by the fact that linear mapping is optimal to separate the high-

dimensional Gaussian distributions. For the other three scenarios, our approach has the

superior performance compared with those baselines.

Table 3.1: Detection delay of various methods with controlled false alarm rate ω = 0.05.
Mean and standard deviation (std) are calculated based on data from 10 different users.

Method KMS Sinkhorn Div MMD SW GSW MS ME

Mean 11.4 16.5 50.6 17.2 12.9 17.8 65.4
Std 5.56 4.4 39.5 8.7 6.4 9.2 25.7

Human Activity Detection. We evaluate the performance of the KMS Wasserstein distance

in detecting human activity transitions as quickly as possible using MSRC-12 Kinect gesture

dataset [115]. After preprocessing, the dataset consists of 10 users, each with 80 attributes,
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performing the action throwing/lifting before/after the change-point at time index 600.

We employ a sliding window approach [322] with a false alarm rate of 0.01 to construct

the test statistic at each time index, which increases significantly when a change-point is

detected. Figure 3.5 illustrates the test statistics generated by our method compared to

baseline approaches. The experimental results, summarized in Table 3.1, show that our

method achieves superior performance.

575 581 586 614
Time

Figure 3.5: Top Left: Illustration of sequential data before and after the change-point.
Remaining: Testing statistics computed from our and baseline approaches.

Generative Modeling. Finally, we replace the MS Wasserstein distance with our proposed

KMS Wasserstein distance for the generative modeling task on the MNIST dataset, following

a similar procedure as in [97]. Figure 3.6 shows the generated samples produced by

generative models based on either the sliced Wasserstein distance or the KMS Wasserstein

distance. To evaluate the performance of these models, we use the Fréchet Inception Distance

(FID) score [147], calculated by extracting image features with a three-layer convolutional

neural network. A lower FID score indicates better generative performance. Compared to

the baseline, the KMS Wasserstein-based generative model achieves a lower FID score and

produces higher-quality images, suggesting that the KMS Wasserstein distance is effective

for learning high-dimensional data distributions.
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Figure 3.6: Left: samples generated from sliced Wasserstein-based generative models with
FID score 5.37e-2; Right: samples generated from KMS Wasserstein-based generative
models with FID score 3.35e-2. Models are trained with feed-forward neural-nets and 30
epoches.

3.6 Concluding Remarks

In this paper, we presented both statistical and computational guarantees for the KMS

Wasserstein distance. From a statistical perspective, we derived finite-sample guarantees

under mild conditions on the kernel function, yielding a dimension-free concentration error

bound. Moreover, our analysis relaxes the compactness assumption on the sample space

typically required by the MS Wasserstein distance. From a computational perspective,

we investigated the SDR approach for solving the empirical KMS 2-Wasserstein distance.

This method is not only computationally efficient using first-order optimization techniques

but also enjoys strong performance guarantees for the obtained solutions. Our numerical

experiments validated the theoretical results and demonstrated the superior performance

of the KMS Wasserstein distance in high-dimensional hypothesis testing, human activity

detection, and generative modeling applications.
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CHAPTER 4

VARIABLE SELECTION FOR KERNEL TWO-SAMPLE TESTS

In this chapter, we consider the variable selection problem for two-sample tests, aiming

to select the most informative variables to determine whether two collections of samples

follow the same distribution. To address this, we propose a novel framework based on

the kernel maximum mean discrepancy (MMD). Our approach seeks a subset of variables

with a pre-specified size that maximizes the variance-regularized kernel MMD statistic. We

focus on three commonly used types of kernels: linear, quadratic, and Gaussian. From a

computational perspective, we derive mixed-integer programming formulations and propose

exact and approximation algorithms with performance guarantees to solve these formulations.

From a statistical viewpoint, we derive the rate of testing power of our framework under

appropriate conditions. These results show that the sample size requirements for the

three kernels depend crucially on the number of selected variables, rather than the data

dimension. Experimental results on synthetic and real datasets demonstrate the superior

performance of our method, compared to other variable selection frameworks, particularly

in high-dimensional settings. This work is mainly summarized in [304].

4.1 Introduction

Two-sample test is a classic problem in statistics and an important tool for scientific discovery.

Given two sets of observations x
n

:= {xi}n

i=1 and y
n

= {yi}n

i=1
1, which represent n

independent and identically distributed (i.i.d.) D-dimensional samples from distributions µ

and ε, respectively. Using these samples, we aim to decide whether µ and ε are distinct. Two-

sample test has wide applications: for example, in clinical trials to evaluate the effectiveness
1In this paper, we consider the simplified setting where the two sets of samples are the same size; it can be

generalized to the setting when the two sets of samples do not have the same size.
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of two distinct treatments on patient outcomes; in finance, to compare the performance

of two different investment strategies; and in machine learning, to investigate whether the

source domain and target domain have significant differences.

Recently, kernel two-sample tests have become a popular approach for modern high-

dimensional data (see, e.g., [76, 138]). Despite the vast literature on kernel two-sample

tests, studying variable selection for two-sample testing remains relatively limited. In

this context, variable selection seeks the most informative d variables from a pool of D

variables (usually d ℜ D) to differentiate distributions µ and ε. On the one hand, finding

interpretable variables is crucial for understanding population differences for domains such

as gene expression analysis, where only a small subset of variables elucidates disparities

between normal and abnormal populations [334]. On the other hand, the dissimilarities

between high-dimensional datasets often exhibit a low-dimensional structure [303], and

thus, extracting a small set of crucial variables as a pre-processing step may enhance the

efficacy of high-dimensional two-sample testing.

Variable selection in the kernel two-sample testing is very different from the widely

studied variable selection problem in linear models (notably, Lasso) and generalized linear

models (see, e.g., [144]) because we face completely different objective functions in the

optimization formulation. An interesting aspect of the problem is that depending on the

choice of the kernel, the nature of the optimization objective can range from simple to

hard. Moreover, the original formulation of the variable selection problem will also lead

to the so-called “subset selection problem” [222], which leads to an integer program and

can be hard to solve directly; it remains a question of how to develop computationally

efficient procedures and approximate algorithms. On the other hand, for analyzing statistical

performance variable selection for kernel two-sample tests facing finite samples, we need

to study the statistical performance for tests (such as the false-detection and detection

power), which is characteristic of testing problems that are different from regression type of

prediction problems.
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In this paper, we provide a novel variable selection framework for two-sample testing

by choosing key variables that maximize the variance-regularized kernel maximum mean

discrepancy (MMD) statistic, which in turn (approximately) maximizes the corresponding

testing power. Our focus is on three types of kernels: linear, quadratic, and Gaussian. The

contributions are summarized as follows.

• From the computational perspective, we leverage mixed-integer programming tech-

niques to solve the MMD optimization problem for variable selection. For linear

kernel, we reformulate the optimization as an inhomogeneous quadratic maximiza-

tion with ϱ2 and ϱ0 norm constraints (see Section 4.4.1), called Sparse Trust Region

Subproblem (STRS). Despite its NP-hardness, we provide an exact mixed-integer

semi-definite programming formulation together with exact and approximation algo-

rithms for solving this problem. To the best of our knowledge, this study is new in

the literature. For quadratic and Gaussian kernels, the MMD optimization becomes

a sparse maximization of a non-concave function (see Section 4.4.1), which is in-

tractable in general. We propose a heuristic algorithm that iteratively optimizes a

quadratic approximation of the objective function, which is also a special case of

STRS.

• From the statistical perspective, we derive the rate of testing power of our frame-

work under appropriate conditions. We demonstrate that when the training sample

size nTr is sufficiently large, the type-II error decays in the order of n↑1/2
Te , where

nTe denotes the testing sample size. For the three focused types of kernels, the

training sample size requirement is almost independent of the data dimension D but

dependent on the number of selected variables d: For linear, quadratic, and Gaussian

kernels, to achieve satisfactory performance, the training sample sizes are at least

!(d2
log

D

d
),!(d4

log
D

d
), and !(d log

D

d
), respectively.

• By combining both viewpoints, it becomes evident that there exists a balance between
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computational tractability and statistical guarantees. While the Gaussian kernel

requires a smaller sample size to be statistically powerful, the corresponding MMD

optimization is challenging. Conversely, the linear or quadratic kernel may require

more samples to be statistically powerful, but the optimization is easier to solve.

• Finally, we perform numerical experiments using synthetic and real datasets to show-

case the effectiveness of our proposed framework compared to other baseline methods.

We utilize synthetic datasets to evaluate the testing power and variable selection

performance. Subsequently, we test our approach on real data, including the standard

MNIST handwritten digits and more specialized sepsis detection datasets.

Notations. Given a positive integer n, define [n] = {1, . . . , n}. Let F = {0, 1}, and

S+
n

denote the collection of n ⇓ n symmetric positive semi-definite matrices. Given a

vector z ↑ RD and a set S ̸ [D], we use z(k) denote the k-th entry in z, and z(S) to

denote the subvector with entries indexed by S. Given an m ⇓ n matrix A and two sets

S ̸ [m], t ̸ [n], denote A(i,j) the (i, j)-th entry in A and denote A(S,T ) as the submatrix

with rows and columns indexed by S and T . Given a vector z ↑ RD and a distribution µ in

RD, denote z ¬ µ as the distribution of the random variable
∑

k↔[D] z
(k)x(k) provided that

x ⇑ µ. Define the norm →z→(d) = maxS: |S|⇒d

∥∥z(S)
∥∥

2
. For a D-dimensional distribution µ

and s ↑ [D], let Proj
s#µ be the s-th marginal distributions of µ.

Related work

Variable selection. Classical variable selection approaches seek to extract the most valuable

features from a group of high-dimensional data points. To name a few, sparse PCA seeks to

select crucial variables that maximize the sample covariance based on sample sets [100, 101,

194]; truncated SVD aims to formulate a low-rank data matrix with minimum approximation

error [197], and the maximum entropy sampling or experiment design aims to select a

subgroup of samples that reserve information as much as possible [193, 196]. However,

existing literature has paid less attention to variable selection for identifying differences
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between the two groups except [52, 142, 165, 166]. The references therein mainly rely on

parametric assumptions regarding the data-generating distributions. In particular, Taguchi

and Rajesh [293] assume target distributions are Gaussian and find important variables such

that the difference between mean and covariance among two groups is maximized. The

works [142, 165, 166] further model distributions as Gaussian graphical models and detect

the difference between distributions in correlation and partial correlation. However, it is

undesirable to restrict the analysis to parametric distributions, especially for real-world

applications. Bonferroni method [52] has been proposed in the two-sample testing context

to compare every single feature using statistical tests to obtain representative variables. Still,

it may not perform well when correlations exist between variables.

Kernel two-sample tests. A popular approach for non-parametric two-sample testing is

based on kernel methods [269]: such tests quantify the difference of probability distributions

by measuring the difference in kernel mean embedding [28, 227], which is also called the

maximum mean discrepancy (MMD) [118, 138, 175, 270, 271]. The follow-up works [202,

291] further improve the performance of kernel-based two-sample tests by selecting kernels

that maximize the variance-normalized empirical MMD. We adopt this idea in our variable

selection framework. However, we observe that using this criterion for variable selection

results in a fractional program subject to sparsity and norm constraints, which is highly

challenging to solve. Hence, we are inspired to consider optimizing the variance-regularized

empirical MMD statistic as a surrogate (see (4.12)).

Other two-sample tests. Many widely-used frameworks employ classification techniques

for two-sample testing (see, e.g., [75, 181, 182]). It is worth noting that our approach adopts

a distinct framework compared to those references: these aforementioned testing methods

may not effectively identify interpretable variables capable of distinguishing between two

distributions. One potential alternative is to employ a classifier based on sparse logistic

regression [33] to construct a two-sample test. However, this approach may not yield

satisfactory performance due to the limited flexibility of the parametric form of the classifier,
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as we will demonstrate in Section 4.3.2. Recently, Mueller and Jaakkola [228] proposed

to find the optimal subset of features such that the Wasserstein distance between projected

distributions in dimension d = 1 is maximized. Later Wang et al. [306, 307] modified

the projection function as the linear mapping with general dimension d > 1 and nonlinear

mapping, respectively, thus improving the flexibility of dimensionality reduction and power

of two-sample testing. Nevertheless, these references do not impose sparsity constraints

when performing dimensionality reduction. Therefore, they cannot select a subset of

variables that differentiate the differences between the two groups.

4.2 Background

We first present some background information about maximum mean discrepancy (MMD). It

measures the discrepancy between two probability distributions by employing test functions

within a reproducing kernel Hilbert space (RKHS), which has been commonly used in

two-sample testing area [80, 138, 139, 140, 170, 202].

Definition 9 (Maximum Mean Discrepancy). A kernel function K : RD ⇓ RD ⇒ R is

called a positive semi-definite kernel if for any finite set of n samples {xi}n

i=1 in RD and

{ci}n

i=1 in R, it holds that
∑

i↔[n]

∑
j↔[n] cicjK(xi, xj) ≃ 0. A positive semi-definite kernel

K induces a unique RKHS H. Given H containing a class of candidate testing functions

and two distributions µ, ε, define the corresponding MMD statistic as

MMD(µ, ε;K) ↭ sup
f↔H,⇐f⇐H⇒1


Eµ[f ] ↗ Eε [f ]


. (4.1)

Leveraging reproducing properties of the RKHS, the MMD statistic can be equivalently

written as

MMD
2
(µ, ε;K) = Ex,x↓↓µ[K(x, x≃

)] + Ey,y↓↓ε [K(y, y≃
)] ↗ 2Ex↓µ,y↓ε [K(x, y)],
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which enables convenient computation and sample estimation. When the distributions µ and

ε are not available, one can formulate an estimate of MMD
2
(µ, ε;K) based on samples xn

and y
n using the following statistic [138]:

⊋MMD
2
(x

n,yn
;K) ↭ 1

n(n ↗ 1)

∑

i↔[n],j↔[n],i ⇔=j

Hi,j, (4.2)

with

Hi,j := K(xi, xj) + K(yi, yj) ↗ K(xi, yj) ↗ K(yi, xj). (4.3)

The choice of kernel function largely influences the performance of variable selection for

two-sample tests. To achieve satisfactory performance, we consider the following types of

kernel functions, denoted as Kz(·, ·). Here, the coefficient vector z = (z(s)
)s↔[D] involved in

the kernel functions determines which variables to be selected, which is in the domain set

Z := {z ↑ RD
: →z→2 = 1, →z→0 ∝ d}. (4.4)

• Linear Kernel: For each coordinate s ↑ [D], we specify the scalar-input kernel

ks : R ⇓ R ⇒ R and then construct

Kz(x, y) =

∑

s↔[D]

z(s)ks


x(s), y(s)


. (4.5)

Those scalar-input kernels ks(·, ·), s ↑ [D] defined above are used to compare the dif-

ference of distributions among each coordinate, which can be chosen as the Gaussian

kernel with certain bandwidth hyper-parameter 0 2
s

, i.e., ks(x, y) = e↑(x↑y)2/(2↼
2
s ).

• Quadratic Kernel: For each coordinate s ↑ [D], we specify the scalar-input kernel
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ks : R ⇓ R ⇒ R and then construct

Kz(x, y) =




∑

s↔[D]

z(s)ks


x(s), y(s)


+ c




2

. (4.6)

Here c ≃ 0 is a bandwidth hyper-parameter of the quadratic kernel, and scalar-input

kernels ks(·, ·), s ↑ [D] can be chosen in the same way as defined in the linear kernel

case.

• (Isotropic) Gaussian Kernel: We first specify the bandwidth hyper-parameter ϑ2 > 0

and then construct isotropic Gaussian-type kernel

Kz(x, y) = exp

(
↗

∑
s↔[D]


z(s)

(x(s) ↗ y(s)
)
2

2ϑ2

)
. (4.7)

We use isotropic Gaussian kernel, a common choice in the literature on two-sample

testing, primarily because it only involves a bandwidth hyper-parameter that is easy to

tune.

4.3 Formulation

A natural criterion of variable selection is to pick the coefficient vector z such that the

empirical MMD statistic is optimized, i.e., it suffices to solve the formulation

max
z↔Z

⊋MMD
2
(x

n,yn
;Kz). (4.8)

To motivate this formulation, we start with an example showcasing the nature of the problem:

the complexity of the problem depends on the choice of the kernel, and the simplest linear

kernel leads to the analytical solution. Despite that, the linear kernel is known to have

limited testing power, and one usually prefers to use a non-linear kernel, whose solution is

not analytical. Moreover, the test statistic may require normalization by standard deviation,
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for which case an analytical solution is not available; all these require further algorithm

development of algorithm as presented in Section 4.4.

Consider Problem (4.8) when the kernel function Kz is a linear kernel in (4.5). By

straightforward calculation, it can be reformulated as the following linear optimization on

the domain set Z:

max
z↔Z

zTa, (4.9)

where for s ↑ [D], the s-th entry of the vector a ↑ RD is

a(s)
= ⊋MMD

2
{x(s)

i
}i↔[n], {y(s)

i
}i↔[n], ks


.

It is easy to check that the optimal solution to (4.9) is obtained by taking the non-zero

indexes of z to be the indexes of the d largest absolute values of the vector a. In other words,

based on the linear kernel and the criterion (4.8), our framework selects those variables

whose MMD discrepancy between two distributions at the corresponding coordinates is as

large as possible. Since this idea only utilizes the information of marginal distributions of a

high-dimensional distribution in each coordinate, the linear kernel has limited testing power

in practice.

4.3.1 Variance regularized MMD optimization

Although the idea behind the formulation (4.8) is simple, as pointed out in existing litera-

ture [140, 182, 291], directly optimizing the MMD statistic does not result in a powerful

two-sample test in practice. Inspired by these references, we incorporate the variance

statistic of MMD in the formulation to achieve more competitive performance.

Specifically, we pick the sparse selection vector z to achieve the most powerful test. Since

the kernel function leading to the most powerful two-sample test approximately maximizes

the MMD testing statistic normalized by its standard deviation [291], the natural idea is to
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pick the selection vector z that solves the following fractional optimization problem:

max
z↔Z

⊋MMD
2
(x

n,yn
;Kz)


ϑ̂2

H1
(xn,yn;Kz)

1/2
, (4.10)

where ⊋MMD
2
(x

n,yn
;Kz) and ϑ̂2

H1
(x

n,yn
;Kz) are unbiased empirical estimators of the

population testing statistic and the variance of testing statistic under alternative hypothesis

H1 : µ ⇐= ε, respectively. For fixed samples xn,yn and kernel function K(·, ·), by [291],

the variance estimator

ϑ̂2
H1

(x
n,yn

;K) =
4

n3

∑

i↔[n]




∑

j↔[n]

Hi,j




2

↗ 4

n4




∑

i↔[n]

∑

j↔[n]

Hi,j




2

, (4.11)

where Hi,j, i, j ↑ [n] are defined in (4.3). Since the optimization over a fraction in (4.10)

is difficult to handle, we introduce a regularization hyper-parameter 4 > 0 (which can be

tuned by cross-validation in practice) and propose to solve the new optimization problem

instead:

max
z↔Z

{
F̂ (z;xn,yn

) := ⊋MMD
2
(x

n,yn
;Kz) ↗ 4ϑ̂2

H1
(x

n,yn
;Kz)

}
. (4.12)

The rationale behind problem (4.12) is that, by properly tuning the regularizer 4 > 0, we

balance the trade-off between maximizing the testing statistic and minimizing its variance,

which amounts to approximately optimizing the testing power criteria in (4.10).

The hyper-parameter 4 is tuned using the following cross-validation procedure: We

take a set of candidate choices of 4, denoted as {0.1, 0.5, 1, 2, 5}, and split the dataset

into 50% training and 50% validation datasets. For each choice of hyper-parameters, we

use the training dataset to obtain the optimal coefficient vector and examine its hold-out

performance on the validation dataset, which is quantified as the negative of the p-value for

two-sample tests between two collections of samples in the validation dataset. We finally
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Algorithm 4 A permutation two-sample test using MMD with variable selection
Require: cardinality d, type-I error threshold ωlevel, bootstrap size Np, collected samples

x
n and y

n.
1: Split data as xn

= x
Tr ′ x

Te and y
n

= y
Tr ′ y

Te.
2: Solve (4.12) with input data (x

Tr,yTr
) to obtain optimal sparse selection vector z⇑.

3: Compute test statistic T = ⊋MMD
2
(x

Te,yTe
;Kz↔).

4: for i = 1, . . . , Np do {} Step 4-8: Decide threshold using bootstrap
5: Shuffle x

Te ′ y
Te to obtain x

Te
(i) and y

Te
(i).

6: Compute test statistic for bootstrap samples Ti = ⊋MMD
2
(x

Te
(i),y

Te
(i);Kz↔).

7: end for
8: tthres ℑ (1 ↗ ωlevel)-quantile of {Ti}i↔[Np].
9: Reject H0 (i.e., decide the two sample distributions are different) if T > tthres.

specify the hyper-parameter as the one with the highest value of hold-out performance.

Using the proposed variable selection framework, we present a kernel two-sample

test as follows. The data points are divided into training and testing datasets. Initially,

the training set is utilized to obtain the selection coefficient that optimally identifies the

differences between the two groups. Next, a permutation test is performed on the testing

data points, projected based on the trained selection coefficient. The threshold for this

permutation test is calibrated by bootstrapping following [138, Section 5] and [8]. The

detailed algorithm is presented in Algorithm 4. This test is guaranteed to control the type-I

error [136] because we evaluate the p-value of the test via the permutation approach. In the

following sections, we discuss how to solve the optimization problem (4.12) with linear

and quadratic kernels, respectively. In the subsequent sections, we develop algorithms

for solving the MMD optimization problem and then establish statistical testing power

guarantees for our proposed framework.

4.3.2 Connections with classification-based testing

It is worth mentioning that any method for classification can be applied to two-sample

testing: Given training samples x
Tr

= {xi}i↔[|xTr|] and y
Tr

= {yi}i↔[|yTr|], we formu-

late the feature-label pairs as DTr = {(xi, 0)}i↔[|xTr|] ′ {(yi, 1)}i↔[|yTr|]. One can use
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any classification method to obtain a classifier f̂ based on training dataset DTr. Af-

ter that, the testing statistic based on testing samples x
Te and y

Te can be computed as

T =
1

|xTe|
∑

x↔xTe f̂(x)↗ 1
|yTe|

∑
y↔yTe f̂(y). If the testing statistic T is greater than a certain

threshold, the null hypothesis H0 is rejected, and otherwise, it is accepted.

A notable existing variable selection approach for classification is the sparse logistic

regression (SLR) [33], which uses the classifier f̂(·) = ⇔·, ↽↖ for some sparse vector ↽. The

coefficient vector ↽ can be obtained by solving a sparse optimization problem using training

dataset DTr, and its non-zero entries correspond to the selected variables that distinguish the

differences between groups xTr and y
Tr. Based on samples xTe and y

Te, SLR formulates

the following testing statistic and rejects the null hypothesis if it exceeds a certain threshold:

TSLR =
1

|xTe|
∑

x↔xTe ↽Tx ↗ 1
|yTe|

∑
y↔yTe ↽Ty. Such an approach assumes a parametric

assumption that the data distributions µ and ε are linearly separable since otherwise, the

linear predictor may not achieve satisfactory performance.

In contrast, our proposed method can be viewed as a generalized classification-based

testing, which consists of two phases:

(I) At the first phase, we choose a suitable kernel function K(·, ·) based on training data

x
Tr and y

Tr that depends only on a small group of variables leading to satisfactory

two-sample testing performance. Such a variable selection procedure makes our

classification model more interpretable.

(II) At the second phase, we obtain the classifier (also called the witness function in [138,

Section 2.3]), denoted as f̂ , based on validation data x
Te and y

Te:

f̂(z) ∀ 1

|xTe|
∑

x↔xTe

K(x, z) ↗ 1

|yTe|
∑

y↔yTe

K(y, z). (4.13)

In comparison with the SLR framework, we replace the linear classifier with the kernel-based

classifier, which is a more flexible and powerful choice. In the following, we provide an

example demonstrating that our proposed framework can successfully select useful variables
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to distinguish the difference between two groups, while the sparse logistic regression cannot

finish this task.

Example 2 (Example when sparse logistic regression cannot identify variables). Consider

the example where µ = N (0, ID) and ε = N (0, diag((1 + ϖ)2, 1, . . . , 1)) with ϖ > 0. Here,

only the first coordinate can differentiate between µ and ε. When using the sparse logistic

regression, it is clear that for any ↽ satisfying →↽→0 ∝ 1, it holds that the population version

of testing statistic E[TSLR] = 0. This indicates that sparse logistic regression may not achieve

satisfactory performance in hypothesis testing or classification. In contrast, consider our

proposed MMD framework with the linear kernel. For any z such that →z→2 = 1, →z→0 ∝ 1,

it holds that the population version of the objective in (4.12) achieves the unique optimal

solution ẑ with ẑ(1)
= 1 if the variance regularization 4 is selected properly. Specifically,

when 4 is chosen to be smaller than a constant 4̄ > 0, our proposed MMD framework can

always select the true useful variable.2

2Here we take ω̄ =
MMD2(N (0,1),N (0,(1+ω)2);k1)
ε2
H1

(N (0,1),N (0,(1+ω)2);k1)
to satisfy the desired result. Specifically, we provide

closed-form expressions on those statistics in the following (see the proof in Appendix C.2):

A ↭ MMD
2
(N (0, 1), N (0, (1 + ε)2); k1) =

√
ϑ2
1

ϑ2
1 + 2

+

√
ϑ2
1

ϑ2
1 + 2(1 + ε)2

↗ 2

√
ϑ2
1

ϑ2
1 + 1 + (1 + ε)2

,

B ↭ ϖ2
H1

(N (0, 1), N (0, (1 + ε)2); k1) = 4C ↗ 4A2,

C ↭
√

ϑ4
1

(ϑ2
1 + 1)(3 + ϑ2

1 )
+

√
4ϑ4

1

(ϑ2
1 + 2)(ϑ2

1 + 2(1 + ε)2)

↗

√
16ϑ4

1

2ϑ2
1 + 1 + (1 + ε)2 + (1 + ϑ2

1 )((1 + ε)+ϑ2
1 )

↗

√
16ϑ4

1

(ϑ2
1 + 1 + (1 + ε)2)(ϑ2

1 + 2(1 + ε)2)

+

√
16ϑ4

1

(ϑ2
1 + (1 + ε)2)(ϑ2

1 + (1 + ε)2 + 2)
+

√
ϑ4
1

(ϑ2
1 + (1 + ε)2)(ϑ2

1 + 3(1 + ε)2)
.
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4.4 Algorithm

To prepare for solving the MMD optimization problem (4.12), we first introduce the follow-

ing Sparse Trust Region Subproblem (STRS):

max
z↔Z

{
zTAz + zTa

}
, (STRS)

where the set Z is defined in (4.4) and (A, a) are problem coefficients. This problem

extends the standard Trust Region Subproblem [84], since we require the decision variable

to satisfy an extra sparse constraint. In Section 4.4.1, we will show that Problem (4.12)

can be reformulated as a special case of (STRS) for linear kernels. For generic kernels,

the optimization procedure for solving (4.12) involves solving the subproblem (STRS).

Unfortunately, the set Z = {z ↑ RD
: →z→2 = 1, →z→0 ∝ d} in (STRS) involves ϱ0-norm

constraint, which typically leads to a mixed-integer program reformulation that is NP-hard to

solve. This motivates us to provide efficient optimization algorithms to tackle this challenge

in Section 4.4.2.

Without loss of generality, we assume A ⊤ 0 in (STRS), since otherwise, we can re-

write the problem as maxz↔Z

{
zT

(A↗ 4min(A)ID)z + zTa
}

+ 4min(A), where the shifted

matrix A ↗ 4min(A)ID ⊤ 0, where 4min denotes the smallest eigenvalue of a matrix. It

is worth mentioning that the problem (STRS) reduces to sparse PCA formulation when

the coefficient vector a = 0 (that is, the linear term is zero), which has been studied

extensively in the literature [27, 119, 194, 225]. However, the study for general vector a

for the problem (STRS) is new. In Section 4.4.2, we discuss the exact and approximation

algorithms for solving (STRS) with generic data matrix A and vector a.

4.4.1 MMD optimization with different kernels

In the following, we provide detailed algorithms for solving the MMD optimization prob-

lem (4.12) for various kernels considered in (4.5)-(4.7).
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Linear kernel

For linear kernel defined in (4.5), one can verify that Hi,j ↑ R defined in (4.3) can be written

as a linear function in terms of z:

Hi,j =

∑

s↔[D]

z(s)
[
ks(x

(s)
i
, x(s)

j
) + ks(y

(s)
i
, y(s)

j
) ↗ ks(x

(s)
i
, y(s)

j
) ↗ ks(y

(s)
i
, x(s)

j
)

]
= zThi,j,

where we denote the D-dimensional vector

hi,j =

{
ks(x

(s)
i
, x(s)

j
) + ks(y

(s)
i
, y(s)

j
) ↗ ks(x

(s)
i
, y(s)

j
) ↗ ks(y

(s)
i
, x(s)

j
)

}

s↔[D]
. (4.14)

Since the empirical MMD estimator ⊋MMD
2
(x

n,yn
;Kz) is a linear combination of {Hi,j}i,j

and the empirical variance estimator ϑ̂2
H1

(x
n,yn

;Kz) is a quadratic function in terms of

{Hi,j}i,j , it is clear that the MMD optimization problem (4.12) can be reformulated as the

mixed-integer quadratic optimization problem (STRS), where the data matrix A ↑ RD↘D

and vector a ↑ RD have the following expressions:

A(s1,s2)
=

44

n3

∑

i↔[n]




∑

j↔[n]

h(s1)
i,j








∑

j↔[n]

h(s2)
i,j





↗ 44

n4




∑

i,j↔[n]

h(s1)
i,j








∑

i,j↔[n]

h(s1)
i,j



 , ↙s1, s2 ↑ [D],

a =
1

n(n ↗ 1)

∑

i↔[n],j↔[n],i ⇔=j

hi,j.

Therefore, one can query either the exact or approximation algorithm to solve problem (4.12)

with strong optimization guarantees for this linear kernel case. In the following remark, we

discuss under which conditions will linear kernel MMD may or may not achieve satisfactory

performance on the variable selection task.

Remark 8 (Limitation of Linear Kernel). Under the linear kernel choice, it can be shown
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that the population MMD statistic becomes

MMD
2
(µ, ε;Kz) =

∑

s↔[D]

z(s)
MMD

2
(Proj

s#µ,Proj
s#ε; ks),

where Proj
s#µ,Proj

s#ε are the s-th marginal distributions of µ, ε, respectively. In other

words, the selection coefficient z aims to find a direction to identify the difference between

marginal distributions of µ and ε. However, under the case where marginal distributions

of µ and ε are the same, the linear kernel MMD does not have enough power to find

informative variables to distinguish those two distributions.

Other kernel choices

For other kernel choices, such as the quadratic kernel in (4.6) and Gaussian kernel in (4.7),

the objective for MMD optimization is a nonlinear non-concave function with respect to z.

This, together with the sparse constraint of the domain set Z , makes this type of problem

very challenging to solve. In this part, we provide a heuristic algorithm that incorporates

simulated annealing (SA) [35] and STRS that tries to find a feasible solution of (4.12) with

high solution quality. Such a heuristic can also be naturally extended for generic kernel

choices.

Here, we outline our SA and STRS-based heuristics. For notational simplicity, we

denote the objective of (4.12) as F (z) instead. Our proposed algorithm is an iterative

method that generates a trajectory of feasible solutions z1, . . . , zimax . At the iteration point

zi, we generate a candidate solution z̃i by optimizing a second-order approximation of the

objective F (z) with quadratic penalty regularization around zi:

z̃i = arg max
z↔Z

{
F (zi) + ∞F (zi)

T
(z ↗ zi)

+
1

2
(z ↗ zi)

T∞2F (zi)(z ↗ zi) ↗ 0i

2
→z ↗ zi→2

2

}
,

(4.15)

where 0i denotes the quadratic regularization value. Such a problem is a special case
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Algorithm 5 Heuristic algorithm for solving (4.12) with generic kernel
1: Input: Max iterations imax, initial guess z1, initial temperature Tem, cooling parameter

ω, and a set of regularization values G
2: for i = 1, . . . , imax ↗ 1 do
3: Randomly pick the regularization value 0i from G.
4: Obtain z̃i by solving a STRS in (4.15).
5: Compute residual level %i = F (z̃i) ↗ F (zi) and probability pi = e#i/Tem

6: if rand(0, 1) < pi then
7: zi+1 = z̃i

8: else
9: zi+1 = zi

10: end if
11: Tem = ω · Tem
12: end for
13: Return zimax

of (STRS), where the data matrix A ↑ RD↘D and vector a ↑ RD have the following

expressions:

A =
1

2
∞2F (zi) ↗ 0i

2
ID, a = ∞2F (zi)zi ↗ 0izi + ∞F (zi).

Hence, Problem (4.15) can be solved by querying the exact or approximation algorithm

described in Section 4.4. Let %i = F (z̃i) ↗ F (zi) denote the residual value for moving

from zi to z̃i. The central idea of SA is always to accept moves with positive residual values

while not forbidding moves with negative residual values. Specifically, we assign a certain

temperature Tem, and update zi+1 as z̃i according to the probability

pi =






1, if %i ≃ 0

e#i/Tem, if %i < 0.

If the candidate solution z̃i is not accepted, we update zi+1 as zi. The temperature parameter

Tem is a critical hyper-parameter in this algorithm. We assign an initial value of Tem and

iteratively decrease it such that in the last iterations, the moves with worse objective values

are less and less likely to be accepted. See our detailed algorithm procedure in Algorithm 5.
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Finally, we add remarks regarding the tractability and flexibility of quadratic and Gaus-

sian kernels.

Remark 9 (Quadratic kernel). For quadratic kernel defined in (4.6), it can be shown that the

population MMD is given by MMD
2
(µ, ε;Kz) = zTA(µ, ε)z + zTT (µ, ε), where A(µ, ε)

is a RD↘D-valued mapping such that

(A(µ, ε))
(s1,s2)

= Ex,x↓↓µ[ks1(x
(s1), x≃(s1)

)ks2(x
(s2), x≃(s2)

)]

+ Ey,y↓↓ε [ks1(y
(s1), y≃(s1)

)ks2(y
(s2), y≃(s2)

)]

↗ 2Ex↓µ,y↓ε [ks1(x
(s1), y(s1)

)ks2(x
(s2), y(s2)

)],

and T (µ, ε) is a RD-valued mapping such that

(T (µ, ε))
(s)

= 2cMMD
2
(Proj

s#µ,Proj
s#ε; ks).

Given two multivariate distributions, the quadratic MMD aims to find a direction z to

distinguish the difference in each coordinate and the correlation between the two coordinates

the most. Compared with the linear MMD, which only identifies the difference in each

coordinate, the quadratic MMD is a more flexible choice. However, it can be shown that

the objective in (4.12) with the quadratic kernel is a 4-th order non-concave monomial with

respect to z, which is computationally intractable to optimize. In practical experiments, we

use the heuristic algorithm in Algorithm 5 to obtain a reasonably high-quality solution.

Remark 10 (Gaussian kernel). One can also re-write the population testing statistic for the

Gaussian kernel defined in (4.7). For notational simplicity, let K(x, y) = exp


↗⇐x↑y⇐2

2
2ς2



be a standard Gaussian kernel with d-dimensional data, and define z#ε as a d-dimensional

distribution such that

z#ε =

z(s)x(s)


s↔supp(z)

, where x ⇑ ε.
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With these notations, it can be shown that the population MMD statistic becomes

MMD
2
(µ, ε;Kz) = MMD

2
(z#µ, z#ε;K).

Since the kernel K satisfies the universal property [220], our proposed Gaussian kernel

distinguishes the difference between µ and ε as long as there exists a d-size sub-group

of coordinates of µ and ε that cause the difference. Compared with linear and quadratic

kernels, the Gaussian kernel is a more flexible choice. Unfortunately, the computation

burden of the Gaussian kernel is heavier than the other two simple kernels because the

objective in (4.12) can be viewed as a non-concave ↓-degree monomial with respect to

z, whereas the second-order approximation scheme in (4.15) may not provide reliable

performance for optimization.

4.4.2 Tackling the challenge of solving (STRS)

There are two challenges in solving (STRS) in particular for large-scale problems. First,

since the objective function is non-concave in z, it is difficult to develop exact algorithms

directly for solving (STRS). Instead, we provide a mixed-integer convex programming

reformulation, which motivates us to develop exact algorithms in Section 4.4.2. Second, this

problem is NP-hard even if the coefficient vector a = 0, as pointed out in [213]. When the

problem is large-scale, we provide approximation algorithms with provable performance

guarantees.

Exact mixed-integer SDP (MISDP) reformulation

We first provide an exact MISDP reformulation of (STRS). When the coefficient vector a =

0, similar reformulation results have been developed in the sparse PCA literature [30, 194].

However, such a reformulation for a ⇐= 0 is new in the literature. For notational simplicity,
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we define the following block matrix of size (D + 1) ⇓ (D + 1):

Ã =




0

1
2a

T

1
2a A



 .

Theorem 13 (MISDP Reformulation of (STRS)). Problem (STRS) can be equivalently

formulated as the following MISDP

max
Z↔S+

D+1,q↔Q
⇔Ã, Z↖ (4.16a)

s.t. Z(i,i) ∝ q(i), i ↑ [D], (4.16b)

Z(0,0)
= 1, Tr(Z) = 2, (4.16c)

where the set

Q =




q ↑ FD
:

∑

k↔[D]

q(k) ∝ d




 , (4.17)

and we assume the indices of Z, Ã ↑ S+
D+1 are both over [0 : D] ⇓ [0 : D]. The continuous

relaxation value of (4.16) equals wrel = maxz: ⇐z⇐2=1

{
zTAz + zTt

}
.

The proof idea of Theorem 13 is to express the problem (STRS) as a rank-1 constrained

SDP problem. Leveraging well-known results on rank-constrained optimization (see, e.g.,

[99, 195, 251]), one can remove the rank constraint without changing the optimal value

of the original SDP problem. Although (4.16) is equivalent to (STRS), the fact that its

continuous relaxation value is equal to wrel suggests that it may be a weak formulation.

Inspired from [30, 194], we propose the additional two valid inequalities to strengthen the

formulation (4.16) in Corollary 2.

Corollary 2 (Stronger MISDP Reformulation of (STRS)). The problem (STRS) reduces to
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the following stronger MISDP formulation:

max
Z↔S+

D+1,q↔Q
⇔Ã, Z↖ (4.18a)

s.t. (4.16c),
∑

j↔[D]

(Z(i,j)
)
2 ∝ Z(i,i)q(i),




∑

j↔[D]

|Z(i,j)|




2

∝ dZ(i,i)q(i), ↙i ↑ [D].

(4.18b)

It is worth noting that two distinct references [30, 194] have independently introduced

two valid inequalities to enhance the performance of solving the sparse PCA problem, which

is a special instance of (STRS) for a = 0. However, one of the valid inequalities in (4.18b)

proposed in [30] is dominated by a valid inequality proposed in [194]. In contrast, the other

valid inequality has been proposed simultaneously in these two references. This motivates

us to incorporate two valid inequalities from [194] into our formulation, as outlined in

Corollary 2. On the one hand, the resulting formulation (4.18) can be directly solved

via some exact MISDP solvers such as YALMIP [205]. On the other hand, it enables

us to develop a customized, exact algorithm to solve this formulation based on Benders

decomposition since the binary vector q can be separated from other decision variables.

To develop the exact algorithm, we first reformulate the problem (4.18) as a max-min

saddle point problem so that it can be solved based on the outer approximation technique [51,

114].

Theorem 14 (Saddle Point Reformulation of (4.18)). Problem (4.18) shares the same

optimal value as the following problem:

max
q↔Q

{
f(q) ↭ max

Z↔S+
D+1

{
⇔Ã, Z↖ : s.t. (4.18b)

}}
. (4.19)

Here the function f(q) is concave in q over the domain Q := conv(Q), and equivalently, is
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Algorithm 6 Exact Algorithm for solving (STRS)
1: Input: Max iterations imax, initial guess q1, tolerance ϖ.
2: for i = 1, . . . , imax ↗ 1 do
3: Compute qi+1 as the optimal solution from

max
q↔Q


f̄ i

(q) ↭ min
1⇒j⇒i

f̄(q; qj)



4: Compute f(qi+1) and gqi+1 ↑ 3f(qi+1)

5: Break if f(qi+1) ↗ f̄ i
(qi+1) < ϖ

6: end for
7: Return qimax

the optimal value to the following problem:

min
↽,↽0,ε1,ε2,$,⇀,µ,W1,W2

40 + 24 + qT


d

2
(ε1 ↗ ε2) +

1

2
(µ ↗ diag(’))



s.t.




↗40

1
2t

T

1
2t A ↗ 4ID + W1 ↗ W2 + ’ +

1
2 diag(ε1 + ε2)



 △ 0,

W1 + W2 ↗ diag(↽) ∝ 0,
∑

j

(’
(i,j)

)
2 ∝ (µ(i)

)
2, (↽(i)

)
2
+ (ε(i)

2 )
2 ∝ (ε(i)

1 )
2, i ↑ [D],

ε1, ↽, µ ↑ RD

+ , W1,W2 ↑ RD↘D

+ ,

4,40 ↑ R, ε2 ↑ RD,’ ↑ RD↘D.

(4.20)

For fixed q, the sup-gradient of f with respect to q can be computed as

3f(q) =
d

2
(ε⇑

1 ↗ ε⇑
2) +

1

2
(µ⇑ ↗ diag(’

⇑
)),

where (ε⇑
1 , ε

⇑
2 , µ

⇑,’⇑
) is an optimal solution to the optimization problem above.

By Theorem 14, we find that given a reference direction q̂, f(q) ∝ f̄(q; q̂) ↭ f(q̂) +

gT
q̂
(q ↗ q̂), where gq̂ is a sup-gradient of f at q̂. Based on this observation, we use the

common outer-approximation technique, which is widely used for general mixed-integer
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nonlinear programs [51, 114], to solve the problem: at iterations i = 1, 2, . . . , imax ↗ 1, we

maximize and refine a piecewise linear upper-bound of f(q): f̄ i
(q) = min1⇒j⇒i f̄(q; qj).

The algorithm is summarized in Algorithm 6.

By the reference [114], it can be shown that this algorithm yields a non-increasing

sequence of overestimators {f̄ i
(q)}imax

i=1 , which converge to the optimal value of f(q) within

a finite number of iterations imax ∝


D

1


+ · · · +


D

d


.

Convex relaxation algorithm

Inspired by Theorem 14, a natural idea of approximately solving the problem (4.16) is to

consider the following problem, in which we replace the nonconvex constraint q ↑ Q by a

set of linear constraints, which forms its convex hull:

max
q↔Q

f(q), where Q = conv(Q) =

{
q ↑ [0, 1]

D
:

∑

i

q(i) ∝ d

}
. (4.21)

Since the problem (4.21) is a convex program, it can be solved in polynomial time. Besides,

one can obtain a high-quality feasible solution to the problem (4.16), using a greedy rounding

scheme: We first solve (4.21) to obtain its optimal solution q̃, and then project it onto Q to

obtain q. Next, we solve the problem (4.16) by fixing the variable q and optimizing Z only.

In the following theorem, we provide the approximation ratio regarding the SDP formu-

lation above. The proof adopts similar techniques as in [194, Theorem 5], but we extend the

analysis for inhomogeneous quadratic maximization formulation.

Theorem 15 (Approximation Gap for Convex Relaxation). Denote by optval(4.21) and

optval(4.16) the optimal values of problem (4.21) and (4.16), respectively. Then, it holds

that

optval(4.16) ∝ optval(4.21)

∝ →a→2 + min


D/d · optval(4.16), d · optval(4.16) ↗ min

k

|a(k)|

.
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Despite the convexity of problem (4.21), it is challenging to solve, especially for high-

dimensional scenarios. References [30, 194] solved a special case of problem (4.21) when

a = 0 based on the interior point method (see, e.g., [5, 58, 295]). Unfortunately, since

the constraint set of (4.21) involves the intersection of a semidefinite cone and a large

number of second-order cones, re-writing it as a standard conic program and using off-

the-shelf solvers to solve this problem spends lots of time. The work [211] designed a

novel variable-splitting technique and proposed a first-order Alternating Direction Method

of Multipliers [57] (ADMM) algorithm to solve a special convex relaxation of sparse

PCA. Unlike this reference that only considers the simplest convex relaxation of sparse

PCA without adding strong inequalities, our problem (4.21) has considerably complicated

constraints.

Inspired by Ma [211], we use a similar variable-splitting technique to split the second-

order conic constraints and all the other constraints in two blocks of variables and then

propose an ADMM algorithm to optimize the augmented Lagrangian function. The advan-

tage is that each subproblem in iteration update involves only second-order conic constraints

or other constraints that are easy to deal with, which results in considerably fast com-

putational speed. We provide a detailed implementation of the proposed algorithm for

solving (4.21) in Appendix C.1.

Truncation algorithms with tighter approximation gap

Unfortunately, the SDP relaxation formulation is still challenging to solve for extremely high-

dimension scenarios, which motivates us to develop the following computationally cheap

truncation approximation algorithms. Compared with the approximation ratio of relaxed

SDP formulation in Theorem 15 (i.e., min(D/d, d) + O(1)), the ratio for our proposed

algorithm is tighter (i.e., min(D/d,
▽
d) + O(1)). First, we introduce the definition of a

normalized sparse truncation operator.

Definition 10 (Normalized Sparse Truncation). For a vector z ↑ RD and an integer d ↑ [D],
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we say z̄ is a d-sparse truncation of z if

z̄(i)
=






z(i), if |z(i)| is one of the d largest (in absolute value) entries in z

0, otherwise.

Besides, the vector ẑ = z̄/→z̄→2 is said to be the normalized d-sparse truncation of z.

Now, we introduce the following two truncation algorithms:

Truncation Algorithm (I): Let A(:,i) be the i-th column of A for i ↑ [D], and denote by ẑi

the normalized d-sparse truncation of A(:,i). Then return the estimated optimal solution as

the best over all ẑi’s and ei’s for i ↑ [D], where ei denotes the i-th standard basis vector.

Truncation Algorithm (II): Relax the ϱ0-norm constraint in (STRS) and solve the trust

region problem maxz: ⇐z⇐2⇒1 {zTAz + zTa} to obtain the optimal primal solution v. Then,

return the estimated optimal solution z as the normalized d-sparse truncation of v.

We summarize the approximation ratios of these two truncation algorithms in The-

orem 16. Its proof technique is adopted from [65]. The difference is that the authors

consider the approximation ratio under the case a = 0, while we adopt the structure of in-

homogeneous quadratic function maximization to extend the case for the general coefficient

vector a.

Theorem 16 (Approximation Gap for Truncation Algorithm). (I) Truncation Algorithm

(I) returns a feasible solution of (STRS) with objective value V(I) such that

optval(STRS) ≃ V(I) ≃ 1▽
d

optval(STRS) ↗ 2→a→(d+1).

(II) Truncation Algorithm (II) returns a feasible solution of (STRS) with objective value

V(II) such that

optval(STRS) ≃ V(II) ≃ d

D
· optval(STRS) ↗ d

D
· →a→2 ↗

(
1 +


d

D

)
· →a→(d).
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We return the best over the output from Truncation Algorithm (I) and (II) as the estimated

optimal solution. By Theorem 16, we find the returned solution approximates the optimal

solution up to approximation ratio min(D/d,
▽
d) + O(1). It has been shown in Chan et

al. [65] that it is NP-hard to implement any algorithm with constant approximation ratio.

Therefore, it is of research interest to explore polynomial-time approximation algorithms

with approximation ratio that has milder dependence on D and d. Instead of trying this

direction, in the next subsection, we propose another approximation algorithm such that,

though NP-hard to solve, it achieves a higher approximation ratio.

Approximation algorithm via convex integer programming

In this part, we propose an approximation algorithm based on convex integer programming.

We first consider the following ϱ1-norm relaxation of the problem (STRS), which plays a

key role in developing our algorithm:

max

{
zTAz + zTa : →z→2 ∝ 1, →z→1 ∝

▽
d
}
. (4.22)

This problem is a relaxation of problem (STRS) because constraints →z→2 ∝ 1, →z→0 ∝ d

imply →z→1 ∝
▽
d. Following the similar proof technique as in [100, Theorem 1], we show

that solving this new problem results in a constant approximation ratio. The difference is

that the authors therein only consider the special case of (STRS) with a = 0, while we

extend their analysis for general inhomogeneous quadratic objective functions.

Theorem 17 (Approximation Gap for ϱ1-Norm Relaxation). Let 2 = 1+
√
d/(d + 1). Then

we have that optval(STRS) ∝ optval(4.22) ∝ 22optval(STRS).

Although the problem (4.22) is a relaxation of (STRS), it is still intractable to solve due

to the non-concavity of the objective function (recall that A ⊤ 0). We adopt techniques

from [100, Section 2.2] to derive a further convex integer program that serves as a further

relaxation of the relaxation problem (4.22). Before proceeding, we define the following
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notations. For i ↑ [D], denote by (4i, vi) the i-th eigen-pair of the matrix A, denote

6i := max{zTvi : →z→2 ∝ 1, →z→1 ∝
▽
d}, and let 5[↑N :N ]

i
be the set of partition points of

the domain [↗6i, 6i], i.e., 5j

i
=

j

N
6i, j = ↗N, . . . , N. Let 40 ↑ R+ be a fixed number

such that 40 ∝ optval(STRS).

Proposition 2 (Convex Integer Programming Relaxation of (4.22)). Consider the convex

integer program:

Maximize 40 +
∑

i: ↽i>↽0
(4i ↗ 40)◁i ↗ s (4.23a)

that is subject to the following constraints:






gi = zTvi,

|gi| ∝ ϱi,
i ↑ [D],






∑

i→[D]

yi ∝
▽

d,

yi ≃
z(i)

 , i ↑ [D],






gi =

∑

j→[↑N,N ]

ςj
i φj

i ,

↼i =

∑

j→[↑N,N ]

(ςj
i )

2φj
i ,

φ[↑N,N ]
i ↑ SOS-2,

i ↑ {i : ωi > ω0},






∑

i→[D]

(z(i)
)
2 ∝ 1,

∑

i: ϑi>ϑ0

(
↼i ↗ ϱ2

i

4N2

)
+

∑

i: ϑi↓ϑ0

g2
i ∝ 1,

∑

i: ϑi<ϑ0

↗(ωi ↗ ω0)g
2
i ↗ zTa ∝ s,

with SOS-2 denoting the special ordered set of type-2 [23], and involves the following

decision variables:

{gi}D

i=1 ↑ RD, {◁i}i↔{i: ↽i>↽0} ↑ R|{i: ↽i>↽0}|,

{ςj

i
}i↔{i: ↽i>↽0},j↔[↑N :N ] ↑ R(2N+1)|{i: ↽i>↽0}|, {yi}D

i=1 ↑ RD, s ↑ R, z ↑ RD.

This problem is a relaxation of the ϱ1-norm relaxed problem (4.22). Besides, it holds that

optval(STRS) ∝ optval(4.23) ∝ 22optval(STRS) +
1

4N2

∑
i: ↽i>↽0

(4i ↗ 40)62
i
, where the

constant 2 > 0 is defined in Theorem 17.

The convex integer program (4.23) seems appealing because it only requires solving
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O((2N)
|{i: ↽i>↽0}|

) number of finite-dimensional convex optimization problems to obtain

its optimal solution. In practice, the choice of 40 influences the computational traceability

of problem (4.23), and the choice of N influences the quality of the approximation. We

follow the heuristic described in [100, Section 4.3.1] to select 40 and N . After solving the

problem (4.23), one obtains the decision variable z that may not be feasible in Z . Then, one

can use the greedy rounding scheme to project z onto Z to obtain a primal feasible solution.

Finally, we acknowledge a recent concurrent study [224] that employed ϱ1-norm relax-

ation as a heuristic for MMD-based variable selection. In contrast to this literature, which

presented a heuristic approach, our work is the first study that provides both ϱ1 relaxation

methodology and its theoretical performance guarantees.

4.5 Statistical Properties

In this section, we provide statistical performance guarantees for the variance-regularized

MMD statistics in (4.12), specialized for our proposed kernels in (4.5), (4.6), and (4.7). In

addition, we develop the guarantees for a generic kernel in Appendix C.4.

We first show that empirical estimators S2
(x

n,yn
;Kz) and ϑ̂2

H1
(x

n,yn
;Kz) uniformly

converge to their population version as the sample size n increases. Such a property is useful

for showing the testing consistency and the rate of testing power of our MMD framework.

Proposition 3 (Non-asymptotic Concentration Properties). For Gaussian kernel in (4.7),

we assume the sample space ! ̸ {x ↑ RD
: →x→→ ∝ R} for some constant R > 0. With

probability at least 1 ↗ φ, (i) the bias approximation error can be bounded as

sup
z↔Z

S2
(xn,yn

; Kz) ↗ MMD
2
(µ, ↽; Kz)

 ∝ ε1
n,φ

=






Õ(dn↑1/2
), for linear kernel,

Õ(d3/2n↑1/2
), for quadratic kernel,

Õ(d1/2n↑1/2
), for Gaussian kernel,

where Õ(·) hides a multiplicative factor (log n+ log(D/d) + log
1
φ
)
1/2 and other constants

that are independent to parameters D, d, n. (ii) and the variance approximation error can
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be bounded as

sup
z↔Z

ϑ̂2
H1

(x
n,yn

;Kz) ↗ Exn↓µ,yn↓ε [ϑ̂
2
H1

(x
n,yn

;Kz)]

 ∝ ϖ2
n,φ

where ϖ2
n,φ

shares the same order of decaying rate as ϖ1
n,φ

.

Based on the concentration properties above, we are ready to derive the asymptotic

distribution of the testing statistic. Furthermore, we impose specific assumptions on data

distributions when defining linear, quadratic, or Gaussian kernels. The technical assumption

regarding the Gaussian kernel is the most lenient, followed by the quadratic kernel, which is

less lenient, whereas the assumption for the linear kernel is the most restrictive, reflecting a

gradual decrease in flexibility across these kernels.

Assumption 3 (Structure of Data). Assume the following conditions hold:

(I) For linear kernel, there exists s⇑ ↑ [D] such that Proj
s#µ ⇐= Proj

s#ε.

(II) For quadratic kernel, there exists s⇑ ↑ [D] such that

Proj
s#µ ⇐= Proj

s#ε or (A(µ, ε))
(s↔

,s
↔) > 0

(III) For Gaussian kernel, the sample space ! ̸ {x ↑ RD
: →x→→ ∝ R} for some constant

R > 0, and there exists S ̸ [D] with |S| ∝ d such that Proj
S#µ ⇐= Proj

S#ε.

Proposition 4 (Asymptotic Distribution of Testing Statistic). Under Assumption 3, suppose

the hyper-parameter 4 > 0 is properly selected (see its detailed range in Proposition 15), and

let ẑTr be the obtained sparse coefficient by solving (4.12) from training dataset (x
Tr,yTr

)

with |xTr| = |yTr| = nTr, TnTe be the testing statistic evaluated on testing dataset (x
Te,yTe

)

with |xTe| = |yTe| = nTe. Then, it holds that
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(I) Under alternative hypothesis H1 : µ ⇐= ε, for training sample size

nTr =






!

d2

log(D/d)

, for linear kernel,

!

d4

log(D/d)

, for quadratic kernel,

! (d log(D/d)) , for Gaussian kernel,

(4.24)

it holds that E[TnTe | H1] > 0 with high probability.

(II) Under null hypothesis H0 : µ = ε, it holds that nTeTn ⇒
∑

i
ϑi(Z2

i
↗ 2), with ϑi

denoting the eigenvalues of the µ-covariance operator of the centered kernel; under

alternative hypothesis H1 : µ ⇐= ε, it holds that
▽
nTe(Tn ↗ E[TnTe | H1]) ⇒

N (0, ϑ2
H1

(µ, ε;KẑTr)).

It is worth mentioning that the order of training sample size in (4.24) depends only on

factors poly(d) and log(D/d), indicating the statistical guarantees of our proposed variable

selection framework do not suffer from the curse of dimensionality. Based on Proposition 4,

we finally present the consistency and rate of testing power of our framework.

Theorem 18 (Consistency). Under the same assumption as in Proposition 4, specify the

training sample size nTr as in (4.24). Let ω ↑ (0, 1) denote the level of two-sample test

and take 0 as the (1 ↗ ω)-quantile of the limiting distribution
∑

i
ϑi(Z2

i
↗ 2) defined in

Proposition 4(II), and let the threshold of the test be tthres :=
↼

nTe
. As a consequence,

P

TnTe > tthres | H0


⇒ ω and P


TnTe ∝ tthres | H1


⇒ 0.

Theorem 19 (Testing Power). Under the same assumption as in Proposition 4, and the same

choices of training sample size and threshold as in Theorem 18, we additionally assume

E[|T1|3 | H1] < ↓. When the testing sample size nTe is sufficiently large so that

tthres +
&

↑1
(1 ↗ n↑1/2

Te )
▽
nTe

=
0

nTe
+

√
ln

nTe
2ϑ

↗ ln ln
nTe
2ϑ

nTe
(1 + o(1))

is sufficiently small, where &(x) =
1↖
2ϑ

∫
x

↑→ e↑t
2
/2

dt denotes the error function, it holds
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that

P

TnTe > tthres | H0


∝ ω + O(n↑1/2

Te ) and P

TnTe ∝ tthres | H1


∝ O(n↑1/2

Te ),

where O(·) hides constant related to parameters E[|T1|3 | H1] and

ϑ2
H1

:= Exn↓µ,yn↓ε [ϑ̂
2
H1

(x
n,yn

;KẑTr)].

Theorem 19 indicates that under alternative hypothesis µ ⇐= ε, as long as the testing

sample size nTe is sufficiently large, and the training sample size is chosen according to

(4.24), the testing power approaches 1 with error rate O(n↑1/2
Te ).

4.6 Simulated numerical examples

We first consider synthesized data sets to examine the performance of our proposed variable

selection framework. We consider the following four cases:

(I) (Gaussian Mean Shift): Data distribution µ = N (0,$) with the covariance matrix

$
(s1,s2)

= 2|s1↑s2| for some correlation level 2 ↑ (0, 1). Data distribution ε = N (µ,$)

with the mean vector µ(s)
= 0/s, ↙s ↑ [dtrue] for some scalar 0 > 0 and otherwise

µ(s)
= 0.

(II) (Gaussian Covariance Shift): Data distribution µ = N (0,$) with $ specified the same

as in Part (I), and ε = N (0, $̃), with $̃
(s1,s2)

= 0$
(s1,s2), ↙s1, s2 ↑ [dtrue] for some

scalar 0 > 1 and otherwise $̃
(s1,s2)

= $
(s1,s2).

(III) (Gaussian versus Laplacian): Data distribution µ = N (0, ID). The first dtrue coordi-

nates of ε are independent Laplace distributions with zero mean and standard deviation

0.8. The remaining coordinates of εY are independent Gaussian distributions N (0, 1).

(IV) (Gaussian versus Gaussian Mixture): Data distribution µ = N (0, ID). The first d
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coordinates of ε are Gaussian mixture distribution 1
2N (↗µ, Idtrue) +

1
2N (µ, Idtrue)

while the remaining coordinates are independent Gaussian distributions N (0, 1). Here

the mean vector µ(s)
= 0/s, ↙s ↑ [dtrue] for some scalar 0 > 0.

Unless otherwise specified, we take hyper-parameters in Case (I) as 0 = 1, 2 = 0.5, in

Case (II) as 0 = 2, 2 = 0.5, and in Case (IV) as 0 = 2. We quantify the performance in

terms of hypothesis testing metrics rather than the prediction accuracy metrics used in the

literature. Besides, we also measure the quality of variable selection using false-discovery

proportion (FDP) and the non-discovery proportion (NDP) defined in [16]:

FDP(I) =
|I \ I⇑|

|I| , NDP(I) =
|I⇑ \ I|

|I⇑| , (4.25)

where I⇑ denotes the ground truth feature set and I denotes the set obtained by variable

selection algorithms. The smaller the FDP or NDP is, the better performance the obtained

feature set has.

For simplicity of implementation, we chose the bandwidth hyper-parameter 0 2
s

for the

kernel ks(x, y) using the median heuristic, i.e., we specify it as the median among all

pairwise distances for data points in the s-th coordinate. Similarly, we take bandwidth ϑ2

of Gaussian kernel as the median among all pairwise distances for data points (over all

coordinates), and bandwidth of quadratic kernel as c =
▽
ϑ2. Users are also recommended

to tune those hyper-parameters based on the cross-validation technique, which tends to

return near-optimal hyper-parameter choices for large sample sizes.

4.6.1 Numerical performance for solving (STRS)

We first examine the numerical performance of various approximation algorithms for solving

(STRS), by taking the MMD optimization with linear kernel (see the reformulation in

Section 4.4.1) as a numerical example. For each of the four synthetic datasets, we try various
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Figure 4.1: Box plots on the performance of various approximation algorithms for solving
(STRS). The x-axis corresponds to various choices of (N,D, d), and y-axis corresponds to
the estimated objective value of (STRS). Plots from top to bottom correspond to four types
of synthetic datasets.

choices of parameters (N,D, d) from the set

{(1e3, 20, 5), (1e3, 40, 10), (1e3, 60, 6), (1e3, 80, 8), (1e3, 100, 10)}.

We also specify different hyper-parameters 4 ↑ {0.8, 0.7, 0.6, 0.5} when using these four

different datasets, respectively. Since those approximation algorithms may return a solution

that is infeasible to the constraint Z , we estimate the corresponding feasible solution by

performing the normalized sparse truncation (see Definition 10).

Figure 4.1 reports the objective value obtained from the feasible solution based on those

approximation algorithms, where the error bars are generated using 100 independent trials.

The larger the objective value is, the better performance the designed algorithm has. From

the plot, we can see that semidefinite relaxation and convex integer programming algorithms
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perform nearly optimally compared with the ground truth. In contrast, the performance

truncation algorithm is slightly worse compared with those approaches. Table 4.1 reports

the corresponding computation time of those approximation algorithms, from which we

identify that the truncation algorithm has the fastest computational speed. In contrast, SDP

relaxation has the slowest speed. Since the convex integer programming algorithm has

satisfactory performance with relatively fast computational speed, we recommend using this

approximation algorithm when solving (STRS).

Table 4.1: Averaged computational time of various approximation algorithms for solving
(STRS).

Data Type
Parameters Averaged Computational Time(s) of Approximation Algorithms

n D d Truncation Algorithm SDP Relaxation Convex Integer Programming
Gaussian 1e3 20 5 2.13e-3 1.18 1.25e-1

Mean Shift 1e3 40 10 6.08e-3 2.55 2.29e-1
1e3 60 6 1.30e-2 4.80 4.47e-1
1e3 80 8 3.08e-2 6.19 6.87e-1
1e3 100 10 6.87e-2 9.47 8.77e-1

Gaussian 1e3 20 5 2.33e-3 1.18 1.24e-1
Covariance Shift 1e3 40 10 5.86e-3 2.57 3.11e-1

1e3 60 6 1.32e-2 4.80 4.02e-1
1e3 80 8 3.07e-2 6.46 9.38e-1
1e3 100 10 6.76e-2 9.73 1.23

Gaussian 1e3 20 5 2.28e-3 1.29 1.69e-1
versus Laplacian 1e3 40 10 6.39e-3 2.85 5.65e-1

1e3 60 6 1.44e-2 5.20 5.14e-1
1e3 80 8 3.31e-2 6.79 1.15
1e3 100 10 6.95e-2 1.02e+1 2.10

Gaussian 1e3 20 5 2.17e-3 1.16 1.17e-1
versus 1e3 40 10 6.38e-3 2.57 2.14e-1

Gaussian Mixture 1e3 60 6 1.42e-2 4.72 3.94e-1
1e3 80 8 3.31e-2 6.07 5.91e-1
1e3 100 10 7.25e-2 9.44 8.67e-1

83



4.6.2 Impact of sample size and data dimension

In this subsection, we compare the performance of variable selection based on the following

approaches: (I) Linear kernel MMD; (II) Quadratic kernel MMD; (III) Gaussian kernel

MMD; (IV) Sparse Logistic Regression: a framework that trains the projection vector with

ϱ0-norm constraint to minimize the logistic loss [33]; and (V) Projected Wasserstein: variable

selection framework using projected Wasserstein distance [228]. For baselines (I)-(III),

we also compare the performance of standard MMD testing without the variable selection

technique. We quantify the performance using the testing power metric with controlled

type-I error ωlevel = 0.05, and take the training/testing sample sizes as nTr = nTe = n.
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Figure 4.2: Testing power of various two-sample tests with different choices of sample
size n. Here we fix parameters D = 100, dtrue = 20, d = 20 and control the type-I error
ωlevel = 0.05. Plots from top to bottom correspond to four different types of synthetic
datasets.

Figure 4.2 reports a numerical study on the impact of sample size n with data dimension

D = 100, number of different variables dtrue = 20 and sparsity level d = 20. The error

bars are generated using 20 independent trials. From these plots, we find that the sparse

logistic regression does not have a competitive performance in general. The explanation

is that a linear classifier is not flexible enough to distinguish the distributions from two
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groups. Following the similar argument from Example 2, one can check the testing statistic

of this baseline always equals zero as long as the mean vectors of two distributions are

the same, which explains why this baseline has nearly zero power for the synthetic dataset

of case (II)-(IV). The testing power for the other two-sample testing methods increases

with respect to the sample size. We can see the variable selection technique improves the

performance of the standard MMD framework. For the first three synthetic datasets, the

linear or quadratic MMD testing with variable selection achieves superior performance than

other baselines. At the same time, for the last example, the projected Wasserstein distance

has the best performance. One possible explanation is that the MMD testing framework may

not be good at detecting distribution changes for Gaussian mixture distributions.

Next, we examine the impact of the data dimension D with fixed n = 50, dtrue = 20, d =

20 in Figure 4.3. We omit the performance of the sparse logistic regression baseline because

it does not achieve satisfactory testing performance as studied before. From those plots,

we find that as the data dimension increases, all methods tend to have decreasing testing

power. However, the decaying rate of MMD testing with the variable selection procedure

seems slower than that of standard MMD testing. For the synthetic dataset of case (I), the

Gaussian kernel has the best performance, while for case (II)-(III), the linear or quadratic

kernel has the best performance. A possible explanation is that one can optimize the linear

kernel with strong performance guarantees, whereas we only use quadratic approximation

heuristics to optimize other types of kernel functions. Since the quadratic approximation of

the objective for the quadratic kernel seems to be tight, it is intuitive to see the performance

of the quadratic kernel is also consistently good.

4.6.3 Results on support recovery

In this subsection, we demonstrate the performance of support recovery for various variable

selection methods, evaluated using the FDP and NDP metrics defined in (4.25). Since our

goal is to assess consistent performance across both metrics, we also compute the average
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Figure 4.3: Testing power of various two-sample tests with different choices of data di-
mension D. Here we fix parameters n = 50, dtrue = 20, d = 20 and control the type-I
error ωlevel = 0.05. Plots from top to bottom correspond to four different types of synthetic
datasets.

of the two as a combined measure. We set the parameters to D = 100 and dtrue = 20,

while varying the sparsity level d = 1, . . . , 20. The sample size n = 150 remains fixed

for Cases (II) and (III), while for Case (I) and Case (IV), we adjust the parameters to

(0, n) = (2, 200) and (0, n) = (4, 200), respectively, to ensure reliable support recovery.

Figure 4.4 presents the numerical results for support recovery: each row corresponds to a

different dataset, from Case (I) to (IV), while each column represents a different performance

measure (FDP, NDP, or their average). Each subplot illustrates the performance of various

variable selection methods at different sparsity levels. From these plots, we observe that

our proposed variable selection framework, whether using a linear or quadratic kernel,

consistently outperforms the alternatives across all four cases, as reflected by the lowest

FDP and NDP values. This finding aligns with the testing power performance discussed

in the previous subsection. Additionally, it is noteworthy that for Cases (II) and (III), our

methods achieve near-optimal performance, as indicated by the nearly horizontal FDP lines

and the almost straight NDP lines.
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Figure 4.4: FDP and NDP metrics obtained by various approaches for different choices of
sparsity level d. The dimension of the problem is D = 100; the true sparsity level is 20.
Figures for different columns correspond to different synthetic datasets. For each subplot,
the dashed gray line denotes the performance for the ideal case where ground truth variables
are selected successfully; the closer to the dashed gray line, the better.

4.7 Real data examples

In this section, we present additional numerical studies with real-world datasets. Specifically,

we demonstrate a visualization of variable selection based on the MNIST handwritten digits
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image dataset in Section 4.7.1. Next, we show that the variable selection approach can help

identify key variables for disease diagnosis in Section 4.7.2.

4.7.1 Visualization on MNIST image datasets

In this part, we demonstrate a visualization of our variable selection framework by taking

the classification of MNIST image datasets, consisting of 28 ⇓ 28 gray-scale handwritten

images for digits from 0 to 9, as toy examples. We take the training sample size nTr = 20

and testing sample size nTe = 5. We pre-process the MNIST images by performing a 2d

convolutional operator using the kernel of size 9 ⇓ 9. The pre-processed samples have

dimension D = 169, and we take the number of selected variables d = 20. We construct

four types of data distributions (µ, ε) for two-sample testing: µ and ε are distributions of

images corresponding to digits 0 and 6, 8 and 9, 3 and 8, or 7 and 9, respectively. We show

the visualization results in Figure 4.5. Specifically, different rows correspond to different

data distributions for two-sample testing. Plots in the left two columns visualize the selected

pixels (highlighted with red square markers) on two different image samples based on our

linear kernel variable selection framework, from which we can see that our proposed method

identifies the difference between two digits correctly. Plots in the third column report the

MMD statistic compared with the empirical distribution under H0 via test-only bootstrap,

where the green circle markers correspond to the bootstrap threshold for rejecting H0 and

red star markers correspond to the testing statistics. From these plots, we find our proposed

framework has satisfactory testing power even with small training and testing sample sizes.

Plots on the fourth column report the visualization of the distribution of the MNIST dataset

after variable selection embedded in 2D generated by tSNE [297], which is estimated based

on 1000 testing samples. In comparison, we plot the estimated witness function (defined in

(4.13)) as a color field over those samples in the fifth column. From those plots, we can see

that the estimated witness function identifies the region of the distribution change for all of

these four two-sample testing tasks.
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Figure 4.5: Different rows correspond to two-sample testing with different MNIST digits.
The first two column plots visualize the selected pixels based on the variable selection
framework. The third column plots visualize the MMD statistic together with the empirical
distribution under H0 that is estimated via bootstrapping (the green circle markers corre-
spond to the bootstrap threshold for rejecting H0, and red star markers correspond to the
testing statistics). The fourth column plots visualize the distribution of MNIST digits after
variable selection embedded in 2D. The fifth column plots visualize the estimated witness
function (defined in (4.13)) for MMD.

4.7.2 Healthcare datasets

Finally, we study the performance of variable selection on a healthcare dataset [313] that

records information for healthy people and Sepsis patients. This dataset consists of D = 39

features from m = 20771 healthy people and n = 2891 Sepsis patients. We take training

samples with sample sizes mTr = 20000, nTr = 2000 and specify the remaining as validation

samples. We quantify the performance of variable selection as the testing power on testing
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samples with sample size mTe = nTe = 100. The testing power is computed based on

randomly selected samples and their associated labels from the validation sample sets, with

a significance level of 0.05. We repeat the testing procedure for 2000 independent trials and

report the average testing power in Table 4.2.
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Figure 4.6: Top 5 variables selected by various approaches in the healthcare dataset.

We report the top 5 features selected by various approaches based on the training samples

in Figure 4.6. From the Table, we can see that methods Quadratic MMD and Linear MMD

perform the best, and the intersection of those selected features are pulse, Bicarbonate, Al-

kaline Phosphatase.

4.8 Conclusion

We studied variable selection for the kernel-based two-sample testing problem, which can be

formulated as mixed-integer programming problems. We developed exact and approximate

algorithms with performance guarantees to solve those formulations. Theoretical properties
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Table 4.2: Averaged testing power for the sepsis prediction at a significance level ω = 0.05

(i.e., the threshold is set such that the Type-I error when the two distributions are the same is
set to 0.05.)

Linear
MMD

Quadratic
MMD

Gaussian
MMD

Logistic
Regression

Projected
Wasserstein

0.835 0.915 0.784 0.771 0.749

for the proposed frameworks are provided. Finally, we validated the power of this approach

in synthetic and real datasets. In the meantime, several interesting research topics are left

for future work. For example, providing theoretical analysis on the optimal choice of kernel

hyper-parameters and support recovery for variable selection is of future research interest.

Additionally, it holds great significance in developing more efficient algorithms for variable

selection when working with different types of kernels.
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CHAPTER 5

SINKHORN DISTRIBUTIONALLY ROBUST OPTIMIZATION

In this chapter, we study distributionally robust optimization (DRO) with Sinkhorn distance—

a variant of Wasserstein distance based on entropic regularization. We derive a convex

programming dual reformulation for general nominal distributions, transport costs, and loss

functions. To solve the dual reformulation, we develop a stochastic mirror descent algorithm

with biased subgradient estimators and derive its computational complexity guarantees.

Finally, we provide numerical examples using synthetic and real data to demonstrate its

superior performance. This work is mainly summarized in [305].

5.1 Introduction

Decision-making problems under uncertainty arise in various fields such as operations

research, machine learning, engineering, and economics. In these scenarios, uncertainty

in the data arises from factors like measurement error, limited sample size, contamination,

anomalies, or model misspecification. Addressing this uncertainty is crucial to obtain

reliable and robust solutions. In recent years, Distributionally Robust Optimization (DRO)

has emerged as a promising data-driven approach to tackle these challenges. DRO aims

to find a minimax robust optimal decision that minimizes the expected loss under the

most adverse distribution within a predefined set of relevant distributions, known as an

ambiguity set. This approach provides a principled framework to handle uncertainty and

obtain solutions that are resilient to distributional variations. It goes beyond the traditional

sample average approximation (SAA) method used in stochastic programming and offers

improved out-of-sample performance. For a comprehensive overview of DRO, we refer

interested readers to the recent survey by [183].

At the core of distributionally robust optimization lies the crucial task of selecting an

92



appropriate ambiguity set. An ambiguity set should strike a balance between computational

efficiency and practical interpretability while being rich enough to encompass relevant

distributions and avoiding unnecessary ones that may lead to overly conservative decisions.

In the literature, various formulations of DRO have been proposed, among which the

ambiguity set based on Wasserstein distance has gained significant attention in recent years

[44, 125, 226, 319]. The Wasserstein distance incorporates the geometry of the sample space,

making it suitable for comparing distributions with non-overlapping supports and hedging

against data perturbations [125]. The Wasserstein ambiguity set has received substantial

theoretical attention, with provable performance guarantees [43, 45, 46, 120, 274]. Empirical

success has also been demonstrated across a wide range of applications, including operations

research [40, 78, 237, 284, 285], machine learning [41, 69, 209, 236, 275], stochastic control

[311, 327, 328], and more.

However, the current Wasserstein DRO framework has its limitations. First, the computa-

tional efficiency of Wasserstein DRO is achieved under somewhat stringent conditions, as its

dual formulation involves a subproblem that requires the global supremum of some regular-

ized loss function over the sample space. Let min⇁↔% maxP↔M Ez↓P[f⇁(z)] denote a typical

Wasserstein DRO formulation, where the loss function f⇁(z) is convex in 6 belonging to a

closed and convex feasible region (, and the ambiguity set M is centered around a nominal

distribution P̂ and contains distributions supported on a space Z . Table 5.1 summarizes the

known cases where solving Wasserstein DRO is computationally efficient. One general

approach to solving it is to use a finite and discrete grid of scenarios to approximate the

entire sample space. This involves solving the formulation restricted to the approximated

sample space [72, 203, 249], but suffers from the curse of dimensionality. Simplified convex

reformulations are known when the loss function can be expressed as a pointwise maximum

of finitely many concave functions [111, 125, 273], or when the loss is the generalized

linear model [272, 273, 275, 332]. In addition, efficient first-order algorithms have been

developed for Wasserstein DRO with strongly convex transport cost, smooth loss functions,
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and sufficiently small radius (or equivalently, sufficiently large Lagrangian multiplier) so

that the involved subproblem becomes strongly convex [47, 286]. However, beyond these

conditions on the loss function and the transport cost, solving Wasserstein DRO becomes

a computationally challenging task. Second, from a modeling perspective, in data-driven

Wasserstein DRO, where the nominal distribution is finitely supported (usually the empirical

distribution), the worst-case distribution is shown to be a discrete distribution [125] (which

is unique when the regularized loss function has a unique maximizer). This is the case even

though the underlying true distribution in many practical applications may be continuous.

Consequently, concerns arise regarding whether Wasserstein DRO hedges the right family

of distributions and whether it induces overly conservative solutions.

Table 5.1: Known cases of Wasserstein DRO where it is computationally efficient to solve

References Loss function fϖ(z) Transport cost Nominal distribution P̂ Support Z

[72, 203, 249] General General General Discrete and finite set

[111, 125,
273]

Piecewise concave
in z

General Empirical distribution General

[272, 273,
275, 332]

Generalized linear
model in (z, ϱ)

General General Whole Euclidean space1

[47, 286] z ∃⇒ fϖ(z) ↗ ω↔c(x, z)

is strongly concave2
Strongly convex

function3 General General

To address the aforementioned concerns while retaining the advantages of Wasserstein

DRO, we propose a novel approach called Sinkhorn DRO. Sinkhorn DRO leverages the

Sinkhorn distance [92], which hedges against distributions that are close to a given nominal

distribution in Sinkhorn distance. The Sinkhorn distance can be viewed as a smoothed

version of the Wasserstein distance and is defined as the minimum transport cost between

two distributions associated with an optimal transport problem with entropic regularization

(see Definition 11 in Section 5.2). To the best of our knowledge, this paper is the first

to explore the DRO formulation using the Sinkhorn distance. Our work makes several

contributions, which are summarized below:
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(I) We derive a strong duality reformulation for Sinkhorn DRO (Theorem 20) in a highly

general setting, where the loss function, transport cost, nominal distribution, and

probability support are allowed to be arbitrary. The dual objective of Sinkhorn DRO

smooths the dual objective of Wasserstein DRO, where the level of smoothness is

controlled by the entropic regularization parameter (Remark 13).

(II) Our duality proof yields an insightful characterization of the worst-case distribution (Re-

mark 14). Unlike Wasserstein DRO, where the worst-case distribution is typically

discrete and finitely supported, the worst-case distribution in Sinkhorn DRO is ab-

solutely continuous with respect to a pre-specified reference measure, such as the

Lebesgue or counting measure. This characteristic of Sinkhorn DRO highlights its flex-

ibility as a modeling choice and provides a more realistic representation of uncertainty

that better aligns with the underlying true distribution in practical scenarios.

(III) The dual reformulation of Sinkhorn DRO can be viewed as a conditional stochastic op-

timization [154, 156, 160] involving an expectation (with respect to observed samples)

of nonlinear transformation of a conditional expectation (with respect to a conditional

distribution). In our work, we introduce and analyze an efficient stochastic mirror de-

scent algorithm with biased subgradient estimators to solve this problem (Section 5.4).

We quantify the computational cost using the number of generated samples from the

outer expectation and the number of generated samples from the inner expectation.

Our algorithm achieves both complexities of Õ(φ↑2
) for a fixed entropic regularization

parameter ϖ.

(IV) To validate the effectiveness and efficiency of the proposed Sinkhorn DRO model, we

conduct a series of experiments in Section 5.5, including the newsvendor problem,

mean-risk portfolio optimization, and multi-class adversarial classification. Using

synthetic and real datasets, we compare the Sinkhorn DRO model against benchmarks

such as SAA, Wasserstein DRO, and KL-divergence DRO. The results demonstrate
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that the Sinkhorn DRO model consistently outperforms the benchmarks in terms of

out-of-sample performance and computational speed. We also provide a comprehensive

set of experiment studies to show that there exists a large number of parameter choices

under which Sinkhorn DRO outperforms Wasserstein DRO.

Related Literature

In the following, we first compare our work with the four most closely related papers that

appear recently.

Feng and Schlögl [112] studied the Wasserstein DRO formulation with an additional

differential entropy constraint on the optimal transport mapping, which is closely related to

our Sinkhorn DRO formulation. They derived a weak dual formulation and characterized the

worst-case distribution under the assumption that strong duality holds. It is important to note

that such an assumption cannot be taken for granted for the considered infinite-dimensional

problem. Instead, we provided a rigorous proof of strong duality for our Sinkhorn DRO

formulation. Moreover, their results heavily depend on the assumption that the nominal

distribution P̂ is absolutely continuous with respect to the Lebesgue measure. This limits the

applicability of their formulation in data-driven settings where P̂ is discrete. Since the initial

submission of our work, Azizian et al. [12] have presented a duality result similar to ours,

but with different assumptions. Their results apply to more general regularization beyond

entropic regularization, but they assume a continuous loss function and a compact probability

space under the Slater condition. Song et al. [289] have recently explored the application

of Sinkhorn DRO in reinforcement learning. Their duality proof rely on the boundedness

of the loss function and the discreteness of the probability support. These three papers do

not present numerical algorithms to solve the dual formulation. Blanchet and Kang [42,

Section 3.2] solved a log-sum-exp approximation of the Wasserstein DRO dual formulation.

This smooth approximation can be viewed as a special case of the dual reformulation of

our Sinkhorn DRO model. However, their study did not specifically explore the primal
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form of Sinkhorn DRO. Their algorithm employed unbiased subgradient estimators, even

though the second-order moment could be unbounded. The paper did not provide explicit

theoretical convergence guarantees for their algorithm. Additionally, numerical comparisons

detailed in Appendix D.2.1 suggest that our proposed algorithm outperforms theirs in terms

of empirical performance.

Next, we review papers on several related topics.

On DRO models. In the literature on DRO, there are two main approaches to constructing

ambiguity sets. The first approach involves defining ambiguity sets based on descriptive

statistics, such as support information [32], moment conditions [34, 74, 94, 135, 265, 318,

338], shape constraints [253, 298], marginal distributions [2, 105, 117, 232], etc. The second

approach, which has gained popularity in recent years, involves considering distributions

within a pre-specified statistical distance from a nominal distribution. Commonly used sta-

tistical distances in the literature include ↼-divergence [22, 24, 108, 161, 315], Wasserstein

distance [44, 73, 125, 226, 249, 319, 324, 336], and maximum mean discrepancy [290, 337].

Our proposed Sinkhorn DRO can be seen as a variant of the Wasserstein DRO. In the

literature on Wasserstein DRO, researchers have also explored the regularization effects and

statistical inference of the approach. In particular, it has been shown that Wasserstein DRO

is asymptotically equivalent to a statistical learning problem with variation regularization

[43, 122, 274]. When the radius is chosen properly, the worst-case loss of Wasserstein DRO

serves as an upper confidence bound on the true loss [43, 45, 46, 120]. Variants of Wasser-

stein DRO have been proposed by combining it with other information, such as moment

information [301] or marginal distributions [109] to enhance its modeling capabilities.

On Sinkhorn distance. Sinkhorn distance [92] was proposed to improve the computa-

tional complexity of Wasserstein distance, by regularizing the original mass transportation

problem with relative entropy penalty on the transport plan. It has been demonstrated

to be beneficial because of lower computational cost in various applications, including

domain adaptations [85, 87, 88], generative modeling [131, 208, 244, 246], dimension
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reduction [163, 199, 308], etc. In particular, this distance can be computed from its

dual form by optimizing two blocks of decision variables alternatively, which only re-

quires simple matrix-vector products and therefore significantly improves the computation

speed [6, 200, 218, 247]. Such an approach first arises in economics and survey statis-

tics [14, 95, 180, 333], and its convergence analysis is attributed to the mathematician

Sinkhorn [288], which gives the name of Sinkhorn distance. Computing the Sinkhorn

distance between a discrete distribution and an arbitrary distribution can be reformulated

as a stochastic optimization problem with a log-sum-exp–type loss function [247, Sec-

tion 5.4]. For Sinkhorn DRO, the dual objective takes the form of an expectation involving

the logarithm of a conditional expectation of an exponential function. When the inner

expectation is over a discrete distribution, the problem retains a similar structure and can

be effectively addressed using standard stochastic optimization techniques. In the case of

general (non-discrete) distributions, the formulation becomes more challenging to solve,

primarily due to the difficulty of obtaining unbiased (sub)gradient estimators.

On algorithms for solving DRO models. In the introduction, we have elaborated on

the literature that proposes efficient optimization algorithms for solving the Wasserstein

DRO dual formulation [47, 72, 111, 125, 203, 272, 273, 275, 286, 332, 336], in which the

computational efficiency is limited to a certain class of loss functions, transport costs, and

nominal distributions. To solve the ↼-divergence DRO, one common approach is to employ

sample average approximation (SAA) to approximate the dual formulation. However, SAA

requires storing the entire set of samples, making it inefficient in terms of storage usage.

An alternative approach is to use first-order stochastic subgradient algorithms, which are

more storage-efficient. These algorithms have the advantage of complexity that can be

independent of the sample size of the nominal distribution [191, 231, 255]. Our derived

dual reformulation of Sinkhorn DRO can be seen as an instance of the CSO problem

[154, 156, 160]. In this context, we have developed stochastic mirror descent algorithms

with biased subgradient oracles. Notably, our proof can be adjusted to show that the proposed
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algorithm achieves near-optimal complexity for general CSO problems with both smooth

and nonsmooth loss functions, marking an improvement over the state-of-the-art [160,

Theorem 3.2] that is sub-optimal for nonsmooth loss functions.

The rest of the paper is organized as follows. In Section 5.2, we describe the main

formulation for the Sinkhorn DRO model. In Section 5.3, we develop its strong dual

reformulation. In Section 5.4, we propose a first-order optimization algorithm that solves the

reformulation efficiently. We report several numerical results in Section 5.5, and conclude

the paper in Section 5.6. All omitted proofs can be found in Appendices.

5.2 Model Setup

Notation. Assume the logarithm function log is taken with base e. For a positive integer

N , we write [N ] for {1, 2, . . . , N}. For a measurable set Z , denote by M(Z) the set of

measures (not necessarily probability measures) on Z , and P(Z) the set of probability

measures on Z . Given a probability distribution P and a measure µ, we denote suppP

the support of P, and write P ℜ µ if P is absolutely continuous with respect to µ. Given

a measure µ ↑ M(Z) and a measurable variable f : Z ⇒ R, we write Ez↓µ[f(z)] for
∫
f(z) dµ(z). For a given element x, denote by φx the one-point probability distribution

supported on {x}. Denote P ⊥ Q as the product measure of two probability measures P

and Q. Denote by Proj1#5 and Proj2#5 the first and the second marginal distributions of

5, respectively. For a function ω : ( ⇒ R, we say it is 7-strongly convex with respect to

norm → · → if ⇔6≃ ↗ 6,∞ω(6≃
) ↗ ∞ω(6)↖ ≃ 7→6≃ ↗ 6→2, ↙6, 6≃ ↑ (.

We first review the definition of Sinkhorn distance.

Definition 11 (Sinkhorn Distance). Let Z be a measurable set. Consider distributions

P,Q ↑ P(Z), and let µ, ε ↑ M(Z) be two reference measures such that P ℜ µ, Q ℜ ε.

For regularization parameter ϖ ≃ 0, the Sinkhorn distance between two distributions P and
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Q is defined as

Wω(P,Q) = inf
γ↔”(P,Q)

{
E(x,y)↓γ[c(x, y)] + ϖH(5 | µ ⊥ ε)

}
,

where #(P,Q) denotes the set of joint distributions whose first and second marginal dis-

tributions are P and Q respectively, c(x, y) denotes the transport cost, and H(5 | µ ⊥ ε)

denotes the relative entropy of 5 with respect to the product measure µ ⊥ ε:

H(5 | µ ⊥ ε) = E(x,y)↓γ


log

(
d5(x, y)

dµ(x) dε(y)

)
,

where dγ(x,y)
dµ(x) dε(y) stands for the density ratio of 5 with respect to µ⊥ε evaluated at (x, y). ℵ

Remark 11 (Variants of Sinkhorn Distance). Sinkhorn distance in Definition 11 is based on

general reference measures µ and ε. Special forms of distance have been investigated in the

literature. For instance, the entropic regularized optimal transport distance WEnt

ω
(P,Q) [92,

Equation (2)] chooses µ and ε as the Lebesgue measure when the corresponding P and Q

are continuous, or counting measures if P and Q are discrete. For given P and Q, one can

check the two distances above are equivalent up to a constant:

WEnt

ω
(P,Q) = Wω(P,Q) + E(x,y)↓γ


log

(
dµ(x) dε(y)

dx dy

)

= Wω(P,Q) + Ex↓P


log

(
dµ(x)

dx

)
+ Ey↓Q


log

(
dε(y)

dy

)
.

Another variant is to chose µ and ε to be P,Q, respectively [129, Section 2]. A hard-

constrained variant of the relative entropy regularization has been discussed in [92, Defini-

tion 1] and [15]:

WInfo

R
(P,Q) = inf

γ↔”(P,Q)

{
E(X,Y )↓γ[c(X, Y )] : H(5 | P ⊥ Q) ∝ R

}
,

where R ≃ 0 quantifies the upper bound for the relative entropy between distributions 5
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and P ⊥ Q. A

Remark 12 (Choice of Reference Measures). We discuss below our choice of the two

reference measures µ and ε in Definition 11. For the reference measure µ, observe from the

definition of relative entropy and the law of probability, we can see that the regularization

term in Wω(P̂,P) can be written as

H(5 | µ ⊥ ε) = E(x,y)↓γ


log

(
d5(x, y)

dP̂(x) dε(y)

)
+ log

(
P̂(x)

dµ(x)

)

= E(x,y)↓γ


log

(
d5(x, y)

dP̂(x) dε(y)

)
+ E

x↓P̂


log

(
P̂(x)

dµ(x)

)
.

Therefore, any choice of the reference measure µ satisfying P̂ ℜ µ is equivalent up to a

constant. For simplicity, in the sequel we will take µ = P̂. For the reference measure ε,

observe that the worst-case solution P in (Prima!) should satisfy that P ℜ ε since otherwise

the entropic regularization in Definition 11 is undefined. As a consequence, we can choose

ε which the underlying true distribution is absolutely continuous with respect to and is easy

to sample from. For example, if we believe the underlying distribution is continuous, then

we can choose ε to be the Lebesgue measure or Gaussian measure, or if we believe the

underlying distribution is discrete, we can choose ε to be a counting measure. We refer to

[250, Section 3.6] for the construction of a general reference measure. A

In this paper, we study the Sinkhorn DRO model. Given a loss function f , a nominal

distribution P̂ and the Sinkhorn radius 2, the primal form of the worst-case expectation

problem of Sinkhorn DRO is given by

V := sup

P↔Bω,ε(P̂)

Ez↓P[f(z)], (Prima!)

where Bρ,ω(P̂) :=
{
P : Wω(P̂,P) ∝ 2

}
is the Sinkhorn ball of the radius 2 centered at the

nominal distribution P̂. Due to the convex entropic regularization in Wω(P̂,P) [89], the
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Sinkhorn distance Wω(P̂,P) is convex in P, i.e., it holds that Wω(P̂,4P1 + (1 ↗ 4)P2) ∝

4Wω(P̂,P1)+(1↗4)Wω(P̂,P2) for all probability distributions P1 and P2 and all 0 ∝ 4 ∝ 1.

Therefore, the Sinkhorn ball is a convex set, and the problem (Prima!) is an (infinite-

dimensional) convex program.

Our goal for the rest of the paper is to derive the dual reformulation and efficient

algorithms to solve the Sinkhorn DRO model.

5.3 Strong Duality Reformulation

Problem (Prima!) is an infinite-dimensional optimization problem over probability distribu-

tions. To obtain a more tractable form, in this section, we derive a strong duality result for

(Prima!). Our main goal is to derive the strong dual program

VD := inf
↽↙0


42 + 4ϖ E

x↓P̂

[
logEz↓ε

[
e(f(z)↑↽c(x,z))/(↽ω)

]]
, (5.1)

where the dual variable 4 corresponds to the Sinkhorn ball constraint in (Prima!), and by

convention, we define the dual objective evaluated at 4 = 0 as the limit of the objective

values with 4 B 0, which equals the essential supremum of the objective function with

respect to the measure ε. Or equivalently, by defining the constant

2 := 2 + ϖE
x↓P̂

[
logEz↓ε

[
e↑c(x,z)/ω

]]
, (5.2)

and the kernel probability distribution

dQx,ω(z) :=
e↑c(x,z)/ω

Eu↓ε [e↑c(x,u)/ω]
dε(z), (5.3)

we have

VD = inf
↽↙0


42 + 4ϖE

x↓P̂

[
logEz↓Qx,ε

[
ef(z)/(↽ω)

]]
. (Dua!)
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The rest of this section is organized as follows. In Section 5.3.1, we summarize our main

results on the strong duality reformulation of Sinkhorn DRO. Next, we provide detailed

examples in Section 5.3.3 and discussions in Section 5.3.2. In Section 5.3.4, we provide a

proof sketch of our main results.

5.3.1 Main Theorem

To make the above primal (Prima!) and dual (Dua!) problems well-defined, we introduce

the following assumptions on the transport cost c, the reference measure ε, and the loss

function f .

Assumption 4. (I) The cost function c(x, z) is P̂⊥ ε-measurable and satisfies ε{z : 0 ∝

c(x, z) < ↓} = 1 for P̂-almost every x;

(II) Ez↓ε

[
e↑c(x,z)/ω

]
< ↓ for P̂-almost every x;

(III) Z is a measurable space, and the function f : Z ⇒ R ′ {↓} is measurable.

(IV) For every joint distribution 5 on Z ⇓ Z with first marginal distribution P̂, it has a

regular conditional distribution 5x given the value of the first marginal equals x.

Assumption 4(I) implies that 0 ∝ c(x, y) < ↓ for P̂ ⊥ ε-almost every (x, y). By [247,

Proposition 4.1], the Sinkhorn distance has an equivalent formulation

Wω(P̂,P) = min

γ↔”(P̂,P)

∫
log

(
dς

dK (x, y)

)
dς(x, y), where dK(x, y) = e↑c(x,y)/ω

dP̂(x) d↽(y).

Therefore Assumption 4(I) ensures that the reference measure K is well-defined. Assump-

tion 4(II) ensures the optimal transport mapping 5⇑ for Sinkhorn distance Wω(P̂,P) exists

with density value dγ↔(x,y)

dP̂(x) dε(y)
∀ e↑c(x,y)/ω. Hence, Assumptions 4(I) and 4(II) together

ensure the Sinkhorn distance is well-defined. Assumption 4(III) ensures the expected loss

Ez↓P[f(z)] to be well-defined for any distribution P. Assumption 4(IV) ensures the joint

distribution 5 can be written as d5(x, z) = dP̂(x) d5x(z) and the law of total expectation

103



holds; we refer to [173, Chapter 5] for the concept of the regular conditional distribution.

Such an assumption is very mild; for instance, it holds if Z is a Polish space [38].

To distinguish the cases VD < ↓ and VD = ↓, we introduce the light-tail condition on

f in Condition 1. In Appendix D.3, we present sufficient conditions for Condition 1 that are

easy to verify.

Condition 1. There exists 4 > 0 such that Ez↓Qx,ε [e
f(z)/(↽ω)

] < ↓ for P̂-almost every x.

In the following, we provide the main results of the strong duality reformulation.

Theorem 20 (Strong Duality). Let P̂ ↑ P(Z), and assume Assumption 4 holds. Then the

following holds:

(I) The primal problem (Prima!) is feasible if and only if 2 ≃ 0;

(II) Whenever 2 ≃ 0, it holds that V = VD.

(III) If, in addition, Condition 1 holds and 2 > 0, it holds that V = VD < ↓; otherwise

V = VD = ↓.

(IV) Assume in addition that Condition 1 holds and 2 > 0. Define the event A :=

{z : f(z) = ess sup
ε

(f)} with ess sup
ε

(f) := inf{t : ε{f(z) > t} = 0}. The dual

minimizer 4⇑
= 0 if and only if ess sup

ε

(f) < ↓ and 2 ≃ ϖE
x↓P̂[log(1/Pz↓Qx,ε{A})].

We remark that if 2 < 0, by convention, V = ↗↓ and VD = ↗↓ as well by Lemma 25

in Appendix D.5. Therefore, we have V = VD as long as Assumption 4 holds.

5.3.2 Discussions

In the following, we make several remarks regarding the strong duality result.

Remark 13 (Comparison with Wasserstein DRO). As the regularization parameter ϖ ⇒ 0,

the dual objective of the Sinkhorn DRO (Dua!) converges to (see Appendix D.4 for details)

42 + E
x↓P̂

[
sup

z↔supp ε

{
f(z) ↗ 4c(x, z)

}]
,
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which essentially follows from the fact that the log-sum-exp function is a smooth approxima-

tion of the supremum. Particularly, when supp ε = Z , the dual objective of the Sinkhorn

DRO converges to the dual objective of the Wasserstein DRO [125, Theorem 1]. The main

computational difficulty in Wasserstein DRO is solving the maximization problem inside the

expectation above. All results in Table 5.1 ensure this inner maximization can be efficiently

solved. On the one hand, as Sinkhorn DRO does not need to solve this maximization, it

does not need stringent assumptions on f(·) and thus enables efficient implementation for a

larger class of loss functions for a fixed regularization parameter ϖ (see detailed discussion

in Section 5.4). On the other hand, when the stringent assumptions on f(·) are satisfied,

(data-driven) Wasserstein DRO typically admits a finite-dimensional convex reformulation,

which can be solved more efficiently than Sinkhorn DRO (see our numerical comparison of

CPU times in Appendix D.2.3). The key reason is that, in these special cases, Wasserstein

DRO yields a finitely supported worst-case distribution, whereas Sinkhorn DRO always

results in a worst-case distribution supported over the entire sample space.

We also remark that Sinkorn DRO and Wasserstein DRO result in different conditions

for finite worst-case values. From Condition 1 we see that Sinkhorn DRO is finite if and

only if under a light-tail condition on f , while Wasserstein DRO is finite if and only if the

loss function satisfies a growth condition [125, Theorem 1 and Proposition 2]: f(z) ∝

Lfc(z, z0) + M, ↙z ↑ Z for some constants Lf ,M > 0 and z0 ↑ Z . A

Remark 14 (Worst-case Distribution). Assume 2 > 0 and Condition 1 holds, and there

exists (actually, Lemma 5 ensures its uniqueness) an optimal Lagrangian multiplier 4⇑ > 0

in (Dua!). As we will demonstrate in the proof of Theorem 20, the worst-case distribution

maps every x ↑ supp P̂ to a (conditional) distribution 5⇑
x

that solves a strictly convex

program (i.e., Problem (5.8)), whose density function (with respect to ε) is

ωx · exp


f(z) ↗ 4⇑c(x, z)


/(4⇑ϖ)


,
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where ωx :=

Ez↓ε

[
e(f(z)↑↽

↔
c(x,z))/(↽↔

ω)
]↑1 is a normalizing constant to ensure the condi-

tional distribution well-defined. The uniqueness of 5⇑
x
, x ↑ supp P̂ ensures the uniqueness

of the worst-case distribution P⇑, whose density becomes

dP⇑(z)

dε(z)
= E

x↓P̂

[
ωx · exp


f(z) ↗ 4⇑c(x, z)


/(4⇑ϖ)

]
.

As such, the worst-case distribution shares the same support as the measure ε.

Particularly, when P̂ is the empirical distribution 1
n

∑
n

i=1 φx̂i and ε is any continuous

distribution on Rd, the worst-case distribution P⇑ is supported on the entire Rd. In contrast,

the worst-case distribution for Wasserstein DRO is supported on at most n + 1 points [125].

In Fig. 5.1 we visualize the worst-case distributions from Wasserstein/Sinkhorn DRO models.

The loss function and transport cost used in this plot follow the setup described in Example 4.

The Wasserstein ball radius, Sinkhorn ball radius, and entropic regularization value are

fine-tuned to ensure that the optimal dual multipliers for all instances equal 5. Notably, the

support points of the worst-case distributions from the Wasserstein DRO model correspond

to the modes of the continuous worst-case distributions from the Sinkhorn DRO model.

Figure 5.1: Visualization of worst-case distributions from Wasserstein DRO (left plot) and
Sinkhorn DRO models (right three plots) with varying choices of ϖ.

The above demonstrates another difference (perhaps advantage) of Sinkhorn DRO

compared with Wasserstein DRO. Indeed, for many practical problems, the underlying distri-

bution is modeled as a continuous distribution. The worst-case distribution for Wasserstein

DRO is often finitely supported, raising the concern of whether it hedges against the wrong
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family of distributions and thus results in suboptimal solutions. The numerical results in

Section 5.5 demonstrate some empirical advantages of Sinkhorn DRO. A

Remark 15 (Connection with KL-divergence DRO). Using Jensen’s inequality, we can see

that the dual objective function of the Sinkhorn DRO model is upper-bounded as

42 + 4ϖ log

E

x↓P̂Ez↓Qx,ε

[
ef(z)/(↽ω)

]
,

which corresponds to the dual objective for the following KL-divergence DRO [24]

sup
P

{
Ez↓P[f(z)] : DKL(P→P0

) ∝ 2/ϖ
}
.

Here P0 satisfies dP0
(z) = E

x↓P̂ [ dQx,ω(z)], which can be viewed as a non-parametric

kernel density estimation constructed from P̂. Particularly, when P̂ =
1
n

∑
n

i=1 φx̂i ,Z = Rd

and c(x, y) = →x ↗ y→2
2, P0 is kernel density estimator with Gaussian kernel and bandwidth

ϖ:
dP0

(z)

dz
=

1

n

n∑

i=1

Kω (z ↗ xi) , z ↑ Rd,

where Kω(x) ∀ exp(↗→x→2
2/ϖ) represents the Gaussian kernel. By Lemma 4 and divergence

inequality [89, Theorem 2.6.3], we can see the Sinkhorn DRO with 2 = 0 is reduced to the

following SAA model based on the distribution P0:

V = Ez↓P0 [f(z)] = E
x↓P̂Ez↓Qx,ε [f(z)]. (5.4)

In non-parameteric statistics, the optimal bandwidth to minimize the mean-squared-

error between the estimated distribution P0 and the underlying true one is at rate ϖ =

O(n↑1/(d+4)
) [143, Theorem 4.2.1]. However, such an optimal choice for the kernel density

estimator may not be the optimal choice for optimizing the out-of-sample performance

of the Sinkhorn DRO. In our numerical experiments in Section 5.5, we select ϖ based on

cross-validation unless otherwise stated.
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We also note that data-driven KL-divergence DRO is typically more efficient to solve

than Sinkhorn DRO. This is because KL-divergence DRO yields a worst-case distribution

supported on the same set as the empirical observations, leading to a finite-dimensional

convex reformulation that can be efficiently solved using off-the-shelf solvers (see the

numerical study of CPU times in Appendix D.2.3). A

Remark 16 (Connection with Bayesian DRO). Bayesian DRO [281] proposed to solve

E
x↓P̂


sup
P

{
Ez↓P[f(z)] : P ↑ Px

}
,

where P̂ is a special posterior distribution constructed from collected observations, and the

ambiguity set Px is typically constructed as a KL-divergence ball, i.e., Px := {P : DKL(P→Qx) ∝

ς}, with Qx being the parametric distribution conditioned on x. According to [281, Sec-

tion 2.1.3], a relaxation of the Bayesian DRO dual formulation is given by

inf
↽↙0

{
4ς + 4E

x↓P̂

[
logEz↓Qx

[
ef(z)/↽

] ]}
.

When specifying the parametric distribution Qx as the kernel probability distribution in

(5.3) and applying the change-of-variable technique such that 4 is replaced with 4ϖ, this

relaxed formulation becomes

inf
↽↙0

{
4(ςϖ) + 4ϖE

x↓P̂

[
logEz↓Qx

[
ef(z)/(↽ω)

] ]}
.

In comparison with (Dua!), we find the Sinkhorn DRO model can be viewed as a special

relaxation formulation of the Bayesian DRO model. A

5.3.3 Examples

In the following, we provide several cases in which our strong dual reformulation (Dua!)

can be simplified into more tractable formulations.
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Example 3 (Linear loss). Suppose that the loss function f(z) = aTz, support Z = Rd, ε is

the corresponding Lebesgue measure, and the transport cost is the Mahalanobis distance,

i.e., c(x, y) =
1
2(x ↗ y)T

!(x ↗ y), where ! is a positive definite matrix. In this case, the

kernel probability distribution Qx,ω = N (x, ϖ!↑1
)., and the dual problem can be written as

VD = inf
↽>0

{
42 + 4ϖE

x↓P̂

[
’x(4)

]}
,

where

’x(4) = logEz↓N (x,ω&→1)

[
ea

↗
z/(↽ω)

]
=

aTx

4ϖ
+

aT
!

↑1a

242ϖ
.

Therefore

VD = aTE
x↓P̂[x] +

√
22

▽
aT!↑1a := E

x↓P̂[a
Tx] +

√
22 · →a→&→1 .

This indicates that the Sinkhorn DRO is equivalent to an empirical risk minimization with

norm regularization, and can be solved efficiently using algorithms for the second-order

cone program. A

Example 4 (Quadratic loss). Consider the example of linear regression with quadratic loss

f⇁(z) = (aT6 ↗ b)2, where z := (a, b) denotes the predictor-response pair, 6 ↑ Rd denotes

the fixed parameter choice, and Z = Rd+1. Taking ε as the Lebesgue measure and the

transport cost as c((a, b), (a≃, b≃
)) =

1
2→a ↗ a≃→2

2 + ↓|b ↗ b≃|. In this case, the dual problem

becomes

VD = E
z↓P̂[(a

T6 ↗ b)2
] + inf

↽>2⇐⇁⇐2
2


42 +

E
z↓P̂[(a

T6 ↗ b)2
]

1
24→6→↑2

2 ↗ 1
↗ 4ϖ

2
log det

(
I ↗ 66T

1
24

)
.

In comparison with the corresponding Wasserstein DRO formulation with radius 2 (see, e.g.,
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[45, Example 4])

V WDRO
D = E

z↓P̂[(a
T6 ↗ b)2

] + inf
↽>2⇐⇁⇐2

2


42 +

E
z↓P̂[(a

T6 ↗ b)2
]

1
24→6→↑2

2 ↗ 1


,

one can check in this case the Sinkhorn DRO formulation is equivalent to the Wasserstein

DRO with log-determinant regularization. A

When the support Z is finite, the following result presents a conic programming refor-

mulation.

Corollary 3 (Conic Reformulation for Finite Support). Suppose that the support contains

Lmax elements, i.e., Z = {z▷}Lmax
▷=1 , and the nominal distribution P̂ =

1
n

∑
n

i=1 φx̂i . If

Condition 1 holds and 2 ≃ 0, the dual problem (Dua!) can be formulated as the following

conic optimization:

VD = min
↽↙0,s↔Rn

,

a↔Rn↘L

42 +
1

n

n∑

i=1

si

s.t. 4ϖ ≃
Lmax∑

▷=1

qi,▷ai,▷, i ↑ [n],

(4ϖ, ai,▷, f(z▷) ↗ si) ↑ Kexp, i ↑ [n], ϱ ↑ [L].

(5.5)

where qi,▷ := Prz↓Qx̂i,ε
{z = z▷}, with the distribution Qx̂i,ω defined in (5.3), and Kexp

denotes the exponential cone Kexp := {(ε,4, φ) ↑ R+ ⇓ R+ ⇓ R : exp(φ/ε) ∝ 4/ε}.

Problem (5.5) is a convex program that minimizes a linear function with respect to linear

and conic constraints, which can be solved using interior point algorithms [234, 299]. We

will develop an efficient first-order optimization algorithm in Section 5.4 that is able to solve

a more general problem (without a finite support).
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5.3.4 Proof of Theorem 20

In this subsection, we present a sketch of the proof for Theorem 20. We begin with the weak

duality result in Lemma 3, which can be shown by applying the Lagrangian weak duality.

Lemma 3 (Weak Duality). Under Assumption 4, it holds that

V ∝ inf
↽↙0


42 + 4ϖ E

x↓P̂

[
logEz↓ε

[
e(f(z)↑↽c(x,z))/(↽ω)

]]
= VD.

Proof. Proof of Lemma 3. Based on Definition 11 of Sinkhorn distance, we reformulate V

as

V = sup

γ↔P(Z↘Z):Proj1#γ=P̂

{
Ez↓P[f(z)] : E(x,z)↓γ


c(x, z) + ϖ log

(
d5(x, z)

dP̂(x) dε(z)

)
∝ 2

}
.

By Assumption 4, the constraint is equivalent to

E
x↓P̂Ez↓γx


c(x, z) + ϖ log

(
d5x(z)

dε(z)

)
∝ 2,

and the primal problem is equivalent to

V = sup
{γx}x≃supp P̂∝P(Z)


E

x↓P̂Ez↓γx [f(z)] : E
x↓P̂Ez↓γx


c(x, z) + ϖ log

(
d5x(z)

dε(z)

)
∝ 2


.

(5.6)

Introducing the Lagrange multiplier 4 associated to the constraint, we reformulate V as

V = sup

{γx}x≃supp P̂∝P(Z)


inf
↽↙0


ω⇀ + E

x↓P̂Ez↓γx


f(z) ↗ ωc(x, z) ↗ ωε log

(
dςx(z)

d↽(z)

)
.

Interchanging the order of the supremum and infimum operators, we have that

V ∝ inf
↽↙0

{
42 + sup

{γx}x≃supp P̂∝P(Z)


E

x↓P̂Ez↓γx


f(z) ↗ 4c(x, z) ↗ 4ϖ log

(
d5x(z)

dε(z)

)}
.

(5.7)
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For x ↑ supp P̂ and 4 ≃ 0, define

vx(4) := sup
γx↔P(Z)


Ez↓γx


f(z) ↗ 4c(x, z) ↗ 4ϖ log

(
d5x(z)

dε(z)

)
. (5.8)

Note that this function is measurable for any choice of 4 (we omit its proof in Lemma 24).

One can swap the supremum and the expectation operator on the right-hand-side of (5.7) to

further upper bound it as

V ∝ inf
↽↙0

{
42 + E

x↓P̂

[
vx(4)

]}
.

By Lemma 23, when there exists 4 > 0 such that Condition 1 is satisfied, it holds that

vx(4) = 4ϖ logEz↓ε

[
e(f(z)↑↽c(x,z))/(↽ω)

]
< ↓,

and the desired result holds. Otherwise, for any 4 > 0,

P̂
{
x : Ez↓Qx,ε

[
ef(z)/(↽ω)

]
= ↓

}
= P̂

{
x : Ez↓ε

[
e(f(z)↑↽c(x,z))/(↽ω)

]
= ↓

}
> 0,

then intermediately we obtain

V ∝ inf
↽↙0


42 + 4ϖ E

x↓P̂

[
logEz↓ε

[
e(f(z)↑↽c(x,z))/(↽ω)

]]
= ↓,

and the weak duality still holds. ↬

Next, we show the feasibility result in Theorem 20(I). The key observation is that the

primal problem (Prima!) can be reformulated as a generalized KL-divergence DRO problem.

Consequently, Theorem 20(I) holds because of the non-negativity of KL-divergence.
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Lemma 4 (Reformulation of (Prima!)). Under Assumption 4, it holds that

V = sup
{γx}x≃supp P̂∝P(Z)


E

x↓P̂Ez↓γx [f(z)] : ϖE
x↓P̂Ez↓γx


log

(
d5x(z)

dQx,ω(z)

)
∝ 2


.

Remark 17 (Comparison with Infinite-dimensional Convex Analysis). If assuming that

P̂ =
1
n

∑
n

i=1 φxi is finitely supported, by Lemma 4, (Prima!) can be reformulated as a conic

linear program

V = sup
{γi}i≃[n]∝P(Z)





1

n

∑

i↔[n]

Ez↓γi [f(z)] :
1

n

∑

i↔[n]

DKL(5i→Qxi,ω) ∝ 2

ϖ




 .

Thus, strong duality from infinite-dimensional convex analysis (e.g., [278]) can be applied to

show Theorem 20. However, our strong duality proof, as described below, differs from this

one in several key aspects. First, our approach imposes less restrictive assumptions, holding

for any measurable sample space Z , measurable loss function f , and nominal distribution P̂.

The strong duality result in [278] requires Z to be convex, f to be upper semicontinuous, and

P̂ to be finitely supported. Second, our approach is constructive: we explicitly characterize

the worst-case distribution for Sinkhorn DRO, whereas a nonconstructive method was

employed in [278]. Third, our approach provides a byproduct — an explicit necessary and

sufficient condition for when the Sinkhorn ambiguity constraint is binding (Theorem 20(IV)).

This insight offers practical guidance on choosing the ambiguity set size to avoid over-

conservativeness. A

Finally, we develop the strong duality. The general proof idea involves deriving the

optimality condition of the dual minimizer, which then guide the construction of the worst-

case distribution of (Prima!). In the following, we provide the proof of the first part of

Theorem 20(III) for the most representative case where 2 > 0, the dual minimizer 4⇑ exists

with 4⇑ > 0, and Condition 1 holds. Proofs of other cases are moved in Appendix D.5.
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We first develop the optimality condition when the dual minimizer 4⇑ > 0, by setting the

derivative of the dual objective function to zero.

Lemma 5 (First-order Optimality Condition when 4⇑ > 0). Suppose 2 > 0 and Condition 1

is satisfied, and assume further that there exists a dual minimizer 4⇑ > 0, then the dual

minimizer is unique and 4⇑ satisfies

1

4⇑Ex↓P̂


Ez↓ε

[
e(f(z)↑↽

↔
c(x,z))/(↽↔

ω)f(z)
]

Ez↓ε [e(f(z)↑↽↔c(x,z))/(↽↔ω)]


↗ ϖE

x↓P̂
[
logEz↓ε

[
e(f(z)↑↽

↔
c(x,z))/(↽↔

ω)
]]

= 2.

(5.9)

Proof. Proof of Theorem 20(III) for the case where Condition 1 holds and 2 > 0,4⇑ > 0.

We take the transport mapping 5⇑ such that

d5⇑(x, z)

dP̂(x) dε(z)
= ωx · exp


f(z) ↗ 4⇑c(x, z)


/(4⇑ϖ)


,

and ωx :=

Ez↓ε

[
e(f(z)↑↽

↔
c(x,z))/(↽↔

ω)
]↑1 is a normalizing constant such that Proj1#5⇑ = P̂.

Also define the primal (approximate) optimal distribution P⇑ := Proj2#5⇑. Recall the

expression of the Sinkhorn distance in Definition 11, one can verify that

Wω(P̂,P⇑) = inf
γ↔”(P̂,P↔)

{
E(x,z)↓γ


c(x, z) + ϖ log

(
d5(x, z)

dP̂(x) dε(z)

)}

= inf
γ↔”(P̂,P↔)

{
E(x,z)↓γ


ϖ log

(
ec(x,z)/ω

d5(x, z)

dP̂(x) dε(z)

)}

∝ E(x,z)↓γ↔


ϖ log

(
ec(x,z)/ω

d5⇑(x, z)

dP̂(x) dε(z)

)
= E(x,z)↓γ↔


1

4⇑f(z) + ϖ log(ωx)



=
1

4⇑Ex↓P̂


Ez↓ε

[
e(f(z)↑↽

↔
c(x,z))/(↽↔

ω)f(z)
]

Ez↓ε [e(f(z)↑↽↔c(x,z))/(↽↔ω)]


↗ ϖE

x↓P̂
[
logEz↓ε

[
e(f(z)↑↽

↔
c(x,z))/(↽↔

ω)
]]

where the inequality relation is because 5⇑ is a feasible solution in #(P̂,P⇑), and the last

two relations are by substituting the expression of 5⇑. Since 2 > 0 and the dual minimizer

4⇑ > 0, the optimality condition in (5.9) holds, which implies that Wω(P̂,P⇑) ∝ 2, i.e., the
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distribution P⇑ is primal feasible for the problem (Prima!). Moreover, we can see that the

primal optimal value is lower bounded by the dual optimal value:

V ≃ EP↔
[f(z)] = E(x,z)↓γ↔

[f(z)]

=E
x↓P̂Ez↓ε


f(z)

(
d5⇑(x, z)

dP̂(x) dε(z)

)
= E

x↓P̂


Ez↓ε

[
e(f(z)↑↽

↔
c(x,z))/(↽↔

ω)f(z)
]

Ez↓ε [e(f(z)↑↽↔c(x,z))/(↽↔ω)]



=4⇑ 
2 + ϖE

x↓P̂
[
logEz↓Qx,ε

[
ef(z)/(↽↔

ω)
]]

= VD,

where the third equality is by substituting the expression of 5⇑, and the last equality is based

on the optimality condition in (5.9). This, together with the weak duality, completes the

proof. ↬

5.4 Efficient First-order Algorithm for Sinkhorn Robust Optimization

Consider the Sinkhorn robust optimization problem

inf
⇁↔%

sup

P↔Bω,ε(P̂)

Ez↓P[f⇁(z)]. (5.10)

Here the feasible set ( ̸ Rdϑ is closed and convex containing all possible candidates of

decision vector 6, and the Sinkhorn uncertainty set is centered around a given nominal

distribution P̂. Based on our strong dual expression (Dua!), we reformulate (5.10) as

inf
↽↙0


42 + inf

⇁↔%
E

x↓P̂


4ϖ logEz↓Qx,ε

[
efϑ(z)/(↽ω)

] 
, (D)

where the constant 2 and the distribution Qx,ω are defined in (5.2) and (5.3), respectively.

In Examples 3 and 4, we have seen special instances of (D) where we can get closed-form

expressions for the above integration. In this section, we develop an efficient algorithm for

solving (D) for general loss functions where a closed-form expression is not available.

A typical approach for solving a stochastic optimization is the stochastic (sub)gradient
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method such as stochastic mirror descent (SMD) [39]. Unlike many other stochastic

optimization problems, one salient feature of (D) is that its inner objective involves a

nonlinear transformation of the expectation. Consequently, based on a batch of simulated

samples from Qx,ω, an unbiased subgradient estimate could be challenging to obtain. In

Section 5.4.1, we will combine SMD with biased subgradient estimators and bisection

search to solve (D). We will analyze its computational complexity in Section 5.4.2.

5.4.1 Algorithm Framework

We define

F (6;4) := E
x↓P̂


4ϖ logEz↓Qx,ε

[
efϑ(z)/(↽ω)

] 
, (5.11)

and define the objective value of the outer minimization in (D) as

)(4) := 42 + inf
⇁↔%

F (6;4). (5.12)

Solving (D) involves determining the optimal Lagrange multiplier 4 of the function ),

where evaluating ) requires solving the minimization problem in (5.12) to obtain the optimal

decision 6. We first introduce a biased SMD (BSMD) algorithm for finding the optimal

decision 6 given a fixed Lagrange multiplier 4 in Section 5.4.1. Then, in Section 5.4.1, we

present a bisection search algorithm to find the optimal Lagrange multiplier. Throughout

this section, we assume the loss function f⇁(z) is convex in 6 but it can be a potentially

nonsmooth function. For any function r(6) that is subdifferentiable in 6, we use the notation

∞⇁r(6) to denote an arbitrary subgradient from its subdifferential, unless otherwise specified.

BSMD.

In this part, we omit the dependence of 4 when defining objective or subgradient terms, e.g.,

we write F (6) for F (6;4). We first introduce several notations that are standard in the mirror
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descent algorithm. Let ω : ( ⇒ R be a distance generating function that is continuously

differentiable and 7-strongly convex on ( with respect to norm → · →, which induces the

Bregman divergence Dϖ(6, 6≃
) : (⇓( ⇒ R+: Dϖ(6, 6≃

) = ω(6≃
)↗ω(6)↗⇔∞ω(6), 6≃↗6↖.

Define the prox-mapping Prox : Rdϑ ⇒ ( as

Prox⇁(y) = arg min
⇁↓↔%

{
⇔y, 6≃ ↗ 6↖ + Dϖ(6, 6≃

)
}
.

With these notations in hand, we present our algorithm in Algorithm 7, which iteratively

obtains a biased stochastic (sub)gradient estimator and performs a proximal update.

Algorithm 7 BSMD for finding the optimal solution of (5.12) while fixing 4

Require: Maximal iteration T , constant step size h, initial guess 60, fixed multiplier 4.
1: for t = 0, 1, . . . , T ↗ 1 do
2: Construct a (biased) subgradient estimator v(6t) of F (6t) using (5.15) or (5.17).
3: Update 6t+1 = Prox⇁t


hv(6t)


.

4: end for
Output the estimate of optimal solution 6̂ =

1
T

∑
T

t=1 6t.

At the core of Algorithm 7 lies the crucial task of efficiently simulating the subgradient

estimator in Step 2. It is noteworthy that the minimization in (5.12) is a special condi-

tional stochastic optimization (CSO), as studied in [154, 156, 160]. CSO typically has the

formulation

min
⇁↔%

E
x↓P̂[H

1
(Ez↓Qx,ε [H

2
(6; z)])], (5.13)

and we specify H1
(·) = 4ϖ log(·) and H2

(·; z) = exp(f·(z)/(4ϖ)) to convert (5.12) into

(5.13). This structure suggests that ideas from CSO-related literature, particularly multi-level

Monte Carlo (MLMC) estimators, can be applied to generate biased subgradient estimators

with controlled bias, enhancing computational efficiency in Step 2. Our framework and

analysis differs from the aforementioned references in several aspects, and see the discussion

in Remark 23.

To generate the subgradient estimator, we first construct a function F ▷
(6), ϱ ↑ N that
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approximate the original objective function F (6) with O(2
↑▷

)-gap:

F ▷
(6) = E

xϖ↓P̂ E{z
ϖ
j}j≃[2ϖ]↓Qxϖ,ε


4ϖ log


1

2▷

∑

j↔[2ϖ]

efϑ(zϖj)/(↽ω)


, (5.14)

where the random variable x▷ follows distribution P̂, and given a realization of x▷, {z▷

j
}j↔[2ϖ]

are independent and identically distributed (i.i.d.) samples from Qxϖ,ω. Unlike the original

objective F (6), unbiased subgradient estimators of its approximation F ▷
(6) can be easily

obtained. Denote by ▷▷
= (x▷, {z▷

j
}j↔[2ϖ]) the collection of random sampling parameters,

and
Un1:n2(6, ▷

▷
) := 4ϖ log


1

n2 ↗ n1 + 1

∑

j↔[n1:n2]

efϑ(zϖj)/(↽ω)

,

A▷
(6, ▷▷

) := U1:2ϖ(6, ▷
▷
) ↗ 1

2
U1:2ϖ→1(6, ▷▷

) ↗ 1

2
U2ϖ→1+1:2ϖ(6, ▷

▷
).

We take Un1:n2(6, ▷
▷
) = 0 if [n1 : n2] = C. For fixed 6 and ϱ ↑ N, we define

g▷
(6, ▷▷

) := ∞⇁U1:2ϖ(6, ▷
▷
), G▷

(6, ▷▷
) := ∞⇁A

▷
(6, ▷▷

).

The random vector g▷
(6, ▷▷

) is an unbiased estimator of ∞⇁F ▷
(6), while the random vec-

tor G▷
(6, ▷▷

) is an unbiased estimator of ∞⇁F ▷
(6) ↗ ∞⇁F ▷↑1

(6). We note that computing

G▷
(6, ▷▷

) involves computing subgradient vectors ∞⇁f⇁(z▷

j
), j ↑ [2

▷
], and we use the same

subgradient computation across U1:2ϖ , U1:2ϖ→1 , U2ϖ→1+1:2ϖ to facilitate the reduction of the

second-order moment of G▷
(6, ▷▷

). Using these components, we define two types of subgra-

dient estimators below.

– Stochastic (sub)Gradient (SG) Estimator: Fix the maximum level L ↑ N+. We first

generate the sample set ▷L and next construct the SG estimator

vSG
(6) = gL

(6, ▷L
). (5.15)

– Randomized Truncation MLMC (RT-MLMC) Estimator [49]: Fix the maximum level
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L ↑ N+. We first sample a random level ϱ̂ following a truncated geometric distribution

p▷ := Pr(ϱ̂ = ϱ) =
2

↑▷

2 ↗ 2↑L
, ϱ = 0, 1, . . . , L. (5.16)

Next, we construct the RT-MLMC estimator

vRT-MLMC
(6) = p↑1

▷̂
· G▷̂

(6, ▷ ▷̂
). (5.17)

Remark 18 (Sampling from Qx,ω). Sampling from Qx,ω is crucial for the construction

of subgradient estimators. In many cases, it is an easy task: When the transport cost

c(·, ·) =
1
2→ · ↗ · →2

2 and Z = Rd, the distribution Qx,ω becomes a Gaussian distribution

N (x, ϖId). When the transport cost c(·, ·) is decomposable in each coordinate, we can apply

the acceptance-rejection method [9] to generate samples in each coordinate independently,

the complexity of which only increases linearly in the data dimension. A

Bisection Search

In this part, we introduce a bisection search algorithm to solve the one-dimensional convex

minimization problem in (D). The algorithm relies on an efficient oracle to estimate the

objective value of (D). We first define this oracle in Algorithm 8: Given a fixed multiplier 4,

it solves problem (5.12) using Algorithm 7 and then estimates the corresponding objective

value. It has m independent repetitions, whose value will be determined later in Section

5.4.2 to achieve the optimal complexity.

To implement Step 3 of Algorithm 8, we again leverage RT-MLMC to efficiently estimate

the objective in (5.11). For given (6,4), let m≃ denote the mini-batch size. For i ↑ [m≃
], we

sample ϱ̂i following the distribution defined in (5.16) and sample an i.i.d. copy of ▷ ▷̂i that is
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Algorithm 8 Evaluating the objective value of (D)
Require: Fixed multiplier 4, error tolerance φ, batch size m.

1: for j = 1, 2, . . . ,m do
2: Obtain a φ-optimal solution 6̂j of problem (5.12) using Algorithm 7.
3: Estimate the objective in (5.11) with 6 ∅ 6̂j using RT-MLMC estimator (5.18),

denoted as F̂ (6̂j;4) .
4: end for

Output )̂(4) := 42 + min
⇁↔{⇁̂1,...,⇁̂m}

F̂ (6;4).

denoted as ▷ ▷̂i
i

. Next, we construct the objective estimator at the i-th trial as

F̂i(6;4) = p↑1

▷̂i
· A▷̂i(6, ▷ ▷̂i

i
;4).

To reduce the variance of objective estimator, the final estimator of F (6;4) is constructed

by averaging the outcomes over all trials, denoted as

F̂ (6;4) =
1

m≃

m
↓∑

i=1

F̂i(6;4). (5.18)

Given an inexact objective oracle of (D) (e.g., by querying Algorithm 8), we use bisection

search to find a near-optimal multiplier in (D); see Algorithm 9 for details. Unlike con-

ventional bisection that relies on gradient information, this algorithm leverages an inexact

objective oracle )̂ to iteratively shrink the search interval. It begins by dividing the interval

into five evenly spaced points and selecting the minimum among the three central points. In

each iteration, it updates the left, middle, and right points based on the the current minimum

(from among the three middle points) and its two nearest neighbors. Then, it adjusts the

middle-left and middle-right points to maintain evenly spacing. The oracle is queried twice

per iteration, reusing one value from the previous iteration to identify the new minimum

efficiently. This algorithm is adopted from [83, Algorithm 8], but is more efficient, as the

original algorithm only shrinks the interval by 1/3 with each iteration, whereas one can

improve it to factor 1/2. See its performance guarantee in Theorem 22.
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Algorithm 9 Bisection search for finding the optimal multiplier of (D)

Require: Interval [4l,4u] such that 4l < 4⇑ < 4u, maximum iterations T ≃

Require: Inexact objective oracle )̂(·) : R+ ⇒ R
1: Update ↽(0)

i
=

5↑i

4 4l +
i↑1
4 4u for i = 1, . . . , 5 {Divide interval using 5 grid points}

2: Query oracle to obtain )̂(↽(0)
j

), j = 2, 3, 4

3: Specify i(1)
= arg min

j=2,3,4
)̂(↽(0)

j
)

4: for t = 1, . . . , T ≃ do
5: Update (↽(t)

1 , ↽(t)
3 , ↽(t)

5 ) = (↽(t↑1)

i(t)↑1
, ↽(t↑1)

i(t)
, ↽(t↑1)

i(t)+1
) {Move left, middle, right points}

6: Update (↽(t)
2 , ↽(t)

4 ) =

(
⇀

(t)
1 +⇀

(t)
3

2 , ⇀
(t)
3 +⇀

(t)
5

2

)
{Move middle-left, middle-right points}

7: Query oracle to obtain )̂(↽(t)
j

), j = 2, 4, and update )̂(↽(t)
3 ) = )̂(↽(t↑1)

i(t)
).

8: Specify i(t+1)
= arg min

j=2,3,4
)̂(↽(t)

j
)

9: end for
Output approximate optimal multiplier ↽(T ↓)

i(T
↓+1) .

An alternative approach to solving (D) is to jointly optimize (4, 6) using BSMD. Al-

though this approach is theoretically sound, updating 4 could lead to oscillations or diver-

gence if the associated stepsize is not carefully tuned, due to the high variance of gradient

estimators when 4 is small. In our algorithm, we have developed a bisection method to

update 4, which requires only specifying the maximum iterations, initial interval, and an

inexact objective oracle but does not require tuning the stepsize for updating 4. We also

remark that, as a practical alternative, one can solve (5.12) using Algorithm 7 alone and

tune the hyperparameter 4, as tuning the radius 2 is equivalent to tuning the Lagrangian

multiplier 4 in (5.12). This corresponds to the Sinkhorn robust learning problem with a soft

Sinkhorn constraint.

5.4.2 Convergence Analysis

In this subsection, we analyze the convergence properties of the proposed algorithms. We

begin with the following assumptions on the loss function f⇁:

Assumption 5. (I) (Convexity): The loss function f⇁(z) is convex in 6.
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(II) (Lipschitz Continuity): For any fixed z and 61, 62, it holds that |f⇁1(z) ↗ f⇁2(z)| ∝

Lf→61 ↗ 62→2.

(III) (Boundedness): The loss function f⇁(z) satisfies 0 ∝ f⇁(z) ∝ B for any 6 ↑ ( and

z ↑ Z .

Assumption 5(I) ensures the convexity of the objective in Sinkhorn robust optimization,

and enables us to develop globally convergent optimization algorithms. Assumption 5(II)

is crucial for establishing the bounded subgradient norm condition required by the BSMD

algorithm and deriving its global convergence rate. Assumption 5(III) guarantees the

Lipschitz continuity of the nonlinear operator H1
(·) = 4ϖ log(·) in (5.11), ensuring that the

objective in (5.14) approximates (5.11) with O(2
↑▷

) gap. This assumption is restrictive in

practice, whereas one can replace it by the following conditions (see the argument in [191,

footnote 2]): (III-1): ( is bounded; (III-2): Assumption 5(II); and (III-3): inf
⇁↔%

f⇁(z1) ↗

inf
⇁↔%

f⇁(z2) ∝ B0, ↙z1, z2 ↑ Z .

We note that our algorithm is assumed to have access to two sampling oracles: (i) Oracle

O(P̂) that generates a sample from P̂; (ii) Oracle O(Qx,ω) that, based on the input x ↑

supp P̂, generates a sample from Qx,ω. In practical implementations, the cost of generating

samples from these two distributions can differ. In data-driven applications, sampling

from P̂ often reduces to randomly selecting observed data points, whereas sampling from

Qx,ω (described in Remark 18) usually involves stochastic noises such as Gaussian. In the

subsequent analysis, we report the sample complexities from P̂ or Qx,ω individually. Based

on our algorithm design (see, e.g., objective and subgradient estimators in (5.15), (5.17),

(5.18)), it is also easy to check that the total computational time is roughly proportional to

the sum of these two sample complexities.

Complexity of BSMD.

In this part, we discuss the complexity of Algorithm 7. We say 6 is a φ-optimal solution if

E[F (6;4)] ↗ F (6⇑
;4) ∝ φ, where 6⇑ is the optimal solution of (5.12). By properly tuning
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hyper-parameters to balance the trade-off between bias and second-order moment of the

subgradient estimate, we establish its performance guarantees in Theorem 21. The explicit

constants and proof can be found in Appendix D.6. Let us define the constant K↽,ω,B =
B

↽ω

that depends on 4, ϖ, B.

Theorem 21. Under Assumption 5, when using BSMD (Algorithm 7) to find a φ-optimal

solution of (5.12), the following results hold:

(I) If using SG subgradient estimator, the sample complexity from P̂ is O(φ↑2
), and

that from Qx,ω is O(4ϖ exp(2K↽,ω,B) · φ↑3
), with O(·) hiding constants depending on

Lf , 60,7.

(II) If using RT-MLMC subgradient estimator, the sample complexity from P̂ is

Õ(K↽,ω,B exp(4K↽,ω,B) · φ↑2
),

and that from Qx,ω is

Õ(K2
↽,ω,B

exp(4K↽,ω,B) · φ↑2
),

with Õ(·) hiding constants depending on Lf , 60,7 and linearly depending on (log
↽ω

φ
)
2.

Theorem 21 shows that the sample complexity from P̂ of BSMD, whether using the SG

or RT-MLMC subgradient estimator, is of the same order with respect to the error tolerance

φ. This rate matches the known lower bound for general convex stochastic programming

problems [39]. However, this complexity associated with the RT-MLMC estimator has a

worse constant dependence on the parameters 4, ϖ, and B. Despite this, the RT-MLMC

estimator has a lower-order sample complexity from Qx,ω compared to the SG estimator.

Our numerical experiments in Appendices D.2.1 and D.2.2 further demonstrate that the

RT-MLMC estimator exhibits a significantly faster empirical convergence rate than the SG

estimator.
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Remark 19 (Comparison with Biased Sample Average Approximation). An alternative way

to solve (5.12) is to approximate the objective using finite samples for both expectations. This

leads to a biased sample estimate, called Biased Sample Average Approximation (BSAA).

Under Assumption 5 and apply [154, Corollary 4.2], it can be shown that for BSAA,

the sample complexity from P̂ is n1 = Õ (d⇁B2
exp(2K↽,ω,B) · φ↑2

) and that from Qx,ω is

O(4ϖ exp(2K↽,ω,B) · n1 · φ↑1
). Our proposed BSMD with the RT-MLMC-based subgradient

estimator has smaller order of the sample complexity from Qx,ω (in terms of error tolerance

φ). Also, the BSAA method still requires computing the optimal solution of the approximated

optimization problem as the output. Hence, it typically takes considerably less time and

memory to run the BSMD step rather than solving the BSAA formulation. A

Complexity of Bisection Search

We first provide the complexity analysis for Algorithm 8, which produces an estimator

of the objective value of the outer minimization in (D). Define the constant H↽,ω,B =

max(exp(2K↽,ω,B),42ϖ2).

Proposition 5. Let ς ↑ (0, 1) and set the batch size m = Dlog2
2
◁
E. Assume Assumption 5

holds, and we choose hyper-parameters in Step 3 of Algorithm 8 as

L =

⌈
log2

24ϖ exp(2K↽,ω,B)

φ

⌉
, m≃

= O(1)
42ϖ2 exp(2K↽,ω,B)(L + 1)

φ2
· log

m

ς
.

With probability at least 1 ↗ ς, the output in Algorithm 8 satisfies |)̂(4) ↗ )(4)| ∝ φ. When

using RT-MLMC subgradient estimator (5.17) in the BSMD step and RT-MLMC objective

estimator (5.18), the sample complexity from P̂ is Õ (H↽,ω,BK↽,ω,B exp(2K↽,ω,B) · φ↑2
) and

that from Qx,ω is Õ

H↽,ω,BK2

↽,ω,B
exp(2K↽,ω,B) · φ↑2


, with Õ(·) hiding constants depending

on Lf , 60,7 and linearly depending on (log
↽ω

φ
)
2, (log

1
◁
)
2.

Next, we provide the convergence analysis for Algorithm 9.

124



Theorem 22. Let ς ↑ (0, 1). Assume Assumption 5 holds and 0 < 4l ∝ 4⇑ ∝ 4u < ↓.

Specify hyper-parameters in Algorithm 9 as

T ≃
=

⌈
log2

4L’(4u ↗ 4l)

φ

⌉
, ς≃

=
ς

3 + 2T ≃ , L’ = 2 +
B

4l

[1 + exp(K↽l,ω,B
)] .

Suppose there exists an oracle )̂ such that for any 4 > 0, it estimates ) defined in (5.12)

with accuracy level φ/4 with probability at least 1 ↗ ς≃, then with probability at least 1 ↗ ς,

Algorithm 9 finds the optimal multiplier with accuracy level φ (i.e., it finds 4 such that

)(4) ↗ min
↽l⇒↽⇒↽u

)(4) ∝ φ) by calling the inexact oracle )̂ for Õ(K↽l,ω,B
) times, where

Õ(·) hides constants depending on 2 and linearly depending on log
↽u↑↽l

φ
and log

B

↽l
.

Remark 20 (Selection of 4u and 4l). Algorithm 9 requires the upper and lower bounds 4u,4l

on the optimal Lagrange multiplier 4⇑ as inputs. Under Assumption 5, we have a theoretical

upper bound 4u := 2↑1B (see the proof in Lemma 32 in Appendix D.7). For the lower

bound 4l, it can be shown that as long as the condition in Theorem 20(IV) does not hold for

f⇁(·) for any 6, a valid lower bound 4l > 0 exists. Unfortunately, deriving the closed-form

expression of 4l is infeasible. In practice, choosing an excessively small multiplier values

may lead to solutions that are too conservative (where the Sinkhorn distance constraint

becomes nearly unbinding). To mitigate this, we recommend empirical tuning of 4l to ensure

it remains sufficiently bounded away from zero, thereby avoiding degenerate cases. For

examples in Section 5.5.1 and 5.5.2, we set 4l = 0.01 and 4u = 500. A

Combining Proposition 5 and Theorem 22, the sample complexity from P̂ for obtaining

a φ-optimal solution of (D) with high probability is Õ

H↽,ω,BK2

↽,ω,B
exp(2K↽,ω,B) · φ↑2


,

and sample complexity from Qx,ω is Õ

H↽,ω,BK3

↽,ω,B
exp(2K↽,ω,B) · φ↑2


.

Remark 21 (Comparison with Empirical Risk Minimization). The minimax lower bound

of sample complexity from P̂ for obtaining a φ-optimal solution from the empirical risk
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minimization (ERM) inf⇁↔% E
x↓P̂[f⇁(x)] with a convex loss function f⇁(z) (regardless of

the smoothness assumption) is O(φ↑2
) [39]. The sample complexity from P̂ of solving the

Sinkhorn DRO model matches with its ERM counterpart, differing only by a (near-)constant

factor in terms of error tolerance φ. However, we highlight that the constant factor has

non-negligible dependence on related parameters 4l, ϖ, B. A

Remark 22 (Comparison with Wasserestein DRO). Recall from Table 5.1 that Wasserstein

DRO is computationally efficient to solve for a restricted family of loss functions (Table 5.1).

Specially, Wasserstein DRO with P̂ =
1
n

∑
n

i=1 φx̂i can be formulated as a minimax problem

min
⇁↔%,↽↙0

max
zi↔Rd,i↔[n]

42 +
1

n

n∑

i=1

[
f⇁(zi) ↗ 4c(x̂i, zi)

]
.

When f⇁(z) is not piecewise concave in z, the above problem generally reduces to the

convex-non-concave saddle point problem, whose global optimality is difficult to obtain.

In comparison, we provided complexity guarantees for solving Sinkhorn DRO model for a

broader class of loss functions.

We also remark that the regularization parameter ϖ is treated as a fixed intentional design

choice when solving Sinkhorn DRO formulation. Our goal is not to use it as a computational

approximation of Wasserstein DRO, even though it converges to Wasserstein DRO as ϖ ⇒ 0.

Otherwise the constant part in our complexity bounds will explode to infinity. A

Finally, we compare our algorithm design and analysis with existing references on CSO

below.

Remark 23 (Comparison with [154, 156, 160]). Our algorithm and analysis differ from

existing references on CSO [154, 156, 160] in several aspects.

Recall that we apply BSMD with the RT-MLMC subgradient estimator to solve (5.12).

While the BSAA approach proposed in [154] is applicable, it is less efficient (see Remark 19).

The BSMD method using the SG subgradient estimator from [160] can also be applied, but

it results in worse sample complexity from Qx,ω.
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Although one can apply Hu et al. [156] to consider BSMD with RT-MLMC or vanilla

MLMC (V-MLMC) gradient estimators, their analysis focuses on unconstrained optimization

with Sf -Lipschitz smooth loss functions, i.e., functions that are continuously differentiable

with Lipschitz continuous gradients: Their analysis requires carefully tuning the parameters

of the gradient estimators to balance the trade-off between bias and gradient variance,

with stepsize that depends on the smoothness constant Sf (see [156, Theorem C.1]). This

greatly limits the applicability of their theoretical guarantees, such as the newsvendor

problem and portfolio optimization examples in our numerical study. In contrast, we

demonstrate that the RT-MLMC estimator results in the same complexity bounds even

for nonsmooth loss functions by appropriately balancing the trade-off between bias and

subgradient second-order moment (Lemma 28). Notably, the V-MLMC estimator in [156]

no longer has performance guarantees in nonsmooth case.

Another component of our algorithm requires estimating the objective in (5.12). Refer-

ence [160] used the SG objective estimator that leads to worse sample complexity from Qx,ω;

References [156, 160] did not investigate this problem. Our work provided the RT-MLMC

estimator to estimate the Sinkhorn robust optimization objective, demonstrating its superior

efficiency (Lemma 30). A

5.5 Applications

In this section, we apply our methodology to three applications: the newsvendor problem,

mean-risk portfolio optimization, and adversarial classification. We compare our model with

three benchmarks: (i) the classical sample average approximation (SAA) model; (ii) the

Wasserstein DRO model; and (iii) the KL-divergence DRO model. We choose the transport

cost c(·, ·) = → · ↗ · →1 for 1-Wasserstein or 1-Sinkhorn DRO model, and c(·, ·) =
1
2→ · ↗ · →2

2

for 2-Wasserstein or 2-Sinkhorn DRO model. Throughout this section, we take the reference

measure ε in the Sinkhorn distance to be the Lebesgue measure. The hyper-parameters are

selected using the holdout method following from [226]. All experiments were conducted
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on a Mac mini computer with 24GB of memory and M4 Pro GPU with 20 cores running

Python 3.9. Further implementation details and experiments are included in Appendices D.1

and D.2, respectively.

5.5.1 Newsvendor Problem

Consider the following distributionally robust newsvendor problem:

min
⇁

max
P↔Bω,ε(P̂)

Ez↓P
[
k6 ↗ umin(6, z)

]
,

where the random variable z stands for the random demand, whose empirical distribution

P̂ consists of n independent samples from the underlying data distribution; the decision

variable 6 represents the inventory level; and k = 5, u = 7 are constants corresponding to

overage and underage costs, respectively.

In this experiment, we examine the performance of DRO models for various sample sizes

n ↑ {10, 30, 100} and under three different types of data distribution: (i) the exponential

distribution with rate parameter 1, (ii) the gamma distribution with shape parameter 2 and

scale parameter 1.5, (iii) the equiprobable mixture of two truncated normal distributions

N (µ = 1, ϑ = 1, a = 0, b = 10) and N (µ = 6, ϑ = 1, a = 0, b = 10). We do not report

the performance for 1-Wasserstein DRO model in this example, because it is identical to the

SAA approach [226, Remark 6.7]. As 2-Wasserstein DRO is computationally intractable

for this example, we solve the corresponding formulation by discretizing the support of the

distributions.

We measure the out-of-sample performance of a solution 6 based on training dataset D

using the percentage of improvement (a.k.a., coefficient of prescriptiveness) in [31]:

Prescriptiveness(6) = max

(
1 ↗ J(6) ↗ J⇑

J(6SAA
D ) ↗ J⇑ ,↗1

)
⇓ 100%, (5.19)

where J⇑ denotes the true optimal value when the true distribution is known, 6SAA
D denotes
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the decision from the SAA approach with dataset D, and J(6) denotes the expected loss of

the solution 6 under the true distribution, estimated through an SAA objective value with

10
5 testing samples. This coefficient is always bounded between ↗100% and 100%, and the

higher this coefficient is, the better the solution’s out-of-sample performance.
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Figure 5.2: Experiment results of the newsvendor problem for different sample sizes and
different data distributions in box plots. (a) Exponential distribution; (b) Gamma distribution;
(c) Mixture of truncated normal distributions.

Figure 5.3: Plots for the density of worst-case distributions generated by the 1-SDRO or
2-SDRO model for newsvendor problem with different data distributions. (a) Exponential
distribution; (b) Gamma distribution; (c) Mixture of truncated normal distributions.

We report the box-plots of the coefficients of prescriptiveness in Fig. 5.2 using 500

independent trials. We find that either 1-SDRO or 2-SDRO model achieve the best out-of-

sample performance over all sample sizes and data distributions listed, as it consistently

scores higher than other benchmarks in the box plots. In contrast, the KL-DRO model does

not achieve satisfactory performance, and sometimes even underperforms the SAA model.

While the 2-WDRO model demonstrates some improvement over the SAA model, the 2-
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Figure 5.4: Experiment results of the newsvendor problem for exponential data distribution.
Subplots from different rows correspond to different training sample sizes n ↑ {10, 30, 100}.
Subplots from the first and second columns correspond to the heatmap plot of the coefficient
of prescriptiveness for 1-SDRO and 2-SDRO models with different radius and regularization
parameters, and the subplots from the last column correspond to the histogram plot of the
coefficient of prescriptiveness for 2-WDRO model with different radius parameters. Each
instance is taken the average of the simulation results over 50 independent trials. For SDRO
models, we add a green triangle for each radius-regularization combination that outperforms
the corresponding WDRO models with the same radius choice.

SDRO model shows more clear improvement. We plot the density of worst-case distributions

for 1-SDRO or 2-SDRO model in Fig. 5.3. When specifying the data distribution as

exponential, gamma, or Gaussian mixture, the corresponding worst-case distributions capture

the shape of the ground truth distribution reasonably well, which partly explains why the

Sinkhorn DRO model achieves superior performance when the data distribution is absolutely

continuous. We report the coefficient of prescriptiveness of SDRO and WDRO models with

different parameters when the data distribution is exponential in Fig. 5.4 (plots for other

distributions are presented in Appendix D.2.4). We observe that there exists a large range of
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parameter choices of SDRO models that lead to the superior performance over the WDRO

models, since almost each row of the heatmap includes many green triangles. This fact

justifies the benefits of adding entropic regularization.

5.5.2 Mean-risk Portfolio Optimization
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Figure 5.5: Experiment results of the portfolio optimization problem for different sample
sizes and dimensions in box plots. (a) fixing data dimension d = 30 and varying sample
size n ↑ {30, 50, 100, 150, 200, 400}; (b) fixing sample size n = 100 and varying data
dimension d ↑ {5, 10, 20, 40, 80, 100}.

Consider the following distributionally robust mean-risk portfolio optimization problem

min
⇁

max
P↔Bω,ε(P̂)

Ez↓P[↗6Tz] + 1 · P-CVaR0(↗6Tz)

s.t. 6 ↑ ( = {6 ↑ Rd

+ : 6T
1 = 1},

where the random vector z ↑ Rd stands for the returns of assets; the decision variable 6 ↑ (
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represents the portfolio strategy that invests a certain percentage 6i of the available capital in

the i-th asset; and the term P-CVaR0(↗6Tz) quantifies conditional value-at-risk [259], i.e.,

the average of the ω ⇓ 100% worst portfolio losses under the distribution P. We follow a

similar setup as in Mohajerin Esfahani and Kuhn [226]. Specifically, we set ω = 0.2, 1 = 10.

The underlying true random return can be decomposed into a systematic risk factor 8 ↑ R

and idiosyncratic risk factors ϖ ↑ Rd:

zi = 8 + ϖi, i = 1, 2, . . . , d,

where 8 ⇑ N (0, 0.02) and ϖi ⇑ N (i ⇓ 0.03, i ⇓ 0.025). When solving the Sinkhorn DRO

formulation, we take the Bregman divergence Dϖ as the KL-divergence when performing

BSMD algorithm in Algorithm 7, allowing for efficient implementation [39].

We quantify the performance of a given solution using the same criterion defined in Sec-

tion 5.5.1 and generate box plots using 500 independent trials. Fig. 5.5a) reports the scenario

where the data dimension d = 30 is fixed and sample size n ↑ {30, 50, 100, 150, 200, 400},

and Fig. 5.5b) reports the scenario where the sample size n = 100 is fixed and the num-

ber of assets d ↑ {5, 10, 20, 40, 80, 100}. We find that the KL-DRO model does not have

competitive performance compared to other DRO models, especially as the data dimension

d increases. This is because the ambiguity set of KL-DRO model only takes into account

those distributions sharing the same support as the nominal distribution, which seems to be

restrictive, especially for high-dimensional settings. While 1-WDRO or 2-WDRO model

has better out-of-sample performance than the SAA model, the corresponding 1-SDRO or

2-SDRO model has clearer improvements, as it consistently scores higher in the box plots.

Finally, we show the coefficient of prescriptiveness of WDRO/SDRO models with different

parameters for the instance (n, d) = (30, 30) in Fig. 5.6 (other instances can be found in

Appendix D.2.4). Similar as in the newsvendor problem, we observe that there exists a large

number of parameter choices of SDRO models that outperform WDRO models, as indicated
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by many green triangles in heatmap plots.

Figure 5.6: Experiment results of the portfolio optimization model with (n, d) = (30, 30) in
heatmaps. The four subplots correspond to the heatmap plot of the coefficient of prescrip-
iveness for 1-SDRO, 1-WDRO, 2-SDRO, and 2-WDRO models with varying parameters.
For SDRO models, we add a green triangle for each radius-regularization combination that
outperforms the corresponding WDRO models with the same radius choice.

5.5.3 Adversarial Multi-class Logistic Regression

Adversarial machine learning is an emerging topic in artificial intelligence, aiming to

develop models that are robust against (potentially adversarial) data perturbations. It has

been observed that small perturbations to the data can cause well-trained machine learning

models to produce unexpectedly inaccurate predictions [137]. In real applications involving

high-stake environments, such as self-driving and automated tumor detection, ensuring

model robustness is essential for reliability and safety. Among existing approaches that

produce robust machine learning models [146, 212, 240, 241, 242, 260, 286, 296], stands

out as a particularly effective method and provides certifiable robustness [286]. In this

subsection, we examine the performance of various DRO approaches for multi-class logistic
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Figure 5.7: Results of adversarial training on various image datasets with different types of
adversarial attack. From left to right, the figures correspond to (a) white Laplacian noise
attack; (b) ϱ1-norm PGD attack; (c) white Gaussian noise attack; and (d) ϱ2-norm PGD
attack. From top to bottom, the figures correspond to (a) MNIST dataset; (b) CIFAR-10
dataset; (c) tinyImageNet dataset; and (d) STL-10 dataset.

regression with data perturbations. Given a feature vector x ↑ Rd and its label y ↑ [C],

we denote y ↑ {0, 1}C as the corresponding one-hot label vector, and define the negative

likelihood loss

hB(x,y) = ↗yTBTx + log

1

TeB
T

x

,

where B := [w1, . . . , wK ] denotes the parameters of the linear classifier. Let P̂ be the
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empirical distribution from training samples. Since the testing samples may have slightly

different data distributions than the training samples, the DRO model aims to solve the

following optimization problem to mitigate the impact of data perturbations:

min
B

max
P↔Bω,ε(P̂)

E(x,y)↓P
[
hB(x,y)

]
.

It is assumed that the data perturbation only happens for the feature vector x but not the

label y.

We conduct experiments on four large-scale datasets: MNIST [188], CIFAR-10 [179],

tinyImageNet [294], and STL-10 [82]. We pre-process these datasets using the ResNet-

18 network [145] pre-trained on the ImageNet dataset to extract linear features. Since

this network has learned a rich set of hierarchical features from the large and diverse

ImageNet dataset, it typically extracts useful features for other image datasets. We then add

different types of perturbations to the testing datasets, such as white Laplace noise, white

Gaussian noise, and ϱp-norm adversarial projected gradient descent (PGD) attacks [212]

with p ↑ {1, 2}. The level of perturbation is normalized by the averaged ϱ2 norm of

the feature vectors from testing dataset. See the detailed procedure for generating data

perturbations and statistics on pre-processed datasets in Appendix D.1.3. We use the mis-

classification rate on testing dataset to measure the performance of the obtained classifers.

For baseline DRO models, we solve their Lagrangian relaxation, which adds the penalty

of the statistical distance into the objective to ensure efficient implementation. To make fair

comparisons, we tune the penalty parameter for each method such that the 2-Wasserstein

distance between the nominal distribution and its perturbed one is controlled within 1 :=

0.05 · E[→x→2
2] (expectation taken with respect to the training dataset). For SDRO methods,

we fix ϖ = 0.1 unless otherwise stated. It is noteworthy that solving the Lagrangian

relaxation of 2-WDRO has global convergence guarantees only when the penalty parameter

is sufficiently large [286], which is not the case for this example. In general, solving 1-
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or 2-WDRO model reduces to solving a convex-non-concave minimax game, and we try

gradient descent ascent [286, Algorithm 1] as a heuristic.

Figure 5.8: Experiment results of the adversarial classification problem with tinyImagenet
dataset. The subplots from left to right correspond to the misclassification errors of SDRO
and WDRO models with different types of adversarial attack. For SDRO models we vary
the regularization parameter ϖ.

Fig. 5.7 presents the classification results for different types of adversarial attacks with

varying levels of perturbations on the datasets. We observe that as the level of perturbations

on the testing samples increases, all methods tend to perform worse. However, both the

1-SDRO and 2-SDRO models show a slower trend of increasing error rates than other

benchmarks across all types of adversarial attacks and all datasets. This suggests that

SDRO models can be a suitable choice for adversarial robust training. Fig.5.8 presents

the misclassification rates of SDRO models under different types of adversarial attacks

on the TinyImageNet dataset (additional results are provided in Appendix D.2.4). For

baseline comparison, we also report the performance of WDRO models. In all subplots,

the perturbation levels (normalized by the data norm) are fixed at 0.004, 0.006, 0.01, and

0.016 for the four adversarial attacks, while the penalty parameter is set to 4 = 10 for both

WDRO and SDRO models. The figure demonstrates that SDRO outperforms WDRO across

a wide range of regularization parameters.
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5.6 Concluding Remarks

In this paper, we investigated a new distributionally robust optimization framework based

on the Sinkhorn distance. By developing a strong dual reformulation and a biased stochastic

mirror descent algorithm, we have shown that the resulting problem is efficient to solve

under mild assumptions. Analysis of the worst-case distribution indicates that Sinkhorn

DRO hedges a more reasonable set of adverse scenarios and is thus less conservative than

Wasserstein DRO. Extensive numerical experiments demonstrated that Sinkhorn DRO is

a promising candidate for modeling distributional ambiguities in decision-making under

uncertainty.

In the meantime, several topics worth investigating are left for future work. For example,

it is desirable to study the statistical performance guarantees under suitable choices of hyper-

parameters. It is also of research interest to develop and analyze optimization algorithms

with less restrictive assumptions and sharper complexity bounds. Exploring and discovering

the benefits of Sinkhorn DRO in other applications may also be of future interest.
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CHAPTER 6

REGULARIZATION FOR ADVERSARIAL ROBUST LEARNING

Despite the growing prevalence of artificial neural networks in real-world applications, their

vulnerability to adversarial attacks remains a significant concern, which motivates us to

investigate the robustness of machine learning models. While various heuristics aim to

optimize the distributionally robust risk using the ↓-Wasserstein metric, such a notion of

robustness frequently encounters computation intractability. To tackle the computational

challenge, we develop a novel approach to adversarial training that integrates ↼-divergence

regularization into the distributionally robust risk function. This regularization brings a

notable improvement in computation compared with the original formulation. We develop

stochastic gradient methods with biased oracles to solve this problem efficiently, achiev-

ing the near-optimal sample complexity. Moreover, we establish its regularization effects

and demonstrate it is asymptotic equivalence to a regularized empirical risk minimization

framework, by considering various scaling regimes of the regularization parameter and

robustness level. These regimes yield gradient norm regularization, variance regularization,

or a smoothed gradient norm regularization that interpolates between these extremes. We nu-

merically validate our proposed method in supervised learning, reinforcement learning, and

contextual learning and showcase its state-of-the-art performance against various adversarial

attacks. This work is mainly summarized in [310].

6.1 Introduction

Machine learning models are highly vulnerable to potential adversarial attack on their input

data, which intends to cause wrong outputs. Even if the adversarial input is slightly different

from the clean input drawn from the data distribution, these machine learning models can

make a wrong decision. Goodfellow et al. [137] provided an example that, after adding a
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tiny adversarial noise to an image, a well-trained classification model may make a wrong

prediction, even when such data perturbations are imperceptible to visual eyes.

Given that modern machine learning models have been applied in many safety-critical

tasks, such as autonomous driving, medical diagnosis, security systems, etc, improving the

resilience of these models against adversarial attacks in such contexts is of great importance.

Neglecting to do so could be risky or unethical and may result in severe consequences. For

example, if we use machine learning models in self-driving cars, adversarial examples could

allow an attacker to cause the car to take unwanted actions.

Adversarial training is a process of training machine learning model to make it more

robust to potential adversarial attacks. To be precise, it aims to optimize the following robust

optimization (RO) formulation, called adversarial risk minimization:

min
⇁↔%

{
E

z↓P̂

[
Rρ(6; z)

]}
, where Rρ(6; z) ↭ sup

z↓↔Bω(z)
f⇁(z

≃
). (6.1)

Here P̂ represents the observed distribution on data, 6 represents the machine learning model,

f⇁(z) is a loss function, and the uncertainty set is defined as Bρ(x) ↭ {z ↑ Z : →z↗x→ ∝ 2}

for some norm function → · → and some radius 2 > 0. In other words, this formulation

seeks to train a machine learning model based on adversarial perturbations of data, where

the adversarial perturbations can be found by considering all possible inputs around the

data with radius 2 and picking the one that yields the worst-case loss. Unfortunately,

problem (6.1) is typically intractable to solve because the inner supremum objective function

is in general nonconcave in z. As pointed out by [287], solving the inner supremum

problem in (6.1) with deep neural network loss functions is NP-hard. Several heuristic

algorithms [63, 137, 185, 212, 241, 296] have been proposed to approximately find the

optimal solution of (6.1), but they lack of global convergence guarantees and it remains an

open question whether they can accurately and efficiently find the adversarial perturbations

of data.
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In this paper, we propose a new approach for adversarial risk minimization by adding a

↼-divergence regularization. Here is a brief overview. By [123, Lemma EC.2], Problem (6.1)

can be viewed as the dual reformulation of the following DRO problem:

min
⇁↔%


sup
P

{
Ez↓P[f⇁(z)] : W→(P, P̂ ) ∝ 2

}
, (↓-WDRO)

where W→(·, ·) is the ↓-Wasserstein metric defined as

W→(P,Q) = inf
γ





ess.sup

γ
→▷1 ↗ ▷2→ :

5 is a joint distribution of ▷1 and ▷2

with marginals P and Q, respectively





.

Therefore, it is convenient to introduce the optimal transport mapping 5 to re-write prob-

lem (↓-WDRO) as

min
⇁↔%





sup
P,γ





EP[f⇁(z)] :

Proj1#5 = P̂ , Proj2#5 = P

ess.sup
γ
→▷1 ↗ ▷2→ ∝ 2










. (6.2)

As long as the loss f⇁(z) is nonconcave in z, such as neural networks and other complex

machine learning models, problem (6.2) is intractable for arbitrary radius 2 > 0. Instead, we

add ↼-divergence regularization to the objective in (6.2), and focus on solving the following

formulation:

min
⇁↔%





sup
P,γ





Ez↓P [f⇁(z)] ↗ ςD1(5, 50) :

Proj1#5 = P̂ , Proj2#5 = P

ess.sup
γ
→▷1 ↗ ▷2→ ∝ 2










,

(Reg-↓-WDRO)

where 50 is the reference measure satisfying d50(x, z) = dP̂ (x) dεx(z), with εx being the

uniform probability measure on Bρ(x), and D1(5, 50) is the ↼-divergence [89] between 5

and 50. In the following, we summarize several notable features of our proposed formulation.

140



Strong Dual Reformulation.

By the duality result in Theorem 23, (Reg-↓-WDRO) admits the strong dual reformulation:

min
⇁↔%

E
z↓P̂

[8◁(z)], (6.3a)

where 8◁(z) = inf
µ↔R


µ + Ez↓↓εx

[
(ς↼)

⇑f⇁(z
≃
) ↗ µ

] 
. (6.3b)

Compared with the original formulation (6.1), we replace the worst-case loss Rρ(6; z)

defined in (6.1) by ↼◁(z), which is a variant of optimized certainty equivalent (OCE) risk

measure studied in [26]. Subsequently, it can be shown that ↼◁(x) is a smooth approximation

of the optimal value Rρ(6; x).

Worst-case Distribution Characterization.

We characterize the worst-case distribution for problem (Reg-↓-WDRO) in Remark 6.2.1

and display its simplified expressions in Examples 5-9. In contrast to the conventional

formulation (↓-WDRO) that deterministically transports each data from P̂ to its extreme

perturbation, the worst-case distribution of our formulation transports each data x towards

the entire domain set Bρ(x) through specific absolutely continuous distributions. This obser-

vation indicates that our formulation (Reg-↓-WDRO) is well-suited for adversarial defense

where the data distribution after adversarial attack manifests as absolutely continuous, such

as through the addition of white noise to the data.

Efficient Stochastic Optimization Algorithm.

We adopt the idea of stochastic approximation to solve our reformulation (6.3) by iteratively

obtaining a stochastic gradient estimator and next performing projected gradient update. To

tackle the difficulty that one cannot obtain the unbiased gradient estimator, we introduce and

analyze stochastic gradient methods with biased oracles inspired from [155]. Our proposed
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algorithm achieves Õ(ϖ↑2
) sample complexity for finding ϖ-optimal solution for convex

f⇁(z) and general choices of ↼-divergence, and Õ(ϖ↑4
) sample complexity for finding ϖ-

stationary point for nonconvex f⇁(z) and KL-divergence. These sample complexity results

are near-optimal up to a near-constant factor.

Regularization Effects.

We develop regularization effects for problem (Reg-↓-WDRO) in Section 6.4. Specifically,

we show that it is asymptotically equivalent to regularized ERM formulations under three

different scalings of the regularization value ϖ and radius 2: Let ↽ be an uniform distribution

supported on the unit norm ball B1(0), and → · →⇑ be the dual norm of → · →. When 2, ς ⇒ 0,

it holds that (Reg-↓-WDRO) = min
⇁↔%

E
z↓P̂

[f⇁(z)] + E(f⇁; 2, ς), where

E(f ; ⇀, φ) F






⇀ · E
z↓P̂


inf
µ↔R


µ +

1

C
Eb↓⇀

[
⇁⇑


C · (∞f(z)

Tb ↗ µ)

]
, if

⇀

φ
⇒ C,

⇀ · E
z↓P̂

[→∞f(z)→⇑], if
⇀

φ
⇒ ↓,

⇀2

2φ · ⇁≃≃(1)
· E

z↓P̂

[
Varb↓⇀ [∞f(z)

Tb]
]
, if

⇀

φ
⇒ 0.

In other words, when 2/ς ⇒ ↓, it corresponds to the gradient norm regularized ERM

formulation; when 2/ς ⇒ 0, it corresponds to a special gradient variance regularized ERM

formulation; when 2/ς ⇒ C, it corresponds to a regularized formulation that interpolates

between these extreme cases.

Generalization Error Analysis.

We investigate the generalization properties of our proposed adversarial training framework.

In particular, the optimal value in (Reg-↓-WDRO) is the confidence upper bound of

its population version up to a negligible residual error. Next, we present the specific

generalization error bound for linear and neural network function classes.
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Numerical Applications.

Finally, we provide numerical experiments in Section 6.6 on supervised learning, reinforce-

ment learning, and contextual learning. Numerical results demonstrate the state-of-the-art

performance attained by our regularized adversarial learning framework against various

adversarial attacks.

Related Work

Adversarial Learning.

Ever since the seminal work [137] illustrated the vulnerability of neural networks to ad-

versarial perturbations, the research on adversarial attack and defense has progressively

gained much attention in the literature. The NP-hardness of solving the adversarial train-

ing problem (6.1) with ReLU neural network structure has been proved in Sinha et al.

[287], indicating that one should resort to efficient approximation algorithms with sat-

isfactory solution quality. Numerous approaches for adversarial defense have been put

forth [63, 137, 185, 212, 241, 296], aiming to develop heuristic algorithms to optimize the

formulation (6.1) relying on the local linearization (i.e., first-order Taylor expansion) of

the loss f⇁. Unfortunately, the Taylor expansion may not guarantee an accurate estimate of

the original objective in (6.1), especially when the robustness level 2 is moderate or large.

Henceforth, these algorithms often fail to find the worst-case perturbations of the adversarial

training.

Distributionally Robust Optimization.

Our study is substantially related to the DRO framework. In literature, the modeling of

distributional uncertainty sets (also called ambiguity sets) for DRO can be categorized into

two approaches. The first considers finite-dimensional parameterizations of the ambigu-

ity sets by taking into account the support, shape, and moment information [32, 74, 94,
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135, 253, 265, 298, 318, 338]. The second approach, which has received great attention

recently, constructs ambiguity sets using non-parametric statistical discrepancy, including

f -divergence [22, 24, 108, 161, 315], Wasserstein distance and its entropic-regularized

variant [13, 44, 73, 124, 226, 249, 305, 309, 319, 324, 336], and maximum mean discrep-

ancy [290, 337].

There are many results on the computational traceability of DRO. Sinha et al. [287]

showed that replacing ↓-Wasserstein distance with 2-Wasserstein distance in (↓-WDRO)

yields more tractable formulations. Unfortunately, their proposed algorithm necessitates

a sufficiently small robustness level such that the involved subproblem becomes strongly

convex, which is not well-suited for adversarial training in scenarios with large perturbations.

Wang et al. [305] added entropic regularization regarding the p-WDRO formulation to

develop more efficient algorithms. We highlight that their result cannot be applied to the

entropic regularization for ↓-WDRO setup because the associated transport cost function is

not finite-valued.

Stochastic Gradient Methods with Biased Gradient Oracles.

Stochastic biased gradient methods have received great attention in both theory and ap-

plications. References [4, 68, 151, 153] construct gradient estimators with small biases

at each iteration and analyze the iteration complexity of their proposed algorithms, ignor-

ing the cost of querying biased gradient oracles. Hu et al. [155, 157] proposed efficient

gradient estimators using multi-level Monte-Carlo (MLMC) simulation and provided a

comprehensive analysis of the total complexity of their algorithms by considering both

iteration and per-iteration costs. This kind of algorithm is especially useful when con-

structing unbiased estimators can be prohibitively expansive or even infeasible for many

emerging machine learning and data science applications, such as ↼-divergence/Sinkhorn

DRO [191, 305, 335], meta learning [158, 167], and contextual learning [104]. We show

that our formulation (Reg-↓-WDRO) can also be solved using this type of approach.
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Notations. Denote by Proj1#5,Proj2#5 the first and the second marginal distributions of 5,

respectively. For a measurable set Z , denote by P(Z) the set of probability measures on Z .

Denote by suppP the support of probability distribution P. Given a measure µ and a measur-

able variable f : Z ⇒ R, we write Ez↓µ[f ] for
∫
f(z) dµ(z). Given a subset E in Euclidean

space, let vol(E) denote its volume. Let 6⇑ ↑ arg min
⇁↔%

F (6). We say a given random vector

6 is a φ-optimal solution if E[F (6) ↗ F (6⇑
)] ∝ φ. In addition, we say 6 is a φ-stationary

point if for some step size 5 > 0, it holds that E
∥∥∥ 1

γ

[
6 ↗ Proj%


6 ↗ φ∞F (6)

]∥∥∥
2

2
∝ φ2.

For a given probability measure µ in Rd, denote by f#µ the pushforward measure of µ by

f : Rd ⇒ R.

6.2 Phi-Divergence Regularized Adversarial Robust Training

In this section, we discuss the regularized formulation of the adversarial robust training

problem (6.2). Define the reference measure εz as the uniform probability measure supported

on Bρ(z) ̸ Z , i.e.,

dεz(ω)

dω
=

1{ω ↑ Bρ(z)}
vol(Bρ(z))

↭ V↑1
ρ

1{ω ↑ Bρ(z)}, (6.4)

where we denote Vρ = vol(Bρ(z)), since the volume of Bρ(z) is independent of the choice

of z. Next, we take the reference measure 50, a transport mapping from Z to Z , as

d50(z, z
≃
) = dP̂ (z) dεz(z

≃
), ↙z, z≃ ↑ Z.

Such a reference measure transports the probability mass of P̂ at z to its norm ball Bρ(z)

uniformly. With such a choice of 50, each probability mass of P̂ is allowed to move around its

neighborhood (the norm ball of radius 2) according to certain continuous probability density

values, which takes account into a flexible type of adversarial attack. With these notations,

we add the following ↼-divergence regularization on the formulation (6.2). Notably, it

ensures the worst-case distribution is absolutely continuous.
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Definition 12 (↼-divergence Regularization). Let ↼ : R ⇒ R+ ′ {↓} be a convex lower

semi-continuous function such that ↼(1) = 0,↼(x) = ↓ if x < 0. Given an optimal

transport mapping 5 ↑ P(Z2
), define the ↼-divergence regularization

D1(5, 50) = E(z,z↓)↓γ0


↼

(
d5(z, z≃

)

d50(z, z≃)

)
. A

For simplicity, we focus solely on the inner maximization and omit the dependence of

the parameter 6 on the loss f⇁(z). Now, the regularized formulation of (6.2) becomes

sup
P,γ





Ez↓P [f(z)] ↗ ςD1(5, 50) :

Proj1#5 = P̂ , Proj2#5 = P

ess.sup
γ
→▷1 ↗ ▷2→ ∝ 2





. (Primal-↼-Reg)

By convention, we say for an optimal solution (P⇑, 5⇑
) to (Primal-↼-Reg), if exists, the

distribution P⇑ is its worst-case distribution, and 5⇑ is its worst-case transport mapping.

Define the dual formulation of (Primal-↼-Reg) as

E
z↓P̂


inf
µ↔R


µ + Ez↓↓εz

[
(ς↼)

⇑f(z≃
) ↗ µ

] 
. (Dual-↼-Reg)

The following summarizes the main result in this section, which shows the strong duality

result, and reveals how to compute the worst-case distribution of (Primal-↼-Reg) from its

dual. The proof of Theorem 23 is provided in Appendix E.2.

Theorem 23 (Strong Duality). Assume that Z is a measurable space, f : Z ⇒ R′ {↓} is

a measurable function, and for every joint distribution 5 ↑ P(Z ⇓ Z) with Proj1#5 = P̂ ,

it has a regular conditional distribution 5z given the value of the first marginal equals z.

Then for any ς > 0, it holds that

(I) (Primal-↼-Reg) = (Dual-↼-Reg);

(II) Additionally assume that for P̂ -almost surely every z, there exists a primal-dual pair
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(µ⇑
z
, ▷⇑

z
) such that

▷⇑
z

↑ Z⇑
+, Eεz [▷

⇑
z
] = 1, ▷⇑

z
(ω) = (ς↼)

⇑≃[f(ω) ↗ µ⇑
z

]
, (6.5)

then there exists a worst-case distribution P⇑ having the density

dP⇑(ω)

dω
= V↑1

ρ
· E

z↓P̂

[
1{ω ↑ Bρ(z)} · ▷⇑

z
(ω)

]
.

Theorem 23 requires 5 having a regular conditional distribution 5z given the value of its

first marginal equals z. It simply means that for any given z ↑ supp P̂ , 5z is a well-defined

transition probability kernel, which always holds for Polish probability space. We refer to

[173, Chapter 5] for a detailed discussion of the regular conditional distribution.

6.2.1 Discussions

In the following examples, we show that for some common choices of the function ↼,

Condition (6.5) can be further simplified such that one can obtain more analytical expressions

of the worst-case distribution P⇑.

Example 5 (Indicator Regularization). For ω ↑ (0, 1], consider the indicator function ↼

such that ↼(x) = 0 for x ↑ [0,ω↑1
] and otherwise ↼(x) = ↓. Let µ⇑

z
be the left-side

(1 ↗ ω)-quantile of f#εz, which is also called the value-at-risk and denoted as V@R0,εz(f),

and define ▷⇑
z
(ω) = ω↑1 · 1{f(ω) ≃ µ⇑

z
}. One can verify that (µ⇑

z
, ▷⇑

z
) is a primal-dual

optimal solution to (6.5), and therefore the worst-case distribution P⇑ has the density

dP⇑(ω)

dω
= (ωVρ)

↑1 · E
z↓P̂

[
1

{
ω ↑ Bρ(z)

 ∧ 
f(ω) ≃ V@R0,εz(f)

}]
.

Define the average risk-at-risk (AVaR) functional AV@R0,P(f) = inf
µ

{
µ+ω↑1Ez↓P[f(z)↗

µ]+

}
, then

(Dual-↼-Reg) = E
z↓P̂

[
AV@R0,εz(f)

]
. A
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Example 6 (Entropic Regularization). Consider ↼(x) = x log x↗x+1, x ≃ 0. In this case,

it can be verified that the primal-dual pair to Condition (6.5) is unique and has closed-form

expression:

µ⇑
z

= ς logEϖ↓εz

[
exp

f(ω)

ς

]
, ▷⇑

z
(ω) = ωz · exp

f(ω)

ς


.

where ωz :=

Eϖ↓εz [e

f(ϖ)/◁
]
↑1 is a normalizing constant. Consequently, the worst-case

distribution P⇑ satisfies

dP⇑(ω)

dω
= V↑1

ρ
· E

z↓P̂

[
ωz · exp

f(ω)

ς


· 1{ω ↑ Bρ(z)}

]
,

and Problem (Dual-↼-Reg) simplifies into an expectation of logarithm of another condi-

tional expectation, which corresponds to the objective of conditional stochastic optimiza-

tion (CSO) [154, 159]:

(Dual-↼-Reg) = E
z↓P̂

[8Entr(z; ς)] , where 8Entr(z; ς) = ς logEz↓↓εz

[
exp

(
f(z≃

)

ς

) ]
.

Compared with the original formulation (6.1), the entropic regularization framework

replaces the worst-case loss sup
z↓↔Bω(z) f(z≃

) by 8Entr(z; ς). Based on the well-known

Laplace’s method (also called the log-sum-exp approximation) [61], this framework pro-

vides a smooth approximation of the optimal value in (6.1). A

Example 7 (Quadratic Regularization). Consider ↼(x) =
1
2(x

2 ↗ 1), x ≃ 0. By Condi-

tion (6.5), one can verify that µ⇑
z

is a solution to the scalar equation Eϖ↓εz [f(ω)↗µz]+ = ς

and ▷⇑
z
(ω) = ς↑1


f(ω) ↗ µ⇑

z


+

. Hence, the worst-case distribution P⇑ has the density

dP⇑(ω)

dω
= (ςVρ)

↑1 · E
z↓P̂

[
1
{
ω ↑ Bρ(z)

}
·

f(ω) ↗ µ⇑

z


+

]
.
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Additionally,

(Dual-↼-Reg) = E
z↓P̂


inf
µ↔R


1

2ς
Ez↓↓εx [f(z≃

) ↗ µ]
2
+ +

ς

2
+ µ


. A

Compared to entropic regularization, this method requires solving a one-dimensional min-

imization problem before determining the worst-case distribution density or evaluating

the dual reformulation, which can be accomplished using a bisection search algorithm.

Consequently, the computational cost may be higher. However, this regularization is more

stable, especially for small values of ς, whereas using small ς in entropic regularization can

lead to numerical errors due to the log-sum-exp operator. Besides, quadratic regularization

implicitly promotes sparsity on the support of the worst-case distribution, as the density

corresponding to support point ω equals zero when f(ω) < µ⇑
z

for P̂ -almost sure z.

Example 8 (Absolute Value Regularization). Consider ↼(x) = |x ↗ 1|, x ≃ 0. Assume

→f→εz ,→ := ess-sup
εz
f = max

z↓↔Bω(z)
f(z≃

) < ↓ (6.6)

for P̂ -almost surely z. One can verify that

µ⇑
z

= ↗ς + →f→εz ,→, ▷⇑
z
(ω) = 1

{
f(ω) + 2ς ↗ →f→εz ,→ ≃ 0

}
.

Hence, the worst-case distribution P⇑ has the density

dP⇑(ω)

dω
= V↑1

ρ
· E

z↓P̂

[
1

{
ω ↑ Bρ(z)

∧
f(ω) + 2ς ↗ →f→εz ,→ ≃ 0

}]
.

In this case,

(Dual-↼-Reg) = E
z↓P̂

[
→f→εz ,→ ↗ 2ς + Ez↓↓εz

[
f(z≃

) ↗ →f→εz ,→ + 2ς
]

+

]
. A

Example 9 (Hinge Loss Regularization). Consider ↼(x) = (x ↗ 1)+, x ≃ 0. Under the
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same assumption as in Example 8, one can verify

µ⇑
z

= ↗ς + →f→εz ,→, ▷⇑
z
(ω) = 1{f(ω) ↗ µ⇑

z
≃ 0}.

Hence, the worst-case distribution P⇑ has the density

dP⇑(ω)

dω
= V↑1

ρ
· E

z↓P̂

[
1

{
ω ↑ Bρ(z)

∧
f(ω) + ς ↗ →f→εz ,→ ≃ 0

}]
.

In this case,

(Dual-↼-Reg) = E
z↓P̂

[
→f→εz ,→ ↗ ς + Ez↓↓εz

[
f(z≃

) ↗ →f→εz ,→ + ς
]

+

]
. A

Remark 24 (Connections with Bayesian DRO). Our formulation is closely related to the

dual formulation of Bayesian DRO [282, Eq. (2.10)] with two major differences: (i) we treat

the reference measure εz as an uniform distribution supported on Bρ(z), while the authors

therein consider a more general conditional distribution; (ii) we fix the regularization value

ς, while the authors therein treat it as a Lagrangian multiplier associated with the hard

constraint Ez↓↓εz

[
↼


dγz(z↓)
dεz(z↓)

]
∝ ς≃ for some constant ς≃ > 0. A

Following the discussion in Example 6, we are curious to study under which condition

will the regularized formulation serve as the smooth approximation of the classical adversar-

ial training formulation as the regularization value vanishes, called the consistency property.

Proposition 6 gives its sufficient condition. Its proof is provided in Appendix E.2.

Assumption 6. Assume either one of the following conditions hold:

(I) limt↗→
1(t)

t
< ↓;

(II) limt↗→
1(t)

t
= ↓, dom(↼) = R+.

Proposition 6 (Consistency of Regularized Formulation). Suppose Assumption 6 holds,

and for any ς > 0 and P̂ -almost sure z, the minimizer to the inner infimum problem in
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(Dual-↼-Reg) exists and is finite. Then, as ς ⇒ 0, the optimal value of (Primal-↼-Reg)

converges to E
z↓P̂

[
maxz↓↔Bω(z) f(z≃

)
]
.

Assumption 6 is widely utilized in the ↼-divergence DRO literature [207]. Within this

context, Assumption 6(I) is referred as popping property and the first condition of 6(II) is

referred as non-popping property. Under the non-popping property, we further assume that

the domain of ↼ is R+. This assumption is crucial: the indicator function in Example 5 does

not satisfy this assumption, and consequently, the consistency property in this case does not

hold. However, as demonstrated in Proposition 6, the divergence choices in Examples 6-9 do

satisfy this consistency property. As we will demonstrate in the next subsection, by taking

the regularization value ς ⇒ 0, the worst-case distributions from Examples 6-9 indeed

concentrate around the worse-case perturbation area.

6.2.2 Visualization of Worst-case Distribution

In this subsection, we display the worst-case distributions studied in Examples 5-9 using a

toy example. We obtain the densities of these distributions by discretizing the continuous

distribution εz using 10
4 grid points. The loss f(·) is constructed using a three-layer

neural network, whose detailed configuration is provided in Appendix E.7 and landscape

is displayed in Figure 6.1. We take P̂ = φ0, and the domain of adversarial attack as

Bρ(z) = [↗5, 5]. The inner maximization problem corresponding to the un-regularized

formulation (6.1) amounts to solve the optimization problem maxz↔[↑5,5] f(z). From the

plot of Figure 6.1, we can see that solving the un-regularized adversarial learning problem

is highly non-trivial because the inner maximization problem contains many local maxima,

and it is difficult to find the global maxima.

The worse-case distributions are provided in Figure 6.2, in which different columns

correspond to different regularizations (i.e., indicator, entropic, quadratic, absolute value, or

hinge loss), and different rows correspond to different choices of parameters: for indicator

regularization, we tune the risk level ω ↑ (0, 1], whereas for other regularizations, we tune
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Figure 6.1: Landscape of the 1-dimensional objective f(·)

Indicator	 Entropic Quadratic Absolute	Value Hinge	Loss

Figure 6.2: Worse-case distributions for different kinds of regularizations and different
choices of parameters (including risk level ω and regularization level ς).

the regularization level ς. Our findings are summarized as follows.

(I) For indicator regularization, the worst-case distribution does not vary w.r.t. the choice

of regularization value ς but the risk level ω. From the plot, we can see that the
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worst-case distribution for ω = 1 becomes the uniform distribution around the domain,

whereas as ω decreases, it tends to center around the worst-case perturbation area, i.e.,

the area close to x = 5.

(II) For entropic regularization, we find for large ς, the worst-case distribution tends to

be uniform over its support, whereas, for small ς, the worst-case distribution tends

to center around the worst-case perturbation area. Compared to the plot for indicator

regularization, the worst-case distribution here demonstrates greater flexibility by

allowing unequal weight values across different support points.

(III) For quadratic regularization, we obtain similar observations as in entropic regularization.

Besides, the maximum density value does not increase to infinity at such a quick rate,

which demonstrates that the quadratic regularized formulation is more numerically

stable to solve. One should also notice that even for small ς, the support of the worst-

case distribution from entropic regularization is still the whole domain [↗5, 5], whereas

most density values can be extremely small. In contrast, the support of that from

quadratic regularization only takes a tiny proportion of the whole domain.

(IV) For absolute value and hinge loss regularizations, unlike entropic or quadratic regular-

ization, the worst-case distributions here are constructed using histograms with equal

weights assigned to different support points. This indicates that these two choices lack

the flexibility needed to represent a meaningful worst-case distribution.

Based on the discussions above, we recommend using entropic or quadratic regular-

ization for adversarial robust learning in practice. Since these two regularizations are

special cases of the Cressie-Read family of ↼-divergences [90], exploring other types of

↼-divergences as regularizations opens an interesting avenue for further research.
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6.3 Optimization Algorithm

We now develop stochastic gradient-type methods to solve the proposed formulation (Reg-↓-WDRO).

We first re-write it as

min
⇁↔%

{
F (6) = E

z↓P̂
[R(6; z)]

}
(6.7a)

where R(6; z) = sup
γ↔P(Z)


Ez↓↓γ[f⇁(z)] ↗ ςEz↓↓εz


↼

(
d5(z≃

)

dεz(z≃)

)
, ↙z. (6.7b)

The formulation above is difficult to solve because each z ↑ supp P̂ corresponds to a lower-

level subproblem (6.7b). Consequently, Problem (6.7) necessitates solving a large number

of these subproblems, given that the size of supp P̂ is typically large or even uncountably

infinite. In contrast, we will provide an efficient optimization algorithm whose sample

complexity is near-optimal and independent of the size of supp P̂ .

Throughout this section, we assume the divergence function ↼ is strongly convex with

modulus 7, which is a standard condition studied in literature. Thus, for each z, the

maximizer (denoted as 5̄z) to the lower level problem (6.7b) is unique and guaranteed to

exist. Therefore, we update 6 in the outer minimization problem according to the projected

stochastic gradient descent (SGD) 1 outlined in Algorithm 10.

Algorithm 10 Projected SGD for solving (6.7)
Require: Maximum iteration T , initial guess 61, constant stepsize 0

1: for t = 1, . . . , T ↗ 1 do
2: Obtain a stochastic estimator of the (sub-)gradient ∞F (6t).
3: Update 6t+1 = Proj%


6t ↗ 0V (6t)


.

4: end for
Output iteration points {6t}T

t=1.

The Step 2 of Algorithm 10 requires the construction of the gradient of the objective at
1The projection Proj!(·) can be replaced by the generalized projection mapping defined by the proximal

operator. This modified algorithm is called stochastic mirror descent, which incorporates the geometry of the
constraint set ! and results in the same order of complexity bound but with (potentially) lower constant.
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the upper level. According to the Danskin’s theorem, it holds that

∞F (6) = E
z↓P̂

[∞R(6; z)] = E
z↓P̂

Ez↓↓γ̄z [∞f⇁(z
≃
)].

In the following, we discuss how to construct the stochastic (sub-)gradient estimator V (·) in

Step 2 of Algorithm 10. More specifically, how to construct the estimator of ∞R(6; z).

6.3.1 Gradient Estimators

Since ∞R(6; z) is challenging to estimate, we first construct an approximation objective

of R(6; z) whose gradient is easier to estimate. Denote the collection of random sampling

parameters ▷▷
:= (z, {z≃

i
}i↔[2ϖ]), where z ⇑ P̂ and {z≃

i
}i↔[2ϖ] are 2

▷ i.i.d. samples generated

from distribution εz. Then, we define the approximation function

F ▷
(6) = Eϱϖ

[
R̂


6; {z≃

i
}i↔[2ϖ]

]
, (6.8)

where for fixed decision 6, sample z, and sample set {z≃
i
} consisting of m samples, define

R̂

6; {z≃

i
}


= max
γ↔#m





∑

i↔[m]

5if⇁(z
≃
i
) ↗ ς

m

∑

i↔[m]

↼(m5i)




 . (6.9)

The function R̂

6; {z≃

i
}


can be viewed as the optimal value of the ↼-divergence DRO with

discrete empirical distribution supported on {z≃
i
}. The high-level idea of the approximation

function F ▷
(6) is to replace the lower-level problem (6.7b), the ↼-divergence DRO with

continuous reference distribution, using another ↼-divergence DRO with its empirical

reference distribution. As the number of samples of the empirical reference distribution

goes to infinity, one can expect that F ▷
(6) approximates the original objective F (6) with

negligible error.

It is easy to generate gradient estimators for the approximation function F ▷
(6). For

fixed random sampling parameter ▷▷, assume there exists an oracle that returns 5̃n1:n2 as
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near-optimal probability mass values for R̂

6; {z≃

i
}i↔[n1:n2]


, and define the gradient

∞R̃

6; {z≃

i
}i↔[n1:n2]


=

∑

i↔[n1:n2]

(5̃n1:n2)i∞⇁f⇁(z
≃
i
). (6.10)

Due to the near-optimality of 5̃n1:n2 , it holds that

∞R̃

6; {z≃

i
}i↔[n1:n2]


G ∞R̂


6; {z≃

i
}i↔[n1:n2]


.

Next, we define

g▷
(6, ▷▷

) = ∞R̃

6; {z≃

i
}i↔[1:2ϖ]


(6.11)

G▷
(6, ▷▷

) = ∞R̃

6; {z≃

i
}i↔[1:2ϖ]


↗ 1

2

[
∞R̃


6; {z≃

i
}i↔[1:2ϖ→1]


+ ∞R̃


6; {z≃

i
}i↔[2ϖ→1+1:2ϖ]

]
.

(6.12)

Now, we list two choices of gradient estimators at a point 6:

Stochastic Gradient (SG) Estimator. For fixed level L, generate no
L

i.i.d. copies of ▷L,

denoted as {▷L

i
}. Then construct

V SG
(6) =

1

no
L

n
o
L∑

i=1

gL
(6, ▷L

i
). (6.13a)

Randomized Truncation MLMC (RT-MLMC) Estimator. For fixed level L, generate no
L

i.i.d. random levels following the truncated geometric distribution P(L̂ = ϱ) =
2→ϖ

2↑2→L , ϱ =

0, . . . , L, denoted as L̂1, . . . , L̂n
o
L

. Then construct

V RT-MLMC
(6) =

1

no
L

n
o
L∑

i=1

P(L̂ = L̂i)
↑1 · GL̂i(6, ▷ L̂i

i
). (6.13b)

The SG estimator is a conventional approach to estimate ∞F ▷
(6). Instead, the RT-MLMC

estimator has the following attractive features:
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(I) It constitutes a gradient estimator of the approximation function FL
(6) with a small

bias. More specifically, RT-MLMC and SG estimators have the same bias:

E[V RT-MLMC
(6)] = E

L̂1


1

P(L̂ = L̂1)
E

ϱL̂1
[GL̂1(6, ▷ L̂1)]



=

L∑

▷=0

P(L̂ = ϱ) ·


1

P(L̂ = ϱ)
Eϱϖ [G

▷
(6, ▷▷

)]



=

L∑

▷=0

Eϱϖ [G
▷
(6, ▷▷

)] = E
z↓P̂

E{z
↓

i}i≃[2ϖ]↓εz

[
∞R̃


6; {z≃

i
}i↔[2ϖ]

]

= E[V SG
(6)],

and the bias vanishes quickly as L ⇒ ↓.

(II) Since ∞R̃

6; {z≃

i
}i↔[1:2ϖ]


,∞R̃


6; {z≃

i
}i↔[1:2ϖ→1]


, and ∞R̃


6; {z≃

i
}i↔[2ϖ→1+1:2ϖ]


are gen-

erated using the same random sampling parameters ▷▷, they are highly correlated, which

indicates the stochastic estimator G▷
(6, ▷▷

) defined in (6.12) has small second-order

moment and variance thanks to the control variate effect [261], making it a suitable

recipe for gradient simulation.

(III) The construction of SG estimator requires generating no
L

· 2
L

= O(2
L
) samples, while

the (expected) number of samples for RT-MLMC is no
L
· L

2↑2→L = O(L). As a result, the

computation of RT-MLMC estimator is remarkably smaller than that of SG estimator.

6.3.2 Solving penalized ↼-divergence DRO with finite support

In the last subsection, it is assumed that one has the oracle for solving the generic penalized

↼-divergence DRO with m support points {f1, . . . , fm}:

R = max
γ↔#m





∑

i↔[m]

5ifi ↗ ς

m

∑

i↔[m]

↼(m5i)




 . (6.14)
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The formulation (6.9) is a special case of this problem by taking fi = f⇁(z≃
i
), ↙i. In the

following, we provide an algorithm that returns returns the optimal solution to (6.14) up to

precision ϖ. We write its Lagrangian reformulation as

min
µ

max
γ↔Rm

+

{
L(4, 5) =

∑

i↔[m]

5ifi ↗ ς

m

∑

i↔[m]

↼(m5i) + µ

1 ↗

∑

i↔[m]

5i

}
.

Based on this minimax formulation, we present an efficient algorithm that finds a near-

optimal primal-dual solution to (6.14) in Algorithm 11, whose complexity analysis is

presented in Proposition 7. The complexity is quantified as the number of times to query

samples f1, . . . , fm. Its proof is provided in Appendix E.3.

Algorithm 11 Bisection search for solving (6.14)
Require: Interval [µ, µ], maximum iteration T , constant K = lims↗0+ ↼≃

(s).
1: for t = 1, . . . , T do
2: Update µ =

1
2(µ + µ)

3: Obtain index set N =

{
i ↑ [m] : fi ∝ µ + ςK

}
.

4: Compute h(µ) :=
1
m

∑
i↔[m]\N (↼≃

)
↑1


fi↑µ

◁


↗ 1.

5: Update µ = µ if h(µ) ∝ 0 and otherwise µ = µ.
6: end for
7: Obtain 5⇑ such that 5i = 0 if i ↑ N and otherwise 5i =

1
m

(↼≃
)
↑1

(
fi↑µ

◁
).

Output the estimated primal-dual optimal solution (5, µ) and estimated optimal value
h(µ).

Proposition 7 (Performance Guarantees of Algorithm 11). Fix the precision ϖ > 0. Suppose

we choose hyper-parameters in Algorithm 11 as

T =
1

2
log2

(
12

27ς
· 1

ϖ

)
= O(log

1

ϖ
),

µ = f,

µ =






f ↗ ς(f ↗ f), if ↼≃
(s) ⇒ ↗↓ as s ⇒ 0+,

f ↗ ςK, if ↼≃
(s) ⇒ K > ↗↓ as s ⇒ 0+,
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where 1 = µ ↗ µ, f = mini↔[m] fi, and f = maxi↔[m] fi. As a consequence, Algorithm 11

finds a primal-dual solution to (6.14) such that

(I) the estimated objective value R̃ satisfies |R̃ ↗ R| ∝ ϖ;

(II) the difference between the estimated primal solution 5 and the optimal primal solution

5⇑ is bounded: →5 ↗ 5⇑→→ ∝ 1
m

√
2ω

2◁
;

(III) the distance between the estimated dual solution µ and the set of optimal dual solutions

S⇑ is bounded: D(µ,S⇑
) ∝ 1 · 2

↑T
= (2ς7ϖ)1/2;

(IV) its worst-case computational cost is O(mT ) = O(m log
1
ω
).

Most literature (such as [133, 155, 231]) provided algorithms for solving hard-constrained

↼-divergence DRO problem, but they did not study how to extend their framework for penal-

ized ↼-divergence DRO in (6.14). One exception is that Levy et al. [191] mentioned this

problem can be solved using bisection search as in Algorithm 11 but did not provide detailed

parameter configurations.

Remark 25 (Near-Optimality of Algorithm 11). For some special choices of the divergence

function ↼, the optimal solution of problem (6.9) can be obtained with closed-form solution,

such as the entropy function ↼(s) = s log s ↗ s + 1. However, Algorithm 11 is applicable

to solving problem (6.9) for general choices of the divergence function. When considering

↼(s) = s log s ↗ s + 1, the optimal solution to (6.14) becomes

5⇑
i

=
efi/◁

∑
i↔[m] e

fi/◁
, ↙i ↑ [m].

Computing this optimal solution requires computational cost at least !(m). Compared with

the complexity in Proposition 7, Algorithm 11 is a near-optimal choice because it matches

the lower bound up to negligible constant O(log
1
ω
). A
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6.3.3 Complexity Analysis

In this subsection, we provide the convergence analysis of our projected SGD algorithm

using SG and RT-MLMC gradient estimators. Throughout this subsection, the computational

cost is quantified as the number of times to generate samples z ⇑ P̂ or samples z≃ ⇑ εz for

any z ↑ supp P̂ . We consider the following assumptions regarding the loss function.

Assumption 7 (Loss Assumptions). (I) (Convexity): The loss f⇁(z) is convex in 6.

(II) (Lipschitz Continuity): For fixed z and 61, 62, it holds that |f⇁1(z)↗ f⇁2(z)| ∝ Lf→61 ↗

62→2.

(III) (Boundedness): for any z and 6, it holds that 0 ∝ f⇁(z) ∝ B.

(IV) (Lipschitz Smoothness): The loss function f⇁(z) is continuously differentiable and for

fixed z and 61, 62, it holds that →∞f⇁1(z) ↗ ∞f⇁2(z)→2 ∝ Sf→61 ↗ 62→2.

Nonsmooth Convex Loss

To analyze the convergence rate, we rely on the following technical assumptions.

Assumption 8. (I) For any data points {f1, . . . , fm}, the optimal probability vector 5⇑ in

the data-driven penalized ↼-divergence DRO problem (6.14) satisfies DX 2(5⇑, 1
m
1m) ∝

C.

(II) For each 6 ↑ ( and z ↑ supp P̂ , the inverse cdf of the random variable (f⇁)#εz is

Gidf-Lipschitz.

Assumption 8 is relatively mild and has originally been proposed in [191, Assump-

tion A1] to investigate the complexity of solving standard ↼-divergence DRO. Assump-

tion 8(I) holds by selecting proper divergence function ↼, such as quadratic or entropy

function in Examples 7 and 6. As long as the probability density of f⇁(Z) is lower bounded

by * within its support, Assumption 8(II) holds with Gidf = *
↑1. Now, we derive statistics

of SG and RT-MLMC estimators.
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Proposition 8 (Bias/Second-order-Moment/Cost of SG and RT-MLMC Estimators). Fix

the precision ϖ > 0. Suppose Assumption 8(I) holds, and during the construction of SG/RT-

MLMC estimators, one query Algorithm 11 with optimality gap controlled by ϖ. Then it

holds that

(I) (Bias): Suppose, in addition, Assumption 8(II) holds, then

E[V SG
(6)] = E[V RT-MLMC

(6)] = ∞F̃ (6),

where |F̃ (6) ↗ F (6)| ∝ ϖ + Gidf · 2
↑L.

(II) (Second-order Moment):

E→V SG
(6)→2

2 ∝ 2L2
f
[1 + (2ϖ)/(7ς)] ,

E→V RT-MLMC
(6)→2

2 ∝
96L2

f

7ς
· (2

Lϖ) + 6(L + 1)L2
f
C.

(III) (Variance):

Var[V SG
(6)] ∝

2L2
f
[1 + (2ϖ)/(7ς)]

no
L

,

Var[V RT-MLMC
(6)] ∝ 1

no
L


96L2

f

7ς
· (2

Lϖ) + 6(L + 1)L2
f
C


.

(IV) (Cost): Generating a single SG estimator requires cost O(no
L

· 2
L

log
1
ω
), whereas

generating a single RT-MLMC estimator requires expected cost O(no
L

· L log
1
ω
).

Let the estimated solution returned by the projected SGD algorithm be 6̃1:T =
1
T

∑
T

t=1 6t.

Based on Proposition 8, we derive complexity bounds for solving (6.7) when the loss

function is convex and Lipschitz continuous. We formalize our results in the following

theorem. Its proof is provided in Appendix E.3.
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Theorem 24 (Complexity for Nonsmooth Convex Loss). Suppose Assumptions 7(I), 7(II), 8

hold, and φ > 0 is a sufficiently small precision level. During the construction of SG/RT-

MLMC estimators, let the optimality gap of querying Algorithm 11 controlled by ϖ =
φ

8 ,

and specify the hyper-parameters of SGD algorithm with SG or RT-MLMC estimators as in

Table 6.1. As a result,

(I) (SG Estimator) The SGD algorithm with SG estimator finds a φ-optimal solution to

(6.7) with computational cost O(T · no
L
2

L
log

1
ω
) = O(φ↑3

log
1
φ
).

(II) (RT-MLMC Estimator) The SGD algorithm with RT-MLMC estimator finds a φ-optimal

solution to (6.7) with computational cost O(T · no
L
L log

1
ω
) = O(φ↑2

(log
1
φ
)
4
).

Table 6.1: Hyper-parameters used in the projected SGD algorithm with SG/RT-MLMC
gradient estimators for nonsmooth convex loss.

Method Batch Size no
L Max Level L Max Iteration T Step Size ς

SG 1 log
8Gidf

ϱ O(1/δ2
) O(δ)

RT-
MLMC 1 log

8Gidf
ϱ O((log 1/δ)2/δ2

) O((log 1/δ)↑2δ)

Smooth Nonconvex Loss

When the loss f⇁(z) is nonconvex in 6, we focus on finding the near-stationary point of (6.7)

instead. The key in this part is to build the bias between our gradient estimator in (6.13a)

or (6.13b) and the true gradient of the objective. Unfortunately, such a result for general

choice of ↼-divergence regularization is hard to show. In this part, we only investigate the

convergence behavior of entropic regularization (see Example 6). In such a case, we have

the closed-form expression regarding the optimal solution of the lower-level problem (6.7b),

and therefore, Problem (6.7) can be reformulated as

min
⇁↔%

{
F (6) = E

z↓P̂


ς logEz↓↓εz


exp

(
f⇁(z≃

)

ς

) }
. (6.15)
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Similarly, the approximation function F ▷ defined in (6.8) becomes

F ▷
(6) = Eϱϖ



ς log



 1

2▷

∑

i↔[2ϖ]

exp

(
f⇁(z≃

i
)

ς

)





 . (6.16)

In this case, we do not use (6.11) or (6.12) but adopt the following way to construct the

random vectors g▷
(6, ▷▷

) and G▷
(6, ▷▷

): define

Un1:n2(6, ▷
▷
) = ς log



 1

n2 ↗ n1 + 1

∑

j↔[n1:n2]

exp

(
f⇁(z≃

j
)

ς

)

 .

and construct

g▷
(6, ▷▷

) = ∞⇁U1:2ϖ(6, ▷
▷
), (6.17)

G▷
(6, ▷▷

) = ∞⇁


U1:2ϖ(6, ▷

▷
) ↗ 1

2
U1:2ϖ→1(6, ▷▷

) ↗ 1

2
U2ϖ→1+1:2ϖ(6, ▷

▷
)


. (6.18)

The following theorem presents the complexity of obtaining a φ-stationary point for our

projected SGD algorithm using either SG or RT-MLMC estimator. Its proof is provided in

Appendix E.3.

Theorem 25 (Complexity for Smooth Nonconvex Loss). Under Assumptions 7(II), 7(III),

and 7(IV), with properly chosen hyper-parameters of the RT-MLMC estimator as in Table 6.2,

the following results hold:

(I) (Smooth Nonconvex Optimization) The computation cost of RT-MLMC scheme for

finding ϖ-stationary point is of Õ(ϖ↑4
) with memory cost Õ(ϖ↑2

).

(II) (Unconstrainted Smooth Nonconvex Optimization) Additionally assume the constraint

set ( = Rdϑ , then the memory cost of RT-MLMC improves to Õ(1).

Remark 26 (Comparision with Sinkhorn DRO). Sinkhorn DRO [305] introduces entropic

regularization to the ambiguity set constructed using the p-Wasserstein distance, resulting
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Table 6.2: Hyper-parameters used in the projected SGD algorithm with SG/RT-MLMC
gradient estimators for smooth nonconvex loss.

Scenarios Hyper-parameters Comp./Memo.

Smooth Nonconvex
Optimization

L = O(log
1
ω2 ), T = Õ(ε↑2

)
Comp. = O(T (no

LL)) =

Õ(ε↑4
)

no
L = Õ(ε↑2

), ς = O(1) Memo. = O(no
LL) = Õ(ε↑2

)

Unconstrainted Smooth
Nonconvex Optimization

L = O(log
1
ω2 ), T = Õ(ε↑4

)
Comp. = O(T (no

LL)) =

Õ(ε↑4
)

no
L = O(1), ς = Õ(ε2) Memo. = O(no

LL) = Õ(1)

in a dual reformulation that closely resembles (6.15), with the key modification of replacing

the uniform distribution εz with certain kernel probability distributions. The primary

distinction lies in the fact that the authors of the original work provide only the SG or

RT-MLMC estimator for nonsmooth convex loss, whereas we extend their analysis to the

smooth nonconvex loss setting. A crucial aspect of the convergence analysis is that for

the constrained smooth nonconvex case, as highlighted in [132], a large mini-batch size

no
L

is required at each iteration to estimate the gradient with sufficiently small variance to

ensure convergence. In contrast, for the unconstrained case, a mini-batch size no
L

= O(1)

is sufficient. A

Remark 27 (Comparison with ↓-WDRO). When solving (↓-WDRO), the involved sub-

problems are finding the global optimal value of the supremum sup
z↔Bω(x) f(z) for x ↑

supp P̂ , which are computationally challenging in general. Various heuristics [137, 185,

212] have been proposed to approximately solve it by replacing f(z) with its linear approx-

imation f(x) + ∞f(x)
Tz. It is worth noting that such an approximation is not accurate,

especially when the radius 2 of domain set Bρ(x) is moderately large, which corresponds

to large adversarial perturbation scenarios. For example, for the loss f(z) depicted in

Figure 6.1, its linear approximation around x = 0 will yield a wrong global maximum

estimate. In contrast, we proposed stochastic gradient methods to solve the regularized

formulation (Reg-↓-WDRO) with provable convergence guarantees, which avoids solving
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such a hard maximization subproblem. Numerical comparisons in Section 6.6.1 also suggest

that our method outperforms those heuristics when adversarial perturbations are moderately

large. A

6.4 Regularization Effects of Regularized Adversarial Robust Learning

In this section, we provide an interpretation on how our proposed formulation (Reg-↓-WDRO)

works by showing its close connection to the regularized ERM problem:

min
⇁↔%

E
z↓P̂

[f⇁(z)] + R(f⇁; 2, ς)

for certain regularization R(f⇁; 2, ς). As we focus on small-perturbation attacks, it is

assumed that 2, ς ⇒ 0. Also, we omit the dependence of f⇁ on 6 for simplicity. Subsequently,

we derive the regularization effects of (Reg-↓-WDRO) by considering different scaling of

2 and ς. To begin with, we define regularizer E as the difference between regularized robust

loss in (Primal-↼-Reg) and non-robust loss:

E
P̂
(f ; 2, ς) = Optval(Primal-↼-Reg) ↗ E

P̂
[f ]. (6.19)

Besides, we define the following regularizations. Let ↽ be the uniform probability distribu-

tion supported on B1(0), and define

R1(f ; 2, ς) = 2 · E
z↓P̂


inf
µ↔R


µ +

1

C
Eb↓⇀

[
↼⇑


C · (∞f(z)Tb ↗ µ)

]
, (6.20a)

R2(f ; 2, ς) = 2 · E
z↓P̂

[
→∞f(z)→⇑

]
, (6.20b)

R3(f ; 2, ς) =
22

2ς · ↼≃≃(1)
· E

z↓P̂

[
Varb↓⇀[∞f(z)Tb]

]
, (6.20c)

where C > 0 is some constant to be specified. These three regularizations correspond to the

asymptotic approximations of the regularizer under three different scaling regions of 2 and
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ς.

We impose the following smoothness assumption on the loss f , which is a standard tech-

nique assumption when investigating the regularization effects of Wasserstein DRO [123].

Assumption 9 (Smooth Loss). The loss f(·) is smooth with respect to the norm → · → such

that →∞f(x) ↗ ∞f(x≃
)→⇑ ∝ S(x) · →x ↗ x≃→, ↙x, x≃.

We now present our main result in this section in Theorem 26, whose proof is provided

in Appendix E.4.

Theorem 26 (Regularization Effects). Suppose Assumption 9 holds, and 2 ⇒ 0, ς ⇒ 0, we

have the following results.

(I) (OCE Regularization) When 2/ς ⇒ C ↑ (0,↓), it holds that

E
P̂
(f ; 2, ς) ↗ R1(f ; 2, ς)

 = o(2).

(II) (Variation Regularization) When 2/ς ⇒ ↓ and suppose additionally Assumption 6

holds, then
E

P̂
(f ; 2, ς) ↗ R2(f ; 2, ς)

 = o(2).

(III) (Variance Regularization) When 2/ς ⇒ 0 and suppose additionally that ↼(t) is two

times continuously differentiable in a neighborhood of t = 1 with ↼≃≃
(1) > 0, then

E
P̂
(f ; 2, ς) ↗ R3(f ; 2, ς)

 = o(2).

The proof idea is to consider the surrogate of E
P̂
(f ; 2, ς), by replacing f with its first-

order Taylor expansion, which leads to

Ẽ
P̂
(f ; 2, ς) = 2 · E

z↓P̂


inf
µ↔R


µ +

1

2/ς
Eb↓⇀


↼⇑

2
ς

· (∞f(z)Tb ↗ µ)


. (6.21)
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Based on Assumption 9, it can be shown that E
P̂
(f ; 2, ς) = Ẽ

P̂
(f ; 2, ς) + O(22

). Thus, it

suffices to derive approximations of Ẽ under different scaling regimes of 2/ς. Below, we

provide interpretations on this main result for each scaling regime.

Case 1: 2/ς ⇒ C ↑ (0,↓).

In this case, the perturbation budget 2 and regularization level ς decay in the same order. It

is noteworthy that the drived regularization R1(f ; 2, ς) in (6.20a) has close connection to

the optimized certainty equivalent risk (OCE) measure studied in [26]: Define the OCE of

random variable X with parameter ς as

S◁(X) = ς · inf
µ↔R

{
µ + E

[
↼⇑

X
ς

↗ µ
]}

= inf
µ↔R

{
µ + E

[
ς↼⇑

X ↗ µ

ς

]}
,

then R1(f ; 2, ς) = 2 · E
z↓P̂

[
S1/C


(∞f(z))#↽

]
, where (∞f(z))#↽ is the pushforward

probability measure of ↽ by the linear projection map ⇔·,∞f(z)↖. Namely, the regularization

term R1(f ; 2, ς) represents the averaged value of OCE across the projection of the loss

gradient ∞f(z) with random projection directions.

Interestingly, it can be shown that the regularization R1(f ; 2, ς) converges to R2(f ; 2, ς)

as the constant C ⇒ ↓, and converges to R3(f ; 2, ς) as C ⇒ 0. When 2/ς ⇒ C for some

C > 0, the corresponding regularized ERM is an interpolation between the regularized

ERM formulations corresponding to other two extreme cases.

Case 2: 2/ς ⇒ ↓.

In this case, the convergence rate of the regularization level ς is faster than that of the pertur-

bation budget 2. We showed that (6.19) is asymptotically equivalent to the gradient norm

regularization in (6.20b). Recall that Gao et al. [123] showed the standard ↓-Wasserstein

DRO can be approximated using the same regularization term, and the authors therein call it

the variation regularization. Therefore, our finding in this case matches our intuition since
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the regularization level ς has little impact on the regularization effect.

Case 3: 2/ς ⇒ 0.

Finally, we consider the case where the convergence rate of 2 is faster than that of the regular-

ization ς. We showed that (6.19) is asymptotically equivalent to the variance regularization

(6.20c) in terms of the projected gradient of the loss f . Note that the regularization effect

for this case requires the assumption that the divergence function ↼(t) should be two times

continuously differentiable and locally strongly convex around t = 1, which is a common

condition in the study of general ↼-divergence DRO [48, 107, 107, 186].

Recall that [48, 107] showed the ↼-divergence DRO with a sufficiently small size of

ambiguity set can be well-approximated by the ERM with variance regularization in terms of

the loss. By taking the first-order Taylor expansion regarding the loss, these regularizations

relate to each other. An intuitive explanation is that the impact of regularization level domi-

nates in this case, which corresponds to the regime where the worst-case transport mapping

(Primal-↼-Reg) is sufficiently close to the reference mapping. This indeed corresponds to

the case studied in the aforementioned reference.

6.5 Generalization Error Bound

In this section, we investigate the generalization properties of our proposed adversarial

learning framework in (Reg-↓-WDRO). To simplify our analysis, we focus on the multi-

class classification setup, i.e., the loss function f⇁(z) is defined as f⇁(z) = ϱ

g⇁(x), y


,

where the data point z = (x, y) represents the feature-label pair, g⇁(x) is the predictor

function parameterized by 6, and ϱ : RK ⇓ {1, . . . , K} ⇒ [0, 1] denotes a K-class

classification loss function such as the cross-entropy loss. Throughout this section, we take

the norm function that appears in the ↓-Wasserstein metric as

→z ↗ z≃→ = →x ↗ x≃→→ + ↓ · 1{y ⇐= y≃},
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where z = (x, y) and z≃
= (x≃, y≃

) are two different data points.Thus, we take into account

only the distribution shift of the feature vector and omit the label distribution shift. Let

S = {zi}n

i=1 denote the set of n i.i.d. sample points generated from Ptrue, and Pn be the

empirical distribution supported on S. For fixed parameter 6, let R̂adv(6) be the objective

value of (Reg-↓-WDRO) with P̂ = Pn, and Radv(6) be its population version, i.e.,

Radv(6) = sup
P,γ





E(x,y)↓P [ϱ


g⇁(x), y


] ↗ ςD1(5, 50) :

Proj1#5 = Ptrue, Proj2#5 = P

ess.sup
γ
→▷1 ↗ ▷2→ ∝ 2






= E(x,y)↓Ptrue


inf
µ↔R


µ + Eb↓⇀

[
(ς↼)

⇑ 
ϱ

g⇁(x + b), y


↗ µ

] 
,

where the last equality is based on the strong duality result in Theorem 23, and b ⇑ ↽ is a

random vector uniformly distributed on Bρ(0), the → · →→-ball of radius 2 centered at the

origin. One of the most important research questions in learning theory is to provide the gap

between the empirical regularized adversarial risk R̂adv(6) and the population regularized

adversarial risk Radv(6) (see, e.g., [10, 11, 330]). We answer this question leveraging the

covering number argument.

Let us begin with some technical preparation. Let ϖ > 0 and (V , → · →) be a normed

space. We say C ̸ V is an ϖ-cover of V if for any V ↑ V , there exists V ≃ ↑ C such that

→V ↗ V ≃→ ∝ ϖ. The least cardinality of C is called the ϖ-covering number, denoted as

N (V , ϖ, → · →). For any x, x≃ ↑ Vn, we take the norm →x↗ x≃→ = maxi↔[n] →xi ↗ x≃
i
→. Define

the regularized adversarial function class

Gadv =


(x, y) ∃⇒ inf

µ↔R


µ + Eb↓⇀

[
(ς↼)

⇑ 
ϱ

g⇁(x + b), y


↗ µ

] 
: 6 ↑ (


.

For dataset S = {zi}n

i=1 = {(xi, yi)}n

i=1, define

Gadv|S =

{
(g(x1, y1), . . . , g(xn, yn)) : g ↑ Gadv

}
.
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An intermediate consequence of the covering number argument is the following.

Proposition 9 ([276, 330]). Suppose the range of the loss function (x, y) ∃⇒ ϱ(g⇁(x), y) is

[0, 1]. With probability at least 1 ↗ φ with respect to P̂ = Pn, it holds that for all 6 ↑ (,

Radv(6) ∝ R̂adv(6) + inf
0>0

(
8ω +

24▽
n

∫ 1

0

√
log N (Gadv|S , ϖ, | · |) dϖ

)
+ 3


log(2/φ)

n
.

(6.22)

The remaining challenge is to provide the upper bound on the covering number N (Gadv|S , ϖ, |·

|). Define the new function class of interest as

G =

{
(x, y) ∃⇒ -(g⇁(x+·), y) ↑ RBω(0)

: ϱ ↑ !

}
, G|S =

{
(g(x1, y1), . . . , g(xn, yn)) : g ↑ G

}
.

and the associated norm →g→→ = sup
b↔Bω(0) |g(b)|, ↙g ↑ G. The following proposition

controls the covering number of Gadv|S using that of G|S .

Proposition 10. Assume that ↼ is strictly convex. Then, it holds that N (Gadv|S , ϖ, | · |) ∝

N (G|S , ϖ, → · →→).

Proposition 10 gives an estimate of N (Gadv|S , ϖ, | · |) by taking G|S that involves the

perturbation set Bρ(0) into account. The advantage is that the covering number N (G|S , ϖ, → ·

→→) can be easily computed. The following presents several applications of Propositions 9

and 10.

Example 10 (Linear Function Class). Let us model the predictor g⇁(x) using the linear

function class

g⇁(x) = Wx, 6 ↑ ( :=

{
W ↑ RK↘d, →W→1,→ ∝ ’1, →W→2,2 ∝ ’

}
,

where the feature vector x ↑ Rd is assumed to be bounded: sup
x
→x→2 ∝ ). Next, we
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consider the ramp loss ϱ : RK ⇓ {1, . . . , K} ⇒ R+

ϱ(t, y) =






1, if M(t, y) ∝ 0,

1 ↗ 1

1
M(t, y), if 0 < M(t, y) < 1,

0, if M(t, y) ≃ 1,

(6.23)

where M(t, y) = ty↗maxy↓ ⇔=y ty↓ . By [229, Lemmas 4.4 and 5.2], it holds that log N (G|S , ϖ, →·

→→) = Õ(
$2

d(’+
↖

dρ)2

ω232 ), where Õ(·) hides constant logarithmically dependent on related

parameters. As a consequence, the generalization bound (6.22) further simplifies to

Radv(6) ∝ R̂adv(6) + 3


log(2/φ)

n
+

8

n
+ Õ

(
’

▽
d() +

▽
d2)

1
▽
n

)
.

Example 11 (Neural Network Function Class). We next consider the predictor g⇁(x) be-

longs to the L-layer and m-width neural network function class with 1-Lipschitz nonlinear

activation ϑ:

f(x) = WL · ϑ

WL↑1 · · · ϑ(W1x)


,

where the feature vector x ↑ Rd satisfies sup
x
→x→2 ∝ ), and the model parameter

6 ↑ ( :=

{
(W1, . . . ,WL) : →W l→2 ∝ al, →W l→sp ∝ sl, l = 1, . . . , L ↗ 1

→WL→2 ∝ aL, →WL→2,→ ∝ sL, →W 1→1,→ ∝ s≃
1

}
.

When considering the ramp loss in (6.23), according to [229, Lemma 5.14],

log N (G|S , ϖ, → · →→) = Õ



L2d() +
▽
d2)2

12ϖ
·
∏

l↔[L]

s2
l
·
∑

l↔[L]

a2
l

s2
l



 .
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Then, the generalization bound (6.22) becomes

Radv(6) ∝ R̂adv(6) + 3


log(2/φ)

n
+

8

n
+ Õ



L
▽
d() +

▽
d2)

1
▽
n

·
∏

l↔[L]

sl ·

√√√√
∑

l↔[L]

a2
l

s2
l



 .

Remark 28. Compared to the generalization analysis of the unregularized adversarial

robust learning formulation in (6.1) (see, e.g., [11, 174, 321, 330]), our error bound for

the regularized case is similar. It aligns with the state-of-the-art error bound for the

unregularized case. The novelty in our theoretical analysis lies in upper bounding the

covering number of Gadv|S in Proposition 9 by that of G|S . Based on the lower bound

of Rademacher complexity for neural network function classes [20, Theorem 3.4], our

generalization bound for the linear function class matches the lower bound in terms of

the parameters ), ’, and n, but introduces an additional O(d) term. For neural network

function classes, our bound introduces an additional O(Ld ·
√∑

l↔[L]
a
2
l

s
2
l
) term. While these

additional terms are relatively small, developing new proof techniques to further tighten the

generalization analysis would be desirable.

6.6 Numerical Study

In this section, we examine the numerical performance of our proposed algorithm on three

applications: supervised learning, reinforcement learning, and contextual learning. We

compare our method with the following baselines: (i) empirical risk minimization (ERM),

(ii) fast-gradient method (FGM) [137], (iii) and its iterated variant (IFGM) [185]. Those

baseline methods are heuristic approaches to approximately solving the ↓-WDRO model.

6.6.1 Supervised Learning

We validate our method on three real-world datasets: MNIST [187], Fashion-MNIST [320],

and Kuzushiji-MNIST [81]. The experiment setup largely follows from Sinha et al. [287].

Specifically, we build the classifer using a neural network with 8 ⇓ 8, 6 ⇓ 6, and 5 ⇓ 5
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convolutional filter layers and ELU activations, and followed by a connected layer and

softmax output. After the training process with those listed methods, we then add various

perturbations to the testing datasets, such as the ϱ2-norm and ϱ→-norm adversarial projected

gradient method (PGM) attacks [212], and white noises uniformly distributed in a ϱ2 or ϱ→

norm ball. We use the mis-classification rate on testing dataset to quantify the performance

for the obtained classifers. For fair comparison, we take the same level of robustness

parameter 2 = 0.45 for all approaches, and specify the number of epochs (i.e., the number

of times the data points are passed through the model) as 30 and use Adam optimizer with

stepsize 5 = 1e-3. For PGM attack and FGM/IFGM defense, we specify the stepsize for

the attack step as 0.1. The number of iterations for the attack step of PGM attack and IFGM

defense is set to be 15. Since the scaling of ς that satisfies 2/ς ⇒ C for some constant C

corresponds to an interpolation of gradient norm and gradient variance regularized ERM

training as suggested by Section 6.4, we specify the regularization value ς = 2 · 2 in this

experiment. Since the loss is highly nonconvex, we examine our regularized adversarial

training using entropic regularization only, with RT-MLMC gradient estimator and the

maximum level L = 7.

Figure 6.3 presents the mis-classification results of various methods. Specifically, three

rows correspond to different kinds of datasets (MNIST, Fashion-MNIST, and Kuzushiji-

MNIST), and four columns correspond to different types of perturbations (ϱ2/ϱ→ adversarial

attack, and ϱ2/ϱ→ white noise attack). For every single plot, the x-axis corresponds to the

magnitude of perturbation (ϖwhite or ϖadv) normalized by the average of the norm overall

feature vectors (in terms of 2- or ↓-norm, denoted as C2 or C→, respectively). From these

plots, we find that all methods tend to have worse performance as the perturbation level

increases, but the regularized adversarial risk model consistently outperforms all baselines.

Especially, it performs well when the perturbation levels are large. This suggests that our

model has superior performance for adversarial training in scenarios with large perturbations.
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Figure 6.3: Results of adversarial training in terms of mis-classification rates. From top to
bottom, the figures correspond to (a) MNIST; (b) Fashion-MNIST; (c) and Kuzushiji-MNIST
datasets. From left to right, the figures correspond to (a) ϱ2-norm white noise attack; (b)
ϱ→-norm white noise attack; (c) ϱ2-norm PGM attack; and (d) ϱ→-norm PGM attack.

6.6.2 Reinforcement Learning

Next, we provide a robust algorithm for reinforcement learning (RL). Consider an infinite-

horizon discounted finite state MDP represented by a tuple ⇔S,A,P, R, 5↖, where S,A

denotes the state and action space, respectively; P = {P(s≃ | s, a)}s,s↓,a is the set of

transition probability metrics; R = {r(s, a)}s,a is the reward table with (s, a)-th entry being

the reward for taking the action a at state s; and 5 ↑ (0, 1) is the discounted factor. Similar

to problem (↓-WDRO), robust reinforcement learning seeks to maximize the worst-case

risk function supP↔R
E[

∑
t
5tr(st, at)], with R represents the ambiguity set for state-action

transitions. For simplicity, we consider a tabular Q-learning setup in this subsection. The
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standard Q-learning algorithm in RL learns a Q-function Q : S ⇓ A ⇒ R with iterations

Q(st, at
) ℑ (1↗ωt)Q(st, at

)+ωtr(s
t, at

)↗5ωt min
a

(↗Q(st+1, a)), st+1 ⇑ P(· | st, at
).

(6.24)

We modify the last term of the update (6.24) with an adversarial state perturbation to take

↓-Wasserstein distributional robustness with entropic regularization into account, leading

to the new update

Q(st, at
) ℑ (1 ↗ωt)Q(st, at

) +ωtr(s
t, at

) ↗ 5ωt min
a

{
ς logEŝt+1↓⇀(st+1;ρ)e

↑Q(ŝt+1
,a)/◁

}
,

Table 6.3: Performance of Q-learning algorithms in original MDP and shifted MDP envi-
ronments. Error bars are produced using 10 independent trials.

Environment Regular Robust
Original MDP 469.42 ± 19.03 487.11 ± 9.09

Perturbed MDP (Heavy) 187.63 ± 29.40 394.12 ± 12.01
Perturbed MDP (Short) 355.54 ± 28.89 443.17 ± 9.98

Perturbed MDP (Strong g) 271.41 ± 20.7 418.42± 13.64

where ↽(st+1
; 2) denotes an uniform distribution supported on a → · →→-norm ball of st+1

with radius 2. Standard fixed point iteration analysis [292, 312, 327] can be modified to

show the convergence of the modified Q-learning iteration. Our proposed algorithm in

Section 6.3 can be naturally applied to proceed the updated Q-learning iteration.

We test our algorithm in the cart-pole environment [59], where the objective is to balance

a pole on a cart by moving the cart to left or right, with state space including the physical

parameters such as chart position, chart velocity, angle of pole rotation, and angular of pole

velocity. To generate perturbed MDP environments, we perturb the physical parameters

of the system by magnifying the pole’s mass by 2, or shrinking the pole length by 2, or

magnifying the strength of gravity g by 5. We name those three perturbed environments as

Heavy, Short, or Strong g MDP environments, respectively.

Figure 3 demonstrates the training process of regular and robust Q-learning algorithms
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Figure 6.4: Episode lengths during training. The environment caps episodes to 400 steps.

on the original MDP environment. Interestingly, the robust Q-learning algorithm learns

the optimal policy more efficiently than the regular MDP. One possible explanation is that

taking account into adversarial perturbations increase the exploration ability of the learning

algorithm. Next, we report the performance of trained policies in original and perturbed

MDP environments in Table 2, from which we can see that our proposed robust Q-learning

algorithm consistently outperforms the regular non-robust algorithm.

6.6.3 Contextual Learning

Contextual stochastic optimization (CSO) seeks the optimal decision to minimize the cost

function ) involving random parameters Z, whose distribution is affected by a vector of

relevant covariates denoted as X . Since one has access to covariates X before decision

making, we parameterize the optimal decision using f⇁(·) that maps from X to the final

decision. This paradigm, inspired by the seminar work [31], has achieved phenomenal

success in operations research applications. See the survey [262] that summarizes its recent

developments.
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Distributionally robust CSO with ↓-type casual optimal transport distance has gained

great popularity in recent literature [121, 329]. It seeks the optimal decision parameter 6 to

minimize the worst-case risk, where the worst-case means we simultaneously find the casual

optimal transport 5 that maps P̂ , the empirical distribution from available data {(xi, zi)}i,

to P up to certain transportation budget, Its strong dual reformulation can be reformulated

as a special case of (↓-WDRO):

min
⇁

{
E

x̂↓P̂X̂


sup

x↓↔Bω(x̂)
E

ẑ↓P̂Ẑ|X̂=x̂
[)(f⇁(x

≃
), ẑ)]

}
. (6.25)

Similar to adversarial robust learning, Problem (6.25) can be challenging to solve because

computing the optimal value of the inner maximization problem is usually NP-hard. Instead,

we replace the inner maximization with OCE risk, leading to the approximation problem

min
⇁


E

x̂↓P̂X̂


inf
µ↔R

{
µ + Ex↓↓εx̂

[
(ς↼)

⇑
(E

ẑ↓P̂Ẑ|X̂=x̂
[)(f⇁(x

≃
), ẑ)] ↗ µ)

]}
, (6.26)

where εx̂ denotes the uniform distribution supported on Bρ(x̂). Alternatively, we can express

(6.26) as a special case of (Reg-↓-WDRO). See the detailed discussion in Appendix E.6.

In the following, we test our algorithm in the application of data-driven personalized

pricing problem, using the similar setup in [329, Example 6]: Let w ↑ R denote price, x ↑

R10 denote side information, and z ↑ R2 denote price sensitivity coefficient that describes

how price influences customer demand. The loss )(w, z) = ↗wzT




w

1



, denoting the

negative revenue under price w and coefficient z. Assume z depends on x in a nonlinear

way:

z =




tanh(3↽T

1 x)

exp(↗2↽T
2 x)



 + N (0, I2),

where ↽1, ↽2 ⇑ U([↗0.1, 0.1]
10

) and x ⇑ N (0, I10). We solve this problem using the linear

decision rule approach, by taking f⇁(x) = 6Tg(x), where g : R10 ⇒ R100 is a random
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feature model:

g(x) =

cos(ωT

i
x + bi)


i↔[100]

, ωi ⇑ N (0, I10), b ⇑ U([0, 2⇁]).

Throughout the experiment, we take hyper-parameters 2 = 0.45 and ς = 0.9. When creating

training dataset, we generate M ↑ {25, 50, 100, 200} samples of x, denoted as {xi}i↔[M ],

and for each xi, we generate m ↑ {10, 30, 50, 100, 200} samples of z from the conditional

distribution of z given x = xi.
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Figure 6.5: Results of ↓-type Casual DRO and its regularized version in terms of percentage
of improvements. From left to right, the figures correspond to M = 25, 50, 100, 200,
respectively.

We quantify the performance of a given decision 6 using the percentage of improvements

(compared to ERM) measure:

J (6) = 1 ↗ R(6) ↗ R⇑

R(6ERM) ↗ R⇑ ,

where R⇑ denotes the ground truth optimal revenue provided the distribution of (x, z) is

exactly known, 6ERM denotes the decision obtained from the ERM, the non-robust training

approach, and R(6) denotes the expected revenue of the decision 6 under the ground truth

distribution. The plots in Figure 6.5 report the percentage of improvements obtained either

by solving the standard casual CSO problem (6.25) using the heuristic FGM method or

its (KL-divergence-)regularized formulation (6.26). The error bars are reproduced using

50 independent trials. For all scenarios, we can see the regularized robust CSO model

outperforms the un-regularized one. Besides, the un-regularized DRO model has negative

improvements in general, mainly due to the computational intractability of Problem (6.25).
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6.7 Conclusion

In this paper, we proposed a ↼-divergence regularized framework for adversarial robust train-

ing. From the computational perspective, this new formulation is easier to solve compared

with the original one. From the statistical perspective, this framework is asymptotically

equivalent to certain regularized ERM under different scaling regimes of the regularization

and robustness hyper-parameters. From the generalization perspective, we derived the

population regularized adversarial risk is upper bounded by the empirical one up to small

residual error. Numerical experiments indicate that our proposed framework achieves state-

of-the-art performance, in the applications of supervised learning, reinforcement learning,

and contextual learning.
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CHAPTER 7

CONCLUDING REMARKS

In this thesis, we leverage advanced statistical and optimization techniques to tackle two

decision-making under uncertainty problems: hypothesis testing and distributionally robust

stochastic optimization (DRO). Our proposed framework not only provides decisions with

satisfactory out-of-sample performance but also aligns with key ethical and societal princi-

ples, including robustness and interpretability. We develop efficient algorithms with solid

computational guarantees and favorable statistical properties, and validate their superior

performance in many real-world applications.

7.1 Future Directions

In addition to the future directions outlined in previous chapters, we discuss additional topics

that merit further investigation.

Robust Hypothesis Testing. Existing work typically assumes the input data for hypothesis

testing follows the independent and identically distributed probability distribution, which

may not always hold in reality. There have also been several trials to develop robust methods

to tackle this issue for hypothesis two-sample testing [126, 164, 214, 309, 314]. I aim to

incorporate DRO to design more effective algorithms for large-scale, high-dimensional, and

noisy data. I am also interested in providing robust approaches for other hypothesis testing

problems such as independence testing and multi-class hypothesis testing.

DRO with Nonconvex Objectives. Traditional DRO framework typically assumes the

training objective is convex to obtain global convergence guarantees. I plan to develop

global optimization algorithms for solving DRO with nonconvex objectives. On the one

hand, it is promising to leverage mixed-integer optimization techniques to solve those

problems up to moderate problem size. On the other hand, the preliminary understanding
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of the landscape of special nonconvex problems with hidden convexity suggests that I can

develop customized first-order algorithms to achieve global convergence. I foresee these

nonconvex problems finding important applications in inventory control [70], pricing, and

reinforcement learning [71].

Deep Learning Applications. Deep learning has ushered in a new era of data science. Its

applications in hypothesis testing and DRO areas have achieved some success [75, 303, 326],

as neural networks are powerful in function representation and are adaptive to the structure

of data. I aim to use the state-of-the-art tools of deep learning, including generative/large-

language models, to enhance the performance of decision-making, problem-solving, and

analytics.
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APPENDIX A

PROOFS AND ADDITIONAL DETAILS OF CHAPTER 2

A.1 Preliminary Technical Results

Theorem 27 (Pinsker’s Inequality [89]). Consider two discrete probability distributions

p = {pi}n

i=1 and q = {qi}n

i=1, then it holds that

n∑

i=1

pi log
pi

qi

≃ 1

2
→p ↗ q→2

1.

Proposition 11 (Lipschitz Properties of Retraction Operator [56]). There exists constants

L1, L2 such that the following inequalities hold:

→Retrs(▷) ↗ s→ ∝ L1→▷→

→Retrs(▷) ↗ (s + ▷)→ ∝ L2→▷→2.

Inspired from Appendix A.3 in [169], we are able to compute the constants in Proposi-

tion 11 explicitly: L1 = 1 and L2 =
1
2 . The proof is provided below.

Proof. By definition, we have that

→Retrs(▷) ↗ s→2
2 =

∥∥∥∥
s + ▷

→s + ▷→ ↗ s

∥∥∥∥
2

2

= 2

(
1 ↗ 1

→s + ▷→2

)

= 2

(
1 ↗ (1 +

∑

i

▷2
i
)
↑1/2

)

∝
∑

i

▷2
i

= →▷→2
2.
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where the second and the third equality is by using the relation sT▷ = 0, and the inequality

is based on the relation 2(1 ↗ (1 + z)↑1/2
) ∝ z with z =

∑
i
▷2
i
. Then it holds that

→Retrs(▷) ↗ (s + ▷)→2 ∝ →▷→.

Secondly, we can see that

→Retrs(▷) ↗ (s + ▷)→2
2 =

∥∥∥∥
s + ▷

→s + ▷→ ↗ (s + ▷)

∥∥∥∥
2

2

= (1 ↗ →s + ▷→2)
2

=



1 ↗
√

1 +

∑

i

▷2
i




2

∝ 1

4
→▷→4

2,

where the inequality is based on the relation that (1 ↗ (1 + z)1/2
)
2 ∝ z2/4 with z =

∑
i
▷2
i
.

Consequently it holds that →Retrs(▷) ↗ (s + ▷)→2 ∝ 1
2→▷→

2.

Theorem 28 (McDiarmid’s Inequality [217]). Let X1, . . . , Xn be independent random

variables, where Xi has the support Xi. Let f : X1 ⇓ X2 ⇓ · · · ⇓ Xn ⇒ R be any function

with the (c1, . . . , cn) bounded difference property, i.e., for i ↑ {1, . . . , n} and for any

(x1, . . . , xn), (x≃
1, . . . , x

≃
n
) that differs only in the i-th corodinate, we have

|f(x1, . . . , xn) ↗ f(x≃
1, . . . , x

≃
n
)| ∝ ci.

Then for any t > 0, we have

Pr


|f(X1, . . . , Xn) ↗ E[f(X1, . . . , Xn)]| ≃ t


∝ 2 exp

(
↗ 2t2∑

n

i=1 c
2
i

)
.

Lemma 6 (Equivalent Definition for Sub-Gaussian variables (Lemma 2.3.2 in [134])).
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Assume that E[▷] = 0 and

P{|▷| ≃ t} ∝ 2C exp

(
↗ t2

2ϑ2

)
, t > 0,

for some C ≃ 1 and ϑ > 0. Then the random variable ▷ is sub-Gaussian with constant

ϑ̃2
= 12(2C + 1)ϑ2.

Theorem 29 (Poincare’s Inequality). Denote by µn the product of µ on ⊥n

i=1Rd and µ ↑

P(Rd
) satisfies the Poincare’s inequality, i.e., there exists M > 0 for X ⇑ µ so that

Var[f(X)] ∝ ME[→∞f(X)→2
] for any f satisfying E[f(X)

2
] < ↓ and E[→∞f(X)→2

2] < ↓.

Consider a function f on ⊥n

i=1Rd satisfying E|f(X)| < ↓ and
∑

n

i=1 →∞if(X)→2 ∝ ω2,

and max1⇒i⇒n →∞if(X)→ ∝ ↽ almost surely. Then the following inequality holds for

X ⇑ µn:

Pr

f(X) ↗ E[f(X)] > t


∝ exp

(
↗ 1

K
min(t/↽, t2/ω2

)

)
.

A.2 Introduction to Manifold Optimization

A brief introduction to manifold optimization can be found in [152]. In this section we list

some related operators for solving manifold optimization problems. Traditional manifold

optimization concerns with solving the following problem:

min
x↔M

f(x), (A.1)

where M is a Riemannian manifold and f is a real-valued function on M. A tangent vector

▷x to M at a point x is defined as a mapping so that there exists a curve 5 on M satisfying

5(0) = x, ▷x[u] =
d(u(5(t)))

dt
|t=0, ↙u ↑ E(M),
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where E(M) stands for the collection of real-valued functions defined in a neighborhood of

x. Denote by TxM as the collection of all tangent vectors to M at a point x, which is called

the tangent space to M at x. Define Px(z) as the projection of z into the tangent space

at x. Based on definitions listed above, we can define necessary operators for manifold

optimization. The Riemannian gradient of f at x is denoted as Gradf(x), which can be

obtained by projecting the gradient of f at x in the Euclidean space into the tangent space to

M at x:

Gradf(x) = Px(∞f(x)).

Typical Riemannian manifolds include the Sphere and Stiefel manifold defined as follows:

Sphere(n ↗ 1) := {x ↑ Rn
: →x→2 = 1},

St(n, p) := {X ↑ Rn↘p
: XTX = Ip}.

We can express the tangent space together with the projection operator for these two types

of manifolds in analytical form:

TxSphere(n ↗ 1) = {z : zTx = 0}, Px(z) = (I ↗ xxT
)z

TxSt(n, p) = {Z : ZTX + XTZ = 0}, PX(Z) = Z ↗ X
XTZ + ZTX

2
.

When using first-order methods to solve a manifold optimization problem, one also needs to

define the retraction operator associated with M, which is denoted as Retr. It is a smooth

mapping from the tangent budle ′x↔MTxM to M satisfying that for any x ↑ M,

• Retrx(0x) = x, where 0x denotes the zero element in TxM;

• limϱ↔TxM,ϱ↗0
⇐Retrx(ϱ)↑(x+ϱ)⇐

⇐ϱ⇐ = 0.
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When M is a sphere, we choose the following retraction operator which can be implemented

efficiently:

Retrx

▷


=
x + ▷

→x + ▷→ , x ↑ Sphere(n ↗ 1).

See [110] and [316] for discussions of retraction operators on the Stiefel manifold. The

general iteration update of first-order methods for manifold optimization problem can be

expressed as

xt+1
= Retrxt(↗0 t▷t

),

where 0 t is a well-defined step size and ▷t is the Riemannian gradient at xt. The computation

of the projected Wasserstein distance relates to the optimization on a Stiefel manifold, while

the computation of the KPW distance relates to the optimization on a sphere. A recent paper

[56] investigated the Riemannian gradient methods that are guaranteed to converge into

stationary points globally, the key proof technique of which relies on Proposition 11. We

follow the similar proof idea to establish the convergence analysis for computing the KPW

distance.

A.3 Technical Proofs in Section 2.2

Proof of Remark 1. When taking the kernel function K(x, y) = ⇔x, y↖, the space

F = {a : aTa ∝ 1}.

Note that the cost function c(x, y) = →x ↗ y→2
2 satisfies c(mx,my) = m2c(x, y) for any

m ↑ R. Hence we can argue that the maximizer of the KPW distance is obtained when

aTa = 1, i.e.,
KPW (µ, ε) = max

f : RD↗R,

f(z)=a
T

z,a
T

a=1

W (f#µ, f#ε) .

This indicates that the KPW distance reduces into the PW distance.

Proof of Proposition 1. It is easy to see that µ = ε implies KPW (µ, ε) = 0. Now we show
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the converse. For fixed x ↑ X , y ↑ Rd and a distribution µ, define the operator Kµ with the

action y as a mapping Kµy : X ⇒ Rd so that

Kµy(x
≃
) =

∫
(Kxy)(x

≃
) dµ(x) =

∫
K(x≃, x)y dµ(x).

When KPW (µ, ε) = 0, we can see that

f#µ = f#ε, ↙f ↑ F ,

which implies

0 = sup

f : ⇐f⇐2
H

⇒1

∥∥Ef#µ[x] ↗ Ef#ε [y]
∥∥

2

= sup

f : ⇐f⇐2
H

⇒1

sup
a: ⇐a⇐2⇒1


Eµ[⇔f(x), a↖] ↗ Eε [⇔f(y), a↖]



= sup

f : ⇐f⇐2
H

⇒1

sup
a: ⇐a⇐2⇒1


Eµ[⇔f,Kxa↖H] ↗ Eε [⇔f,Kya↖H]



= sup

f : ⇐f⇐2
H

⇒1

sup
a: ⇐a⇐2⇒1

⇔f, (Kµ ↗ Kε)a↖

= sup
a: ⇐a⇐2⇒1

→(Kµ ↗ Kε)a→H.

Equivalently, →(Kµ ↗ Kε)a→H = 0 for any a so that →a→2 ∝ 1. Since H is a Hilbert space,

we imply that (Kµ ↗Kε)a is a zero function for any a satisfying →a→2 ∝ 1. For any function

f ↑ C(X), we make the expansion

→Eµ[f(x)] ↗ Eε [f(y)]→2

∝ →Eµ[f(x)] ↗ Eµ[g(x)]→2 + →Eµ[g(x)] ↗ Eε [g(y)]→2 + →Eε [g(y)] ↗ Eε [f(y)]→2 .

The first term satisfies that

→Eµ[f(x)] ↗ Eµ[g(x)]→2 ∝ Eµ[→f(x) ↗ g(x)→2] < ε,
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and the third term can be upper bounded likewise. For the second term, we have that

→Eµ[g(x)] ↗ Eε [g(y)]→2

= sup
a: ⇐a⇐2⇒1


Eµ[⇔g(x), a↖] ↗ Eε [⇔g(y), a↖]



= sup
a: ⇐a⇐2⇒1


Eµ[⇔g,Kxa↖] ↗ Eε [⇔g,Kya↖]



= sup
a: ⇐a⇐2⇒1

⇔g, (Kµ ↗ Kε)a↖ = 0,

where the last equality is because that (Kµ ↗ Kε)a is a zero function for any a satisfying

→a→2 ∝ 1. Hence, →Eµ[f(x)] ↗ Eε [f(y)]→2 < 2ε for any ε > 0 and f ↑ Cb(X ). Then we

conclude that the distribution µ = ε.

A.4 Technical Proofs in Section 2.3

A.4.1 Deviation of Duality Reformulation

We first present the proof of the dual reformulation of the inner minimization problem in

(2.4). By definition, the primal formulation can be expressed as:

min
ϑ↙0

{
∑

i,j

⇁i,jci,j ↗ ς
∑

i,j

⇁i,j(log ⇁i,j ↗ 1) :

∑

j

⇁i,j =
1

n
,
∑

i

⇁i,j =
1

m

}
. (A.2)

The Lagrangian function becomes

L(⇁, u, v) =

∑

i,j

⇁i,jci,j ↗ ς
∑

i,j

⇁i,j(log ⇁i,j ↗ 1)

+

∑

i

ui

(
∑

j

⇁i,j ↗ 1

n

)
+

∑

j

vj

(
∑

i

⇁i,j ↗ 1

m

)
.
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Then the dual problem becomes

max
u,v


min
ϑ↙0

L(⇁, u, v)



= max
u,v

↗ 1

n

∑

i

ui ↗ 1

m

∑

j

vj + min
ϑ↙0

∑

i,j

⇁i,j

[
ci,j + ui + vj

]
↗ ς⇁i,j(log ⇁i,j ↗ 1)

= max
u,v

↗ 1

n

∑

i

ui ↗ 1

m

∑

j

vj ↗
∑

i,j

max
ϑi,j↙0

{
↗⇁i,j

[
ci,j + ui + vj

]
+ ς⇁i,j(log ⇁i,j ↗ 1)

}

= max
u,v

↗ 1

n

∑

i

ui ↗ 1

m

∑

j

vj ↗
∑

i,j

(ς↼)
⇑
(ui + vj + ci,j)

= max
u,v

↗ 1

n

∑

i

ui ↗ 1

m

∑

j

vj ↗ ς
∑

i,j

exp

(
↗ui + vj + ci,j

ς

)

where ↼(w) = w logw ↗ w and ↼⇑ denotes its conjugate [258]. Moreover, the dual

optimal value equals the primal optimal value because the Slater’s condition [58] for finite-

dimensional optimization is satisfied. Take u≃
i
= ↗ui/ς and v≃

j
= ↗vj/ς, the dual problem

becomes

max
u↓,v↓

ς

n

∑

i

u≃
i
+

ς

m

∑

j

v≃
j
↗ ς

∑

i,j

exp

(
↗ci,j

ς
+ u≃

i
+ v≃

j

)
.

Therefore, the whole problem (2.4) becomes

max
u,v,s

ς

n

∑

i

ui +
ς

m

∑

j

vj ↗ ς
∑

i,j

exp

(
↗ci,j

ς
+ ui + vj

)
.

Or equivalently, we write it as the minimization problem:

↗ς ⇓
{

min
u,v,s

↗ 1

n

∑

i

ui ↗ 1

m

∑

j

vj + ς
∑

i,j

exp

(
↗ci,j

ς
+ ui + vj

)}
.

Remark 29. By adding the entropic regularization term ςH(⇁), we are able to derive an

unconstrained optimization formulation on the sphere, thus reducing the computational cost

for computing KPW distance. Besides, the induced optimal transport mapping between

projected samples is usually stochastic instead of deterministic, which is robust to potential
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data outliers.

A.4.2 Proof of Theorem 1

Assume that f̂ is an optimal solution to the problem (2.2). Let S be the subspace

S =

{
n∑

i=1

m∑

j=1

(Kxi ↗ Kyj)ai,j : ai,j ↑ Rd

}
.

Denote by S′ the orthogonal complement of S. Given a set X , denote by fX a function

that lies in the set X . Then by the projection theorem, there exists f̂S and f̂S⇐
such that

f̂ = f̂S + f̂S⇐
and →f̂→2

H = →f̂S→2
H + →f̂S⇐

→2
H. It remains to show that f̂S shares the same

objective value with f̂ . For fixed i, j, we have that

→f̂(xi) ↗ f̂(yj)→2 = max
ai,j : ⇐ai,j⇐2⇒1

⇔f̂(xi) ↗ f̂(yj), ai,j↖

= max
ai,j : ⇐ai,j⇐2⇒1

⇔f̂(xi), ai,j↖ ↗ ⇔f̂(yj), ai,j↖

= max
ai,j : ⇐ai,j⇐2⇒1

⇔f̂, Kxiai,j↖ ↗ ⇔f̂, Kyjai,j↖

= max
ai,j : ⇐ai,j⇐2⇒1

⇔f̂, (Kxi ↗ Kyj)ai,j↖

= max
ai,j : ⇐ai,j⇐2⇒1

⇔f̂S, (Kxi ↗ Kyj)ai,j↖ = →f̂S(xi) ↗ f̂S(yj)→2,

where the second last equality is because f̂S⇐
is orthogonal to the subspace S. It follows that

→f̂(xi) ↗ f̂(yj)→2
2 = →f̂S(xi) ↗ f̂S(yj)→2

2. Therefore, there always exists an optimal solution

that lies in the subspace S, which means that there exists an optimal solution to (2.2) that

admits the following expression:

f̂ =

n∑

i=1

m∑

j=1

(Kxi ↗ Kyj)ai,j.

Defining ax,i =
∑

m

j=1 ai,j and ay,j =
∑

n

i=1 ai,j completes the proof.
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Remark 30. From the proof we can also see that the representer theorem holds if replacing

the square of the ϱ2 norm in (2.2) with any p-th power of the ϱ2 norm for p ≃ 2. However,

we find the development of optimization algorithms for the square of the ϱ2 norm case is the

simplest.

A.4.3 Proof of Theorem 2

In the following we give a iteration complexity analysis about Algorithm 2, the proof of

which largely follows the idea in [163]. In particular, we first establish the descent lemma

for the update of each block of variables and then argue that the objective function is lower

bounded. Based on these two facts, we finally build the iteration complexity result for

Algorithm 2.

Lemma 7 (Lipschitzness of ∞sF (u, v, s)). Let {ut, vt, st}t be the sequence generated from

Algorithm 2. The following inequality holds for any s ↑ Sd(n+m)↑1 and 4 ↑ [0, 1]:

→∞sF (ut+1, vt+1,4s + (1 ↗ 4)st
) ↗ ∞sF (ut+1, vt+1, st

)→ ∝ 14→st ↗ s→,

where 1 =
2⇐AU⇐2

⇒

◁
+

4⇐AU⇐4
⇒

◁2 and →AU→→ = maxi,j →Ai,jU→2.

Proof of Lemma 7. An intermediate result is that

∑

i

⇁i,j(u
t+1, vt+1, st

) =

∑

i

exp

(
↗1

ς
ci,j[s

t
] + ut+1

i

)
exp


vt+1

j



=

∑

i

exp

(
↗1

ς
ci,j[s

t
] + ut+1

i

)
exp


vt

j

 1/m∑
i
⇁i,j(ut+1, vt, st)

=
1

m

∑
i
⇁i,j(ut+1, vt, st

)∑
i
⇁i,j(ut+1, vt, st)

= 1/m.

Then we can assert that
∑

i,j
⇁i,j(ut+1, vt, st

) = 1. For fixed st, define s↽
= 4s + (1 ↗ 4)st.
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Then we have that

→∞sF (ut+1, vt+1, st
) ↗ ∞sF (ut+1, vt+1, s↽

)→

=
2

ς

∥∥∥∥∥
∑

i,j

⇁i,j(u
t+1, vt+1, st

)UTAT
i,j
Ai,jUst ↗

∑

i,j

⇁i,j(u
t+1, vt+1, s↽

)UTAT
i,j
Ai,jUs↽

∥∥∥∥∥

∝2

ς

∥∥∥∥∥
∑

i,j

⇁i,j(u
t+1, vt+1, st

)UTAT
i,j
Ai,jU(st ↗ s↽

)

∥∥∥∥∥

+
2

ς

∥∥∥∥∥
∑

i,j

UT
[
⇁i,j(u

t+1, vt+1, st
) ↗ ⇁i,j(u

t+1, vt+1, s↽
)
]
AT

i,j
Ai,jU

∥∥∥∥∥

∝2

ς

∥∥∥∥∥
∑

i,j

⇁i,j(u
t+1, vt+1, st

)UTAT
i,j
Ai,jU

∥∥∥∥∥ →s↽ ↗ st→

+
2

ς

∥∥∥∥∥
∑

i,j

[
⇁i,j(u

t+1, vt+1, st
) ↗ ⇁i,j(u

t+1, vt+1, s↽
)
]
UTAT

i,j
Ai,jU

∥∥∥∥∥

where the first inequality is based on the constraint that →s↽→ ∝ 4→s→ + (1 ↗ 4)→st→ = 1.

To upper bound the first term, we find

∥∥∥∥∥
∑

i,j

⇁i,j(u
t+1, vt+1, st

)UTAT
i,j
Ai,jU

∥∥∥∥∥

∝
∑

i,j

⇁i,j(u
t+1, vt+1, st

)→UTAT
i,j
Ai,jU→2 ∝ max

i,j

→Ai,jU→2
2.

To bound the second term, we find that

∥∥∥∥∥
∑

i,j

[
⇁i,j(u

t+1, vt+1, st
) ↗ ⇁i,j(u

t+1, vt+1, s↽
)
]
UTAT

i,j
Ai,jU

∥∥∥∥∥

∝ max
i,j

→Ai,jU→2
2→⇁(ut+1, vt+1, s↽

) ↗ ⇁(ut+1, vt+1, st
)→1,

where

→⇁(ut+1, vt+1, s↽
) ↗ ⇁(ut+1, vt+1, st

)→1 :=

∑

i,j

⇁i,j(u
t+1, vt+1, s↽

) ↗ ⇁i,j(u
t+1, vt+1, st

)
.
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Denote by H(⇁, s; ς) the objective function for (2.3). Based on the strong convexity property,

we have that

⇔∞ϑH(▷(ut+1, vt+1, s↽
), s↽

; φ) ↗ ∞ϑH(▷(ut+1, vt+1, st
), s↽

; φ), ▷(ut+1, vt+1, s↽
) ↗ ▷(ut+1, vt+1, st

)↖

≃φ→▷(ut+1, vt+1, s↽
) ↗ ▷(ut+1, vt+1, st

)→2
1

Moreover, by simple calculation we find

∞ϑH(⇁(u, v, s), s) = [ci,j + ς log(⇁i,j(u, v, s))]i,j

= [ς(ui + vj)]i,j ,

where the second equality is by substituting the formulation of ⇁i,j(u, v, s). Hence, we find

that the gradient ∞ϑH(⇁(u, v, s), s) only depends on u and v, which implies

⇔∞ϑH(▷(ut+1, vt+1, st
), st

; φ) ↗ ∞ϑH(▷(ut+1, vt+1, st
), s↽

; φ), ▷(ut+1, vt+1, s↽
) ↗ ▷(ut+1, vt+1, st

)↖

≃φ→▷(ut+1, vt+1, s↽
) ↗ ▷(ut+1, vt+1, st

)→2
1.

It follows that

ς→⇁(ut+1, vt+1, s↽
) ↗ ⇁(ut+1, vt+1, st

)→1

∝→∞ϑH(⇁(ut+1, vt+1, st
), st

; ς) ↗ ∞ϑH(⇁(ut+1, vt+1, st
), s↽

; ς)→→

= max
i,j

→Ai,jUs↽→2
2 ↗ →Ai,jUst→2

2



∝2 max
i,j

→Ai,jU→2
2→s↽ ↗ st→.
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where the inequality is by applying the following relation:

→Ax1→2
2 ↗ →Ax2→2

2 = (x1 ↗ x2)
T
(ATAx1) + xT

2 A
TA(x1 ↗ x2)

∝ →x1 ↗ x2→→ATAx1→ + →xT
2 A

TA→→x1 ↗ x2→

∝ 2→A→2→x1 ↗ x2→.

In summary, the second term can be upper bounded as

∥∥∥∥∥
∑

i,j

[
⇁i,j(u

t+1, vt+1, st
) ↗ ⇁i,j(u

t+1, vt+1, s↽
)
]
UTAT

i,j
Ai,jU

∥∥∥∥∥

∝2 (maxi,j →Ai,jU→2
2)

2

ς
→s↽ ↗ st→.

Then applying the condition that →s↽ ↗ st→ = 4→s ↗ st→ completes the proof.

Lemma 8 (Decrease of F in s). Let {ut, vt, st}t be the sequence generated from Algorithm 2.

The following inequality holds for any k ≃ 1:

F (ut+1, vt+1, st+1
) ↗ F (ut+1, vt+1, st

) ∝ ↗ 1

8→AU→2
→L2/ς + 21L2

1

→◁t+1→2.

Proof of Lemma 8. Note that

F (ut+1, vt+1, st+1
) ↗ F (ut+1, vt+1, st

) ↗ ⇔∞tF (ut+1, vt+1, st
), st+1 ↗ st↖



=


∫ 1

0

⇔∞sF (ut+1, vt+1,4st+1
+ (1 ↗ 4)st

) ↗ ∞sF (ut+1, vt+1, st
), st+1 ↗ st↖ d4



∝
∫ 1

0

→∞sF (ut+1, vt+1,4st+1
+ (1 ↗ 4)st

) ↗ ∞sF (ut+1, vt+1, st
)→→st+1 ↗ st→ d4

∝
∫ 1

0

14→st+1 ↗ st→2
d4

=
1

2
→st+1 ↗ st→2

=
1

2

∥∥Retrst


↗ 0◁t+1


↗ st
∥∥2

∝10 2L2
1

2
→◁t+1→2.
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where the second inequality is by applying Lemma 7, and the last inequality is by applying

Proposition 11. Moreover, we have that

⇔∞sF (ut+1, vt+1, st
), st+1 ↗ st↖

=⇔∞sF (ut+1, vt+1, st
),↗0◁t+1↖ + ⇔∞sF (ut+1, vt+1, st

),Retrst


↗ 0◁t+1


↗ (st ↗ 0◁t+1
)↖

∝ ↗ 0→◁t+1→2
+ →∞sF (ut+1, vt+1, st

)→2→Retrst


↗ 0◁t+1


↗ (st ↗ 0◁t+1
)→

∝ ↗ 0→◁t+1→2
+ →▷t+1→2 · L20

2→◁t+1→2

∝ ↗ 0→◁t+1→2
+

2→AU→2
→L20 2

ς
→◁t+1→2.

Combining those inequalities above implies that

F (uk+1, vk+1, tk+1
) ↗ F (uk+1, vk+1, tk) ∝ ↗0

(
1 ↗


2→AU→2

→L2

ς
+

1

2
L2

1


0

)
→◁t+1→2.

Taking 0 =
1

4⇐AU⇐2
⇒L2/◁+3L

2
1

gives the desired result.

Lemma 9 (Decrease of F in v). Let {ut, vt, st}t be the sequence generated from Algorithm 2.

The following inequality holds for any k ≃ 1:

F (ut+1, vt+1, st
) ↗ F (ut+1, vt, st

) ∝ ↗1

2
→1/m ↗ ⇁(ut+1, vt, st

)
T
1→2

1.

where

→1/m ↗ ⇁(ut+1, vt, st
)→1 =

∑

j


1

m
↗

∑

i

⇁i,j(u
t+1, vt, st

)

 .
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Proof of Lemma 9. According to the expression of F , we have that

F (ut+1, vt+1, st
) ↗ F (ut+1, vt, st

)

=

∑

i,j

⇁i,j(u
t+1, vt+1, st

) ↗
∑

i,j

⇁i,j(u
t+1, vt, st

) +
1

m

m∑

j=1

(vt

j
↗ vt+1

j
)

=
1

m

m∑

j=1

(vt

j
↗ vt+1

j
) = ↗ 1

m

m∑

j=1

log
1/m∑

i
⇁i,j(ut+1, vt, st)

,

where the second equality is because that

∑

i

⇁i,j(u
t+1, vt+1, st

) =
1

m
,

∑

j

⇁i,j(u
t+1, vt, st

) =
1

n
.

Therefore, applying the Pinsker’s inequality in Theorem 27 implies that

F (ut+1, vt+1, st
) ↗ F (ut+1, vt, st

) ∝ ↗1

2

(
∑

j


1

m
↗

∑

i

⇁i,j(u
t+1, vt, st

)



)2

.

Lemma 10 (Decrease of F in u). Let {ut, vt, st}t be the sequence generated from Algo-

rithm 2. The following inequality holds for any t ≃ 1:

F (ut+1, vt, st
) ↗ F (ut, vt, st

) ∝ ↗1

2
→1/n ↗ ⇁(ut, vt, st

)1→2
2.

where

→1/n ↗ ⇁(ut, vt, st
)1→2

2 =

∑

i


1

n
↗

∑

j

⇁i,j(u
k, vk, tk)



2

.

Proof of Lemma 10. For fixed i ↑ [n], define

hi =

∑

j

⇁i,j(u
t+1, vt, st

) ↗
∑

j

⇁i,j(u
t, vt, st

) ↗ 1

n
log

1/n∑
j
⇁i,j(ut, vt, st)
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According to the expression of F ,

F (ut+1, vt, st
) ↗ F (ut, vt, st

) =

∑

i

hi,

and it suffices to provide an upper bound for hi, i ↑ [n]. By substituting the expression of

ut+1 into hi, we have that

hi =

∑

j

⇁i,j(u
t, vt, st

)


1/n∑

j
⇁i,j(ut, vt, st)

↗ 1


↗ 1

n
log

1/n∑
j
⇁i,j(ut, vt, st)

=
1

n
↗


⇁(ut, vt, st

)1


i
↗ 1

n
log

1/n
⇁(ut, vt, st)1


i

Define the function

ϱ(x) =
1

n
↗ x ↗ 1

n
log

1/n

x
+ (x ↗ 1/n)

2.

We can see that this function attains its maximum at x = 1/n, with ϱ(1/n) = 0. It follows

that

hi ∝ ↗
(

⇁(ut, vt, st
)1


i
↗ 1

n

)2

.

The proof is completed.

Lemma 11. Let {ut, vt, st}t be the sequence generated from Algorithm 2, which is termi-

nated when the following conditions hold:

→↼t+1→ ∝ ε1, →1/n↗▷(ut, vt, st
)1→2 ∝ ε2

4→AU→2
→

, →1/m↗▷(ut+1, vt, st
)
T
1→1 ∝ ε2

4→AU→2
→

.

Then {uT , vT , sT } is an (ϖ1, ϖ2) stationary point of (2.5).

Proof of Lemma 11. The condition →◁t+1→ ∝ ϖ1 directly implies that

→GradsF (uT , vT , sT
)→ ∝ ϖ1.
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Suppose that

⇁(uT , vT , sT
)1 = r, ⇁(uT , vT , sT

)
T
1 = c,

where →1/n ↗ r→2 ∝ ϖ2/(4→AU→2
→) and →1/m ↗ c→1 ∝ ϖ2/(4→AU→2

→). Then we find that

F (uT , vT , sT
) = min

ϑ

{
∑

i,j

⇁i,jMi,j ↗ ςH(⇁) :

∑

j

⇁i,j = ri,
∑

i

⇁i,j = cj

}
,

and

min
u,v

F (u, v, sT
) = min

ϑ

{
∑

i,j

⇁i,jMi,j ↗ ςH(⇁) :

∑

j

⇁i,j =
1

n
,
∑

i

⇁i,j =
1

m

}
,

where Mi,j = →Ai,jUsT →2
2. It follows that

F (uT , vT , sT
) ↗ min

u,v

F (u, v, sT
)

∝ς log(mn) + 2→1/m ↗ c1→1 ⇓ →AU→2
→ ∝ ϖ2,

where the last inequality is by taking ς = ϖ2/(2 log(mn)).

Lemma 12 (Lower Boundedness of F ). Denote by (u⇑, v⇑, s⇑
) the global optimum of (2.5).

Then we have that

F (u⇑, v⇑, s⇑
) ≃ 1 ↗ 1

ς
→AU→2

→.

Proof of Lemma 12. It is easy to show that

∑

i,j

⇁i,j(u
⇑, v⇑, s⇑

) = 1.

Moreover, for any (i, j), we have that ci,j ∝ →AU→2
→. It follows that

exp

(
↗1

ς
→AU→2

→ + u⇑
i
+ v⇑

j

)
∝ ⇁i,j ∝ 1,
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and therefore u⇑
i
+ v⇑

j
∝ 1

◁
→AU→2

→ for any (i, j). Hence we conclude that

∑

i,j

⇁i,j(u
⇑, v⇑, s⇑

) ↗ 1

n

n∑

i=1

ui ↗ 1

m

m∑

j=1

vj ≃ 1 ↗ 1

ς
→AU→2

→.

In the following we give a re-statement of Theorem 2 and the formal proof.

Theorem (Re-statement of Theorem 2). Choose parameters

0 =
1

4→AU→2
→L2/ς + 1L2

1

, ς =
ϖ2

2 log(mn)
, 1 =

2→AU→2
→

ς
+

4→AU→4
→

ς2
,

and Algorithm 2 terminates when

→↼t+1→ ∝ ε1, →1/n↗▷(ut, vt, st
)1→2 ∝ ε2

4→AU→2
→

, →1/m↗▷(ut+1, vt, st
)
T
1→1 ∝ ε2

4→AU→2
→

.

We say that (û, v̂, ŝ) is a (ϖ1, ϖ2)-stationary point of (2.5) if

→GradsF (û, v̂, ŝ)→ ∝ ϖ1,

F (û, v̂, ŝ) ↗ min
u,v

F (u, v, ŝ) ∝ ϖ2,

where GradsF (u, v, s) denotes the partial derivative of F with respect to the variable s on

the sphere Sd(n+m)↑1. Then Algorithm 2 returns an (ϖ1, ϖ2)-stationary point in iterations

T = O
(

log(mn) ·


1

ϖ32
+

1

ϖ21ϖ2

)
.

Proof of Theorem 2. We can build the one-iteration descent result based on Lemma 8,
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Lemma 9, and Lemma 10:

F (ut+1, vt+1, st+1
) ↗ F (ut, vt, st

)

∝ ↗
(

1

2
→1/n ↗ ▷(ut, vt, st

)1→2
2 +

1

2
→1/m ↗ ▷(ut+1, vt, st

)
T
1→2

1 +
1

8→AU→2
→L2/φ + 2◁L2

1

→↼t+1→2
2

)

= ↗ 1

2


→1/n ↗ ▷(ut, vt, st

)1→2
2 + →1/m ↗ ▷(ut+1, vt, st

)
T
1→2

1

+
φ2→0t+1→2

2→AU→2
→φ(2L2 + L2

1) + 4→AU→4
→L2

1



Then we have that

F (uT , vT , sT
) ↗ F (u0, v0, s0

)

∝ ↗ 1

2

T↑1∑

t=0


→1/n ↗ ▷(ut, vt, st

)1→2
2 + →1/m ↗ ▷(ut+1, vt, st

)
T
1→2

1

+
φ2→0t+1→2

2→AU→2
→φ(2L2 + L2

1) + 4→AU→4
→L2

1



∝ ↗ 1

2
· min


1,

1

2→AU→2
→φ(2L2 + L2

1) + 4→AU→4
→L2

1



⇓
T↑1∑

t=0


→1/n ↗ ▷(ut, vt, st

)1→2
2 + →1/m ↗ ▷(ut+1, vt, st

)
T
1→2

1 + φ2→↼t+1→2
2



∝ ↗ 1

2
T · min


1,

1

2→AU→2
→φ(2L2 + L2

1) + 4→AU→4
→L2

1


· min


ε21,

ε22
16→AU→4

→
,

ε22
16→AU→4

→


.

Therefore,

T ∝[F (u0, v0, t0) ↗ F (uT , vT , sT
)] max

{
2, 4→AU→2

→ς(2L2 + L2
1) + 8→AU→4

→L2
1

}

max


1

ϖ21
,
16→AU→4

→
ϖ22

,
16→AU→4

→
ϖ22



∝
(
F (u0, v0, t0) ↗ 1 +

→AU→2
→

ς

)
max

{
2, 4→AU→2

→ς(2L2 + L2
1) + 8→AU→4

→L2
1

}

max


1

ϖ21
,
16→AU→4

→
ϖ22

,
16→AU→4

→
ϖ22



=O
(

log(mn) ·


1

ϖ32
+

1

ϖ21ϖ2

)
.
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A.5 Technical Proofs in Section 2.4

A.5.1 Proof of Theorem 3

Proof of Lemma 1. Denote F = {f ↑ H : →f→H ∝ 1}. By the bias-variation decomposi-

tion, we have that

E[(KPW (µ̂n, µ))
1/p

] ∝ sup
f↔F

E[(W (f#µ̂n, f#µ))
1/p

]

+ E

sup
f↔F


(W (f#µ̂n, f#µ))

1/p ↗ E[(W (f#µ̂n, f#µ))
1/p

]


.

For fixed f ↑ F , we can see that

E[(W (f#µ̂n, f#µ))
1/p

] ∝ cpn
↑ 1

(2p)↑d (log n)
ϱp,d/p

where cp is a constant depending only on p and

▷p,d =






1, if d = 2p,

0, otherwise.

Now we start to upper bound the variation term. Define the empirical process

Xf = (W (f#µ̂n, f#µ))
1/p ↗ E[(W (f#µ̂n, f#µ))

1/p
].

It is easy to see that E[Xf ] = 0. Moreover, we can show that for fixed f , the random variable

Xf is sub-exponential. Denote by Z = {zi}n

i=1 and Z ≃
= {z≃

i
}n

i=1 i.i.d. samples from f#µ.

Take g(Z) = (W (f#µ̂n, f#µ))
1/p. Then we have that

|g(Z) ↗ g(Z ≃
(i))| ∝ (W (f#µ̂n, f#µ̂≃

n
))

1/p ∝ n↑1/(2⇓p)→Z ↗ Z ≃→2.
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It follows that

n∑

i=1

→∞ig(Z)→2 ∝ n↑2/(2⇓p), max
1⇒i⇒n

→∞ig(Z)→ ∝ n↑1/p.

Then the Poincare’s inequality in Theorem 29 implies that

Pr{Xf ≃ t} ∝ exp

↗K↑1

min{tn1/p, t2n2/(2⇓p)}

.

Hence we conclude that Xf is sub-exponential with parameters (
√

K/2n↑1/(2⇓p), (K/2)n↑1/p
).

For the function space F , define the corresponding metric

d(f, f ≃
) = →f ↗ f ≃→H.

Let X ⇑ µ. Then for any f, f ≃ ↑ F , we have that

|Xf ↗ Xf ↓ |

∝E
[ 

W (f#µ̂n, f ≃
#µ̂n)

1/p
+


W (f#µ, f ≃

#µ)
1/p

]

+ E
[ 

W (f#µ̂n, f ≃
#µ̂n)

1/p
+


W (f#µ, f ≃

#µ)
1/p

]

∝2

E→f(X) ↗ f ≃

(X)→p

2

1/p
+

(
1

n

n∑

i=1

→f(Xi) ↗ f ≃
(Xi)→p

2

)1/p

+ E




(

1

n

n∑

i=1

→f(Xi) ↗ f ≃
(Xi)→p

2

)1/p


 .
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Note that the following upper bound holds for any f, f ≃ ↑ F and x ↑ RD:

→f(x) ↗ f ≃
(x)→2 = max

a: ⇐a⇐2⇒1
⇔f(x) ↗ f ≃

(x), a↖

= max
a: ⇐a⇐2⇒1

⇔f(x), a↖ ↗ ⇔f ≃
(x), a↖

= max
a: ⇐a⇐2⇒1

⇔f,Kxa↖HK ↗ ⇔f ≃, Kxa↖HK

= max
a: ⇐a⇐2⇒1

⇔f ↗ f ≃, Kxa↖HK

∝ →f ↗ f ≃→HK ⇓ max
a: ⇐a⇐2⇒1

→Kxa→HK

= →f ↗ f ≃→HK ⇓ max
a: ⇐a⇐2⇒1

√
aTK(x, x)a

=

▽
B→f ↗ f ≃→HK .

As a consequence, substituting this upper bound into the relation above implies that

|Xf ↗ Xf ↓ | ∝ 4

▽
Bd(f, f ≃

).

Applying the ϖ-net argument similar to the Dudley’s entropy integral bound [300, Theo-

rem 5.22] gives

E


sup
f↔F

Xf


∝ inf

ω>0

{
4

▽
Bε +

▽
2Kn↑1/(2⇓p)

√
log N (F , d, ε) + (K/2)n↑1/p

log N (F , d, ε)
}

.

Taking N (F , d, ϖ) =
⌈

1
ω

⌉
and ϖ = n↑1/p implies that

E


sup
f↔F

Xf


↫ n↑1/(2⇓p)

√
log(n) + n↑1/p

log(n).

Proof of Lemma 2. We start to upper bound the variance term

(KPW (µ̂n, µ))
1/p ↗ E[(KPW (µ̂n, µ))

1/p
].
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Denote by X = {xi}n

i=1 and X ≃
= {x≃

i
}n

i=1 i.i.d. samples from µ, and let g(X) =

(KPW (µ̂n, µ))
1/p. Based on the triangular inequality, we find that

|g(X) ↗ g(X ≃
)| ∝ n↑1/p

(
n∑

i=1

max
f↔F

→f(xi) ↗ f(x≃
i
)→2

)1/p

∝ n↑1/p

(
n∑

i=1

L→xi ↗ x≃
i
→
)1/p

∝ n↑1/(2⇓p)L1/p→X ↗ X ≃→.

It follows that

n∑

i=1

→∞ig(Z)→2 ∝ n↑2/(2⇓p)L2/p, max
1⇒i⇒n

→∞ig(Z)→ ∝ n↑1/pL1/p.

Then the Poincare’s inequality in Theorem 29 implies that

Pr{
(KPW (µ̂n, µ))

1/p ↗ E[(KPW (µ̂n, µ))
1/p

]

 ≃ t} ∝ exp


↗K↑1

min{tn1/pL↑1/p, t2n2/(2⇓p)L↑2/p}


.

Substituting the right-hand-side with ω completes the proof.

Proof of Theorem 3. Based on the triangular inequality, we can see that

 (KPW (µ̂n, ε̂m))
1/p ↗ (KPW (µ, ε))

1/p
 ∝ (KPW (µ̂n, µ))

1/p
+ (KPW (ε̂m, ε))

1/p .

It suffices to upper bound (KPW (µ̂n, µ))
1/p and (KPW (ε̂m, ε))

1/p separately. By the

bias-variance decomposition,

(KPW (µ̂n, µ))
1/p ∝ E[(KPW (µ̂n, µ))

1/p
] +

(
(KPW (µ̂n, µ))

1/p ↗ E[(KPW (µ̂n, µ))
1/p

]

)
,

where the first term quantifies the bias for empirical estimation, and the second term

quantifies the variance of estimation. The bias term can be upper bounded by applying

Lemma 1, and the variance term can be upper bounded by applying Lemma 2. In summary,
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with probability at least 1 ↗ ω, it holds that

(KPW (µ̂n, µ))
1/p ↫ max

{
n↑1/pK log(1/ω), n↑1/(2⇓p)

√
K log(1/ω)

}
L1/p

+ n↑ 1
(2p)↑d (log n)

ϱp,d/p
+ n↑1/(2⇓p)

√
log(n) + n↑1/p

log(n).

The upper bound for (KPW (ε̂m, ε))
1/p can be proceeded similarly.

A.5.2 Testing Performance

Based on the finite-sample guarantee in Theorem 3, we are able to characterize the perfor-

mance of the KPW test. To make the type-I error below than ω, we reject the null hypothesis

as long as the empirical statistic KPW (µ̂n, ε̂m) ≃ 5m,n, where

51/p

m,n
⇑ max

{
N↑1/pK log(1/ω), N↑1/(2⇓p)

√
K log(1/ω)

}
L1/p

+ N↑ 1
(2p)↑d (logN)

ϱp,d/p
+ N↑1/(2⇓p)

√
log(n) + N↑1/p

log(n).

For the alternative hypothesis, assume that target distributions µ and ε satisfy KPW (µ, ε) >

5m,n. Then the type-II error can be upper bounded as

Pr H1

(
KPW (µ̂n, ε̂m) < 5m,n

)

= Pr H1

(
KPW (µ̂n, ε̂m) ↗ KPW (µ, ε) < 5m,n ↗ KPW (µ, ε)

)

= Pr H1

(
KPW (µ, ε) ↗ KPW (µ̂n, ε̂m) > KPW (µ, ε) ↗ 5m,n

)

∝ Pr H1

(
|KPW (µ, ε) ↗ KPW (µ̂n, ε̂m)| > KPW (µ, ε) ↗ 5m,n

)

∝E (KPW (µ, ε) ↗ KPW (µ̂n, ε̂m))
2


KPW (µ, ε) ↗ 5m,n

2 .
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A.5.3 Finite-sample Guarantee for p ↑ [1, 2)

In this subsection, we discuss the finite-sample guarantee for KPW distance with p-

Wasserstein distance for p ↑ [1, 2). Note that it is not necessary to rely on the Poincare

inequality or projection poincare inequality to obtain the result. We first present several

technical lemmas before showing the final result.

Lemma 13. Based on Assumption 1, for f ↑ {f ↑ H : →f→H ∝ 1}, we have

→f(x)→2 ∝
▽
B, ↙x ↑ RD.

Proof of Lemma 13. For fixed x ↑ X , the norm of f(x) can be upper bounded as the

following:

→f(x)→2
2 = ⇔f(x), f(x)↖ = ⇔f,Kxf(x)↖H ∝ →f→H→Kxf(x)→H ∝ →Kxf(x)→H.

In particular,

→Kxf(x)→2
H = ⇔Kxf(x), Kxf(x)↖H

= ⇔

Kxf(x)


f(x), f(x)↖

= ⇔K(x, f(x))f(x), f(x)↖

= f(x)
TK(x, f(x))f(x)

∝ B→f(x)→2
2

Combining those two relations above implies the desired result.

Lemma 14. For p ↑ [1, 2), the bias term of empirical KPW distance can be upper bounded

as

E[(KPW (µ̂n, µ))
1/p

] ↫ n↑ 1
(2p)↑d (log n)

ϱp,d/p
+ n1/2↑1/p

√
log(n) + n↑1/p.
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where ▷p,d = 1 if d = 2p and ▷p,d = 0 otherwise.

Proof of Lemma 14. Following the similar argument as in Lemma 1, we can see that

E[(KPW (µ̂n, µ))
1/p

] ∝ sup
f↔F

E[(W (f#µ̂n, f#µ))
1/p

]

+ E

sup
f↔F


(W (f#µ̂n, f#µ))

1/p ↗ E[(W (f#µ̂n, f#µ))
1/p

]


,

and the first term can also be bounded similarly. To upper bound the second term, define the

empirical process {Xf} as in Lemma 1. For fixed f , the random variable Xf can be shown

to be sub-Gaussian. Denote by Z = {zi}n

i=1 and Z ≃
(i) the sample set so that the i-th element

is different. Take g(Z) = (W (f#µ̂n, f#µ))
1/p. Then we have that

|g(Z) ↗ g(Z ≃
(i))| ∝ (W (f#µ̂n, f#µ̂≃

n
))

1/p ∝
(

1

n
→f(zi) ↗ f(z≃

i
)→p

2

)1/p

∝ n↑1/p
2

▽
B.

Therefore, applying the McDiarmid’s inequality in Theorem 28 implies

Pr{|Xf | ≃ u} ∝ 2 exp

(
↗ u2

2Bn1↑2/p

)
.

Applying Lemma 6 implies that for fixed ϱ, the random variable Xf is sub-Gaussian with

the parameter ϑ2
= 36Bn1↑2/p. Then applying the ϖ-net argument similar to the Dudley’s

entropy integral bound [300, Theorem 5.22] gives

E


sup
f↔F

Xf


∝ inf

ω>0

{
4

▽
Bϖ +

▽
36Bn1↑2/p

√
2 log N (F , d, ϖ)

}
.

Taking N (F , d, ϖ) =
⌈

1
ω

⌉
and ϖ = n↑1/p implies that

E


sup
f↔F

Xf


↫ n1/2↑1/p

√
log(n) + n↑1/p.
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Lemma 15. For p ↑ [1, 2), with with probability at least 1 ↗ ω, it holds that

(KPW (µ̂n, µ))
1/p ↗ E[(KPW (µ̂n, µ))

1/p
]

 ∝ n1/2↑1/p


2B log

2

ω
.

Proof of Lemma 15. Denote by Z = {zi}n

i=1 and Z ≃
(i) the sample set so that the i-th element

is different. Take g(Z) = (KPW (µ̂n, µ))
1/p. Then we can see that

|g(Z) ↗ g(Z ≃
(i))| ∝ (KPW (µ̂n, µ̂

≃
n
))

1/p ∝ n↑1/p
2

▽
B.

Then applying the McDiarmid’s inequality in Theorem 28 implies

Pr
{(KPW (µ̂n, µ))

1/p ↗ E[(KPW (µ̂n, µ))
1/p

]

 ≃ u
}

∝ 2 exp

(
↗ u2

2Bn1↑2/p

)
.

Based on Lemma 14 and Lemma 15, we obtain the uncertainty quantification result in

Theorem 4.
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A.6 Implementation Details for Computing KPW Distance

The variable s is initialized to be a uniform random vector over sphere. The dual variable

v is initialized to be a Gaussian random vector with unit covariance. When updating the

block of variables ut+1 and vt+1, we make the change of variables (u≃
)
t+1

= exp(ut+1
) and

(v≃
)
t+1

= exp(vt+1
). We update (u≃

)
t+1 and (v≃

)
t+1 instead to accelerate the computation:

(u≃
)
t+1

=





1/n

∑
j
exp


↗ 1

◁
ci,j + (v≃

j
)t







i

(v≃
)
t+1

=





1/m

∑
i
exp


↗ 1

◁
ci,j + (u≃

i
)t+1







j

,

and we further store the matrix A with Ai,j = exp


↗ 1

◁
ci,j


in advance to reduce the

computational cost. The transport mapping ⇁t+1 ↭ (⇁i,j(ut+1, vt+1, st
))i,j can be formulated

without going through a for loop but only with multiplication operators:

⇁t+1
= (u≃

)
t+1

.* A .* [(v≃
)
t+1

]
T,

where the operator .* means we multiply two objects componentiwisely in terms of array

broadcasting. When updating ▷t+1, we first formulate the matrix V t+1 with

V t+1
i,j

=

∑

i,j

⇁t+1
i,j

AT
i,j
Ai,j
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Figure A.1: Mean computation time for computing KPW (µ̂n, ε̂n) for varying n. Results
are averaged over 10 independent trials.

and then continue the matrix multiplication procedure in (2.6i). Denote by Gi the i-th row

block of the gram matrix G, then

V t+1
=

{
∑

i,j

⇁t+1
i,j

(Gi + Gn+j)
T
(Gi + Gn+j)

}

i,j

=

{
∑

i,j

⇁t+1
i,j

(GT
i
Gi + GT

n+j
Gn+j + GT

n+j
Gi + GT

i
Gn+j)

}

i,j

.

Consequently, we can compute each of the four components in the formula above without

executing double for loops and then sum them up to obtain the matrix V t+1. During the

numerical implementation, we also find that the computation is sensitive to the choice of

ς. This phenomenon has also been observed when using Sinkhorn’s algorithm to compute

Wasserstein distance or projected Wasserstein distance. When ς is too small, the iteration

update may have numerical instability issues. When ς is too large, the obtained solution is

far away from the optimal solution to the original KPW distance. We have tried the best to

tune this parameter to make the algorithm maintain the best performance. How to tune this

hyper-parameter systematically is left for future works.
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A.7 Details about Experiment

A.7.1 Sample Complexity

In this experiment, we fix hyper-parameters ϑ2
= 1, 2 = 0.5 for computing KPW distances.

The values of empirical KPW distances across different choices of sample size are reported

in Figure 2.1, and the corresponding computation time is reported in Figure A.1. From the

plot we can see that it is efficient to compute KPW distances with reasonably small sample

size n and projected dimension d.

A.7.2 Configurations

All methods are implemented using python 3.7 (Pytorch 1.1) on a MacBook Pro labtop with

32GB of memory. When running the code, there is no swapping of memory and the average

CPU frequency is 3.2 GHZ. We compute the projected Wasserstein distance based on the

official code in https://github.com/fanchenyou/PRW. We run the MMD-O test based on

the code in https://github.com/fengliu90/DK-for-TST. We run the MMD-NTK test based

on the code in https://github.com/xycheng/NTK-MMD. From extensive experiments we

realize that MMD-NTK is the most computationally efficient test, but its power does not

scale the best. On the other hand, this method can be useful when performing a test for the

large-sampled case, while our method may be intractable to compute in short time. We run

the ME test based on the code in https://github.com/wittawatj/interpretable-test.

A.7.3 Implementation of Cross-Validation

The candidate choices of hyper-parameters 2 and ϑ2 are within the set

{(2, ϑ2
) : ϑ2

= a · ϑ̂2
: a ↑ {0.5, 1, 2}, 2 ↑ {0.25, 0.5, 0.75}},
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Table A.1: Average type-I error and standard error for two-sample tests in MNIST dataset
across different choices of sample size.

N MMD-NTK MMD-O ME PW KPW

200 0.057±0.0010 0.056±0.0006 0.044±0.0003 0.056±0.0004 0.061±0.0005
250 0.051±0.0003 0.060±0.0001 0.065±0.0002 0.046±0.0003 0.048±0.0002
300 0.068±0.0006 0.055±0.0003 0.059±0.0007 0.056±0.0002 0.053±0.0001
400 0.049±0.0007 0.058±0.0002 0.041±0.0002 0.061±0.0006 0.056±0.0006
500 0.061±0.0006 0.054±0.0004 0.060±0.0002 0.049±0.0003 0.047±0.0004

Avg. 0.057 0.056 0.053 0.054 0.053

where ϑ̂2 denotes the empirical median of pairwise distances between observations. To

choose 2 and ϑ2, we further split the training set into the training and validation dataset,

which contain 70% and 30% data, respectively. For each choice of hyper-parameters we use

the training dataset to obtain a nonlinear projector and examine its hold-out performance on

the validation dataset, which is quantified as the negative of the p-value for two-sample tests

between two collection of samples in the validation dataset. We choose hyper-parameters 2

and ϑ2 with the best hold-out performance.

A.7.4 Tests for Synthetic Datasets

When studying tests on Gaussian distributions, we take both the training and testing sample

sizes N to be 50. When reproducing the experiments corresponding to the left two figures in

Fig. 2.3, we take the dimension D ↑ {20, 40, 60, 80, 100, 120, 140, 160}. When reproducing

the experiments corresponding to the right two figures, we take the sample size n = m ↑

{80, 100, 140, 180, 250}.

A.7.5 Tests for MNIST handwritten digits

Table A.1 present the type-I error for various tests in MNIST dataset, from which we can

see that all tests have the type-I error close to ω = 0.05.
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A.7.6 Human activity detection

The pre-processing of data is as follows. We first remove frames in which the person is

standing still or with little movements. Then we delete the first few frames to make the

action of bending consist of 500 frames. Next we delete the last few frames to make the

action of throwing consist of 355 frames. We take the window size W = 100. To perform

online change point detection, we pre-train a nonlinear projector using the data before time

index 300 and compute the null statistics for many times to obtain the true threshold. Then

we compute the detection statistic by comparing the distribution between the block of data

before time 300 and the data from the sliding window. We reject the null hypothesis and

claim a change is happened if the statistic is above the threshold. The plot of the detection

statistic over time after the time index 400 is presented in Fig. A.2, and the delay detection

time corresponding to all users are reported in Table 2.2.

A.8 Impact of Hyper-parameters

A.8.1 Impact of Projected Dimension d

We prefer to choose the projected dimension d with relatively small values since the testing

statistic will have poor sample complexity rate and is expansive to compute for large d. In

this section, we examine the testing performance for different choices of d. In particular,

we perform the KPW test on Gaussian distributions (with diagonal covariance matrices,

D = 128 and n = m = 50) and Gaussian mixture distributions (with D = 100 and

n = m = 100) following the setup in Section 2.5.1, the results of which are reported in

Fig. A.3. From the plot we can see that the testing power is generally better for d > 1, which

suggests that using vector-valued RKHS is better than using classical scalar-valued RKHS.

Moreover, we observe the performance is insensitive to the choice of d as long as we take

d > 1.
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Figure A.2: Comparison of detection statistics from bending to throwing for various testing
procedures. Black dash line indicates the true change-point. Each row corresponds to
detection results for each user.

A.8.2 Impact of Entropic Regularization Parameter ς

As pointed out in [128], the entropic regularization in (2.4) could alerady improve the sample

complexity result of Wasserstein distance. We perform experiments in this subsection to

validate the impact of the entropic regularization parameter ς for the performance of KPW

test. The generated data follows Gaussian distributions (with n = m = 100) or Gaussian

mixture distributions (with n = m = 200) with different choices of dimension D and fixed

sample size. Benchmark methods include 1) KPW test with ς = 0 (here Wasserstein distance

is computed exactly and we apply alternating optimization procedure as a heuristic); 2)

Sinkhorn test with the same ς as in the KPW test (in which we take the Sinkhorn divergence
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Figure A.3: Average power for KPW test across different choices of projected dimension d.
Left: Gaussian distribution; Right: Gaussian mixture distribution. Results are averaged over
10 independent trials.

as the statistic and all training and testing samples are used); 3) Sinkhorn+ (using all data

and post-selecting ς with the best performance). Experiment results are reported in Fig. A.4,

from which we can see that even Sinkhorn+ test has the curse of dimension issue. Moreover,

the KPW test with ς = 0 has similar performance as the KPW test. Hence, we can assert

that the KPW test is capable of alleviating the curse of dimension mainly due to the kernel

projection operator instead of the entropic regularization.

Figure A.4: Average power for KPW tests and Sinkhorn tests across different choices of data
dimension D. Left: Gaussian distribution; Right: Gaussian mixture distribution. Results are
averaged over 10 independent trials.
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APPENDIX B

PROOFS AND ADDITIONAL DETAILS OF CHAPTER 3

B.1 Comparison with Optimal Transport Divergences

Table B.1: Time and sample complexity of empirical OT estimators in terms of the number
of samples n. Here µ̂n, ε̂n represent two empirical distributions based on i.i.d. n sample
points in Rd. p denotes the order of the metric defined in the cost function of standard
Wasserstein distance.

Reference Estimator Name Time Complexity Sample Complexity

[116] Wp(µ̂n, ε̂n) Wasserstein distance O(n3 log n) O(n→1/d)

[128] Sp,ε(µ̂n, ε̂n) Sinkhorn Divergence O(n2) per iteration O(n→1/2(1 + ω
d/2))

[239] MSk(µ̂n, ε̂n)
Max Sliced Wasserstein distance

with k-dimensional projector
Õ(n2

d) O(n→1/(max{k,2}))

[230] SWp(µ̂n, ε̂n) Sliced Wasserstein distance Õ(nd) O(n→1/2)

[307] and this work KMSp(µ̂n, ε̂n) Kernel Max Sliced Wasserstein Distance Õ(n2
d
3) O(n→1/2)

In Table B.1, we summarize the time and sample complexity of various OT divergences.

Notably, the sample complexity of the standard Wasserstein distance suffers from the curse

of dimensionality. While the Sinkhorn divergence mitigates this issue, its sample complexity

depends on ϖd/2, which can be prohibitively large when the regularization parameter ϖ is

very small. For Max-Sliced (MS) and Sliced Wasserstein distances, their sample complexity

is independent of the data dimension. However, they rely on linear projections to analyze

data samples, which may not be optimal, particularly when the data exhibits a nonlinear

low-dimensional structure. This limitation motivates the study of the KMS Wasserstein

distance by Wang et al. [307] and in our work. In Example 1 and Section 6.6, we numerically

validate this observation and demonstrate its practical advantages.
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B.2 Proof of Theorem 6 and Corollary 1

The proof in this part relies on the following technical results.

Theorem 30. (Finite-Sample Guarantee on MS 1-Wasserstein Distance on Hilbert Space,

Adopted from [50, Corollary 2.8]) Let φ ↑ (0, 1], and µ be a probability measure on a

separable Hilbert space H with
∫

H →x→ dµ(x) < ↓. Let X1, . . . , Xn be i.i.d. random

elements of H sampled according to µ, and µ̂n =
1
n

∑
n

i=1 φXi , then it holds that

EMS1 (µ, µ̂n) ∝ C ·
(∫

H
→x→2+2φ

dµ(x)

)1/(2+2φ)

· (φn)
↑1/2,

where C ≃ 1 is a universal constant.

Theorem 31 (Functional Hoefffding Theorem [300, Theorem 3.26]). Let F be a class of

functions, each of the form h : B ⇒ R, and X1, . . . , Xn be samples i.i.d. drawn from µ on

B. For i ↑ [n], assume there are real numbers ai,h ∝ bi,h such that h(x) ↑ [ai,h, bi,h] for any

x ↑ B, h ↑ F ′ {↗F}. Define

L2
= sup

h↔F∞{↑F}

1

n

n∑

i=1

(bi,h ↗ ai,h)
2.

For all φ ≃ 0, it holds that

P
{

sup
h↔F


1

n

n∑

i=1

h(Xi)

 ≃ E

sup
h↔F


1

n

n∑

1

h(Xi)




+ φ

}
∝ exp

(
↗nφ2

4L2

)
.

We first show the one-sample guarantees for KMS p-Wasserstein distance.

Proposition 12. Fix p ↑ [1,↓), error probability ω ↑ (0, 1), and suppose Assumption 2

holds. Let C ≃ 1 be a universal constant. Then, we have the following results:

(I) EKMSp(µ, µ̂n) ∝ A(2C1/p
) · n↑1/(2p)

218



(II) With probability at least 1 ↗ ω, it holds that

KMSp(µ, µ̂n) ∝ 2
1↑1/pA

(
C + 4


log

1

ω

)1/p

· n↑1/(2p).

Proof of Proposition 12. Recall from (3.3) that

KMSp(µ, ε) = MSp


&#µ,&#ε


.

Therefore, it suffices to derive one-sample guarantees for MSp


&#µ,&#µ̂n


.

(I) Observe that under Assumption 2, we have

A2 ≃ K(x, x) = ⇔Kx, Kx↖ = →Kx→2
H,

and therefore →&(x)→H = →Kx→H ∝ A, ↙x ↑ B. In other words, for every probability

measure µ on B, the probability measure &#µ is supported on the ball in H centered at

the origin with radius A. By Theorem 30 with φ = 1, we obtain

EKMS1(µ, µ̂n) = EMS1


&#µ,&#µ̂n


∝ AC▽

n
.

Since &#µ and &#µ̂n are supported on the ball of H centered at the origin with radius

A, it holds that

MSp


&#µ,&#µ̂n


∝

[
MS1


&#µ,&#µ̂n


· (2A)

p↑1
]1/p

.

In other words,

KMSp(µ, µ̂n) ∝
[
KMS1(µ, µ̂n) · (2A)

p↑1
]1/p

. (B.1)
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It follows that

EKMSp(µ, µ̂n) = EMSp


&#µ,&#µ̂n



∝ E
[
MS1


&#µ,&#µ̂n


· (2A)

p↑1
]1/p

∝
{
E

[
MS1


&#µ,&#µ̂n


· (2A)

p↑1
]}1/p

∝

AC▽
n

· (2A)
p↑1

1/p

= 2
1↑1/pAC1/p · n↑1/(2p).

(II) For the second part, we re-write KMS1(µ, µ̂n) with µ̂n =
1
n

∑
n

i=1 φxi using the

kantorovich dual reformulation of OT:

KMS1(µ, µ̂n) = sup
f↔H: ⇐f⇐H⇒1,

g is 1-Lipschitz with g(0) = 0


1

n

n∑

i=1


g(f(x)) ↗ Ex↓µ[g(f(x))]

 ,

where the additional constraint g(0) = 0 does not impact the optimal value of the OT

problem. In other words, one can represent

KMS1(µ, µ̂n) = sup
h↔H


1

n

n∑

i=1

h(xi)

,

where the function class

H =

{
x ∃⇒ g(f(x)) ↗ Ex↓µ[g(f(x))] : g is 1-Lipschitz with g(0) = 0, f ↑ H, →f→H ∝ 1

}
.

Consequently, for any x,

|g(f(x))| = |g(f(x)) ↗ g(0)| ∝ |f(x)| = |⇔f,Kx↖H| ∝ →f→H→Kx→H ∝ A.

One can apply Theorem 31 with F ∅ H, ai,h ∅ ↗A ↗ Ex↓µ[g(f(x))], bi,h ∅ A ↗
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Ex↓µ[g(f(x))], where h(x) = g(f(x)) ↗ Ex↓µ[g(f(x))], to obtain

P
{

KMS1(µ, µ̂n) ≃ E [KMS1(µ, µ̂n)]+φ
}

∝ exp

(
↗ nφ2

4(2A)2

)
= exp

(
↗ nφ2

16A2

)
.

Or equivalently, the following relation holds with probability at least 1 ↗ ω:

KMS1(µ, µ̂n) ∝ E [KMS1(µ, µ̂n)]+4An↑1/2


log

1

ω
∝ An↑1/2

(
C + 4


log

1

ω

)
.

By the relation (B.1), we find that with probability at least 1 ↗ ω,

KMSp(µ, µ̂n)

∝
[
An↑1/2

(
C + 4


log

1

ω

)
· (2A)

p↑1
]1/p

=2
1↑1/pA

(
C + 4


log

1

ω

)1/p

· n↑1/(2p).

We now complete the proof of Theorem 6. By the triangle inequality, with probability at

least 1 ↗ 2ω, it holds that

KMSp(µ̂n, ε̂n) ∝ KMSp(µ, µ̂n) + KMSp(ε, ε̂n)

∝ 2 · 2
1↑1/pA

(
C + 4


log

1

ω

)1/p

· n↑1/(2p)

∝ 4A

(
C + 4


log

1

ω

)1/p

· n↑1/(2p).

Then, substituting ω with ω/2 gives the desired result.

Proof of Corollary 1. It remains to show the type-II risk when proving this corollary. In
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particular,

Type-II Risk = PH1

{
KMSp(µ̂n, ε̂n) < %(n,ω)

}

= PH1

{
KMSp(µ, ε) ↗ KMSp(µ̂n, ε̂n) ≃ KMSp(µ, ε) ↗ %(n,ω)

}

∝ PH1

{KMSp(µ, ε) ↗ KMSp(µ̂n, ε̂n)
 ≃ KMSp(µ, ε) ↗ %(n,ω)

}

∝
E

KMSp(µ, ε) ↗ KMSp(µ̂n, ε̂n)


KMSp(µ, ε) ↗ %(n,ω)
,

where the last relation is based on the Markov inequality and the assumption that KMSp(µ, ε)↗

%(n,ω) > 0. Based on the triangular inequality, we can see that

E
KMSp(µ, ε)↗KMSp(µ̂n, ε̂n)

 ∝ E[KMSp(µ, µ̂n)]+E[KMSp(ε, ε̂n)] ∝ 2AC1/p·n↑1/(2p).

Combining these two upper bounds, we obtain the desired result.

B.3 Sufficient Condition for Positive Definiteness of Matrix G

To implement our computational algorithm, one needs to assume the gram matrix

G = [K(xn, xn
),↗K(xn, yn

); ↗K(yn, xn
), K(yn, yn

)]

to be strictly positive definite. By the Lemma on the Schur complement (see, e.g., [25,

Lemma 4.2.1]), It can be showed that its necessary and sufficient condition should be

G≃
= [K(xn, xn

), K(xn, yn
);K(yn, xn

), K(yn, yn
)]

is strictly positive definite. By Wendland [317], this requires our data points {x1, . . . , xn, y1, . . . , yn}

are pairwise distinct and K(x, y) is of the form K(x, y) = &(x ↗ y), with &(·) being con-

tinuous, bounded, and its Fourier transform is non-negative and non-vanishing. For instance,

Gaussian kernel K(x, y) = e↑⇐x↑y⇐2
2/ς

2 or Bessel kernel K(x, y) = (c2
+ →x→2

2)
↑⇀, x ↑
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Rd, ↽ > d/2 satisfies our requirement.

B.4 Reformulation for 2-KMS Wasserstein Distance in (KMS)

In this section, we derive the reformulation for computing 2-KMS Wasserstein distance:

max
f↔H, ⇐f⇐2

H
⇒1




min
ϑ↔”n

∑

i,j↔[n]

⇁i,j|f(xi) ↗ f(yj)|2



 . (B.2)

Based on the expression of f in (3.7), we reformulate the problem above as

max
ax,ay↔Rn




min
ϑ↔”n

∑

i,j↔[n]

⇁i,j



∑

l↔[n]

ax,lK(xi, xl) ↗
∑

l↔[n]

ay,lK(yj, yl)



2

 , (B.3a)

subject to the constraint

∥∥∥∥∥

n∑

i=1

ax,iK(·, xi) ↗
n∑

i=1

ay,iK(·, yi)

∥∥∥∥∥

2

H

=⇔
n∑

i=1

ax,iK(·, xi) ↗
n∑

i=1

ay,iK(·, yi)

n∑

i=1

ax,iK(·, xi) ↗
n∑

i=1

ay,iK(·, yi)↖

=

∑

i,j↔[n]

ax,iax,j⇔K(·, xi), K(·, xj)↖ +

∑

i,j↔[n]

ay,iay,j⇔K(·, yi), K(·, yj)↖

↗ 2

∑

i,j↔[n]

ax,iay,j⇔K(·, xi), K(·, yj)↖ ∝ 1.

(B.3b)

One can re-write (B.3) in compact matrix form. If we define

s = [ax; ay],

M ≃
i,j

= [(K(xi, xl) ↗ K(yi, xl))l↔[n]; (K(yj, yl) ↗ K(xi, yl))l↔[n]],

G = [K(xn, xn
),↗K(xn, yn

); ↗K(yn, xn
), K(yn, yn

)] ↑ R2n↘2n,
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Problem (B.3) can be reformualted as

max
s↔R2n




min
ϑ↔”n

∑

i,j↔[n]

⇁i,j

sTM ≃
i,j

2 : sTGs ∝ 1




 . (B.4)

Take Cholesky decomposition G↑1
= UUT and use the change of variable approach to take

ω = U↑1s, Problem (B.4) can be further reformulated as

max
ϖ↔R2n




min
ϑ↔”n

∑

i,j↔[n]

⇁i,j


⇔ω, UTM ≃

i,j
↖
2

: ωTω ∝ 1




 . (B.5)

After defining Mi,j = UTM ≃
i,j

and observing that the inequality constraint ωTω ∝ 1 will

become tight, we obtain the desired reformulation as in (3.9).

B.5 Proof of Theorem 8

The general procedure of NP-hardness proof is illustrated in the following diagram: Prob-

lem (3.9) contains the (Fair PCA with rank-1 data) as a special case, whereas this special

problem further contains (Partition) (which is known to be NP-complete) as a special case.

After building these two reductions, we finish the proof of Theorem 8.

(Fair-PCA with rank-1 data)

max
!: k!k2=1

min
i2[n]

!>AiA
>

i !
max

!2R2n: k!k2=1

8
<

: min
⇡2�n

X

i,j

⇡i,j(M
>

i,j!)
2

9
=

; .

(9)

Give integers a1, . . . , aN ,

determine whether binary

variables {xi}N
i=1 2 {�1, 1}N

exist such that
PN

i=1 aixi = 0?

(Partition)

◆ ◆

Figure B.1: Proof outline of Theorem 8

Claim 1. Problem (3.9) contains Problem (Fair PCA with rank-1 data).

Proof of Claim 1. Given vectors A1, . . . , An, we specify

M1,: ↭ {M1,1,M1,2, . . . ,M1,n} = {A1, . . . , An},
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and Mi,: ↭ {Mi,1,Mi,2, . . . ,Mi,n}, i = 2, . . . , n is specified by circularly shifting the

elements in M1,: by i↗ 1 positions. For instance, M2,: = {An, A1, . . . , An↑1}. For the inner

OT problem in (3.9), it suffices to consider deterministic optimal transport ⇁, i.e.,

⇁i,j =






1/n, if j = ϑ(i),

0, otherwise

for some bijection mapping ϑ : [n] ⇒ [n]. The cost matrix for the inner OT is actually a

circulant matrix:


(MT

i,j
ω)

2


i,j

=





(A1ω)
2

(A2ω)
2 · · · (Anω)

2

(Anω)
2

(A1ω)
2 · · · (An↑1ω)

2

...
... . . . ...

(A2ω)
2

(A3ω)
2 · · · (A1ω)

2





.

When considering the feasible circularly shifting bijection mapping (e.g., ϑ(i) = (i + j)

mod n, ↙i ↑ [n] for j = 0, 1, . . . , n ↗ 1), we obtain the upper bound on the optimal value

of the inner OT problem in (3.9):

min
ϑ↔”n

∑

i,j

⇁i,j(M
T
i,j
ω)

2 ∝ min
i↔[n]

(AT
i
ω)

2
= min

i↔[n]
ωTAiA

T
i
ω.

On the other hand, for any bijection mapping ϑ, the objective of the inner OT problem in

(3.9) can be written as a convex combination of (AT
1 ω)

2, . . . , (AT
n
ω)

2, and thus,

min
ϑ↔”n

∑

i,j

⇁i,j(M
T
i,j
ω)

2 ≃ min
0↔R+

n ,
∑

i 0i=1

{ ∑

i

ωi(A
T
i
ω)

2
}

≃ min
i↔[n]

(AT
i
ω)

2.

Since the upper and lower bounds match with each other, we obtain

min
ϑ↔”n

∑

i,j

⇁i,j(M
T
i,j
ω)

2
= min

i↔[n]
ωTAiA

T
i
ω,
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and consequently,

max
ϖ: ⇐ϖ⇐2=1

{
min
ϑ↔”n

∑

i,j

⇁i,j(M
T
i,j
ω)

2

}
= max

ϖ: ⇐ϖ⇐2=1


min
i↔[n]

ωTAiA
T
i
ω


,

which justifies Problem (3.9) contains Problem (Fair PCA with rank-1 data).

Claim 2. Problem (Fair PCA with rank-1 data) contains Problem (Partition).

It is noteworthy that Claim 2 has previously been proved by [283]. For the sake of

completeness, we provide the proof here.

Proof of Claim 2. Consider the norm minimization problem

P = min
ϖ

{
→ω→2

2 : min
i↔[n]

(ωTAi)
2 ≃ 1

}
. (B.6)

and the scaled problem

max
ϖ

{
min
i↔[n]

(ωTAi)
2

: →ω→2
2 = P

}
. (B.7)

We can show that Problem (Fair PCA with rank-1 data) is equivalent to (B.7), whereas

(B.7) is equivalent to (B.6). Indeed,

• For the first argument, for any optimal solution from Problem (Fair PCA with rank-1

data), denoted as ω⇑, one can do the scaling to consider ω̃⇑
=

▽
Pω, which is also

optimal to (B.7), and vise versa.

• For the second argument, let ω1,ω2 be optimal solutions from (B.6), (B.7), respec-

tively. Since P is the optimal value of (B.6), one can check that ω1 is a feasible

solution to (B.7). Since mini↔[n] (ωT
1 Ai)

2 ≃ 1, by the optimality of ω2, it holds that

mini↔[n] (ωT
2 Ai)

2 ≃ 1, i.e., ω2 is a feasible solution to (B.6). Since →ω2→2
2 = P , ω2

is an optimal solution to (B.6). Reversely, one can show ω1 is an optimal solution

to (B.7): suppose on the contrary that there exists ω̄1 such that →ω̄1→2
2 = P and
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mini↔[n] (ω̄T
1 Ai)

2 > mini↔[n] (ωT
1 Ai)

2 ≃ 1, then one can do a scaling of ω̄1 such that

mini↔[n] (ω̄T
1 Ai)

2
= 1 whereas →ω̄1→2

2 > P , which contradicts to the optimality of P .

Combining both directions, we obtain the equivalence argument.

Thus, it suffices to show (B.6) contains Problem (Partition). Define a = (ai)i↔[n], Q =

In +aaT, and assume Q admits Cholesky factorization Q = STS. Then we create the vector

Ai = S↑∈ei, where ei is the i-th unit vector of length n. Then, it holds that

(B.6)

= min
ϖ

{
→ω→2

2 : min
i↔[n]

((S↑1ω)
Tei)

2 ≃ 1

}

= min
ϖ

{
→Sx→2

2 : min
i↔[n]

(xTei)
2 ≃ 1

}

= min
ϖ

{
xTQx : x2

i
≃ 1

}

= min
ϖ

{ n∑

i=1

x2
i
+

(
n∑

i=1

aixi

)2

: x2
i

≃ 1

}
(H)

where the second equality is by the change of variable x = S↑1ω, the third equality is by

the definitions of S and ei, and the last equality is by the definition of Q. The solution to

Problem (Partition) exists if and only if the optimal value to Problem (*) equals n. Thus,

we finish the proof of Claim 2.

B.6 Algorithm that Finds Near-optimal Solution to Optimal Transport

In this section, we present the algorithm that returns ϖ-optimal solution to the following OT

problem:

min
ϑ↔”n

∑

i,j

⇁i,jci,j, (B.8)

227



where {ci,j}i,j is the given cost matrix. Define →C→→ = maxi,j ci,j . In other words, we find

⇁̂ ↑ #n such that

optva!(B.8) ∝
∑

i,j

⇁̂i,jci,j ∝ optva!(B.8) + ϖ.

Entropy-Regularized OT. The key to the designed algorithm is to consider the entropy

regularized OT problem

min
ϑ↔”n

∑

i,j

⇁i,jci,j + ς
∑

i,j

⇁i,j log(⇁i,j),

whose dual problem is

min
v↔Rn

{
G(v) =

1

n

n∑

i=1

hi(v)

}
, (B.9)

where

hi(v) = ς log

∑

j

exp

(
vj ↗ ci,j ↗ ς

ς

)
↗ 1

n

∑

j

vj + ς(1 + log n).

Given the dual variable v ↑ Rn, one can recover the primal variable ⇁ using

⇁(v) =

1
n

exp


vj↑ci,j↑◁

◁



∑
j↓↔[n] exp


vj↓↑ci,j↓↑◁

◁



Algorithm 12 essentailly optimizes the dual formulation (B.9) with light computational

speed.

Theorem 32 ([325, Theorem 3]). Suppose we specify Tout = O(
⇐C⇐⇒

↖
ln n

ω
), T = n, the num-

ber of total iterations (including outer and inner iterations) of Algorithm 12 is O(
n⇐C⇐⇒

↖
ln n

ω
)

with per-iteration cost O(n). Therefore, the number of arithmetic operations of Algorithm 12

for finding ϖ-optimal solution is O(
n

2⇐C⇐⇒

↖
ln n

ω
)

228



Algorithm 12 Stochastic Gradient-based Algorithm with Katyusha Momentum for solving
OT [325]

1: Input: Accuracy ϖ > 0, ς =
ω

8 log n
, ϖ≃ =

ω

6 maxi,j ci,j
, maximum outer iteration Tout, and

maximum inner iteration T .
2: Take (y0, z0, 4̃0,40, C0, D0) = (0, 0, 0, 0, 0, 0)

3: for t = 0, . . . , Tout ↗ 1 do
4: 01,t =

2
t+4 , 5t =

◁

9↼1,t

5: ut = ∞↼(4̃t)

6: for j = 0, . . . , T ↗ 1 do
7: k = j + tT
8: 4k+1 = 01,tzk +

1
2 4̃t + (

1
2 ↗ 01,t)yk

9: Sample i uniformly from [n], and construct

Hk+1 = ut +


∞hi(4k+1) ↗ ∞hi(4̃t)



10: Update zk+1 = zk ↗ 5t · Hk+1/2 and yk+1 = 4k+1 ↗ ςHk+1/9
11: end for
12: Update 4̃t+1 =

1
T

∑
T

j=1 ytT+j

13: Sample 4̂t uniformly from {4tT+1, . . . ,4tT+T } and take Dt = Dt + vec(⇁(4̂t))/01,t

14: Ct = Ct + 1/01,t

15: ⇁t+1 = Dt/Ct

16: end for
17: Query Algorithm 13 to Round ⇁̃ := ⇁Tout to ⇁̂ such that ⇁̂1n =

1
n

1n and ⇁̂T1n =
1
n

1n

18: Return ⇁̂

B.7 Proof of Theorem 9

To analyze the complexity of Algorithm 3, we first derive the bias and computational cost of

the supgradient estimator v(S) in (3.12).

Lemma 16 (Bias and Computational Cost). The following results hold: (I) (Bias) v(S)

corresponds to the gradient of F̂ (S) =
∑

i,j
⇁̂i,j⇔MT

i,j
Mi,j, S↖, where ⇁̂ is defined in (3.12)

and |F (S) ↗ F̂ (S)| ∝ ϖ;

(II) (Cost) The cost for computing (3.12) is O

C · n2

▽
log nϖ↑1


, with O(·) hiding some

universal constant.

Next, we analyze the error of the inexact mirror ascent framework in Algorithm 3.
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Algorithm 13 Round to #n ([6, Algorithm 2])

1: Input: ⇁ ↑ Rn↘n

+

2: X = diag(x1, . . . , xn), with xi = min{1, 1
nri(ϑ)}. Here ri(⇁) denotes the i-th row sum

of ⇁.
3: ⇁≃

= X⇁.
4: Y = diag(y1, . . . , yn), with yj = min{1, 1

nci(ϑ↓)}. Here cj(⇁≃
) denotes the j-th column

sum of ⇁≃.
5: ⇁≃≃

= ⇁≃Y .
6: er =

1
n

1n ↗ r(⇁≃≃
), ec =

1
n

1n ↗ c(⇁≃≃
), where

r(⇁≃≃
) = (ri(⇁

≃≃
))i↔[n], c(⇁

≃≃
) = (cj(⇁

≃≃
))j↔[n].

7: Return ⇁≃≃
+ ere

T
c
/→er→1.

Lemma 17 (Error Analysis of Algorithm 3). When taking the stepsize 5 =
log(2n)

C
↖

T
, the

output Ŝ1:T from Algorithm 3 satisfies

0 ∝ F (S⇑
) ↗ F (Ŝ1:T ) ∝ 2ϖ + 2C


log(2n)

T
.

Combining Lemmas 16 and 17, we obtain the complexity for solving (SDR).

Proof of Lemma 16. For the first part, it is noteworthy that v(S) is associated with the

objective

F̂ (S) =

∑

i,j

⇁̂i,j⇔MT
i,j
Mi,j, S↖,

where ⇁̂i,j is the ϖ-optimal solution to

F (S) = min
ϑ↔”n

∑

i,j

⇁i,j⇔MT
i,j
Mi,j, S↖.

By definition, it holds that

0 ∝ F̂ (S) ↗ F (S) ∝ ϖ.

The second part follows from Theorem 32.

The proof of Lemma 17 replies on the following technical result.
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Lemma 18 ([233]). Let {Sk}T

k=1 be the updating trajectory of mirror ascent aiming to solve

the maximization of G(S) with S ↑ S2n, i.e.,

Sk+1 = arg max
S↔S2n

5⇔v(Sk), S↖ + V (S, Sk), k = 1, . . . , T ↗ 1.

Here v(S) is a supgradient of G(S), and we assume there exists M⇑ > 0 such that

→v(S)→Tr := Trace(v(S)) ∝ M⇑, ↙S ↑ S2n.

Let Ŝ1:T =
1
T

∑
T

k=1 Sk, and S⇑ be a maximizer of G(S). Define the diameter

D2
S2n

= max
S↔S2n

h(S) ↗ min
S↔S2n

h(S) = log(2n).

For constant step size

5 =
D2

S2n

M⇑
▽
T

=
log(2n)

M⇑
▽
T
,

it holds that

0 ∝ G(S⇑
) ↗ G(Ŝ1:T ) ∝ M⇑


4 log(2n)

T
.

Proof of Lemma 17. Let S⇑ and Ŝ⇑ be maximizers of the objective F (·) and F̂ (·), then we

have the following error decomposition:

F (S⇑
) ↗ F (Ŝ1:T )

=
[
F (S⇑

) ↗ F̂ (S⇑
)
]
+

[
F̂ (S⇑

) ↗ F̂ (Ŝ⇑
)
]
+

[
F̂ (Ŝ⇑

) ↗ F̂ (Ŝ1:T )
]
+

[
F̂ (Ŝ1:T ) ↗ F (Ŝ1:T )

]

∝2ϖ +
[
F̂ (S⇑

) ↗ F̂ (Ŝ⇑
)
]
+

[
F̂ (Ŝ⇑

) ↗ F̂ (Ŝ1:T )
]

∝2ϖ +
[
F̂ (Ŝ⇑

) ↗ F̂ (Ŝ1:T )
]
,
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where the first inequality is because →F ↗ F̂→→ ∝ ϖ and

|
[
F (S⇑

) ↗ F̂ (S⇑
)
]
| ∝ ϖ, |

[
F̂ (Ŝ1:T ) ↗ F (Ŝ1:T )

]
| ∝ ϖ;

and the second inequality is because F̂ (Ŝ⇑
) ↗ F̂ (Ŝ1:T ) ∝ 0. It remains to bound

[
F̂ (Ŝ⇑

) ↗

F̂ (Ŝ1:T )
]
. It is worth noting that

→v(S)→Tr =

∑

i,j

⇁i,j→Mi,jM
T
i,j

→Tr ∝
∑

i,j

⇁i,j · C = C.

Therefore, the proof can be finished by querying Lemma 18 with M⇑ = C and stepsize

5 =
log(2n)

C
↖

T
.

Proof of Theorem 9. The proof can be finished by taking hyper-parameters such that

2ϖ ∝ φ

2
, 2C


log(2n)

T
∝ φ

2
.

In other words, we take ϖ =
φ

4 and T = D16C
2 log(2n)
φ2 E. We follow the proof of Lemma 17 to

take stepsize 5 =
log(2n)

C
↖

T
.

B.8 Proof of Theorems 10 and 12

We rely on the following two technical results when proving Theorem 10.

Theorem 33 (Birkhoff-von Neumann Theorem [37]). Consider the discrete OT problem

min
ϑ↔”n

∑

i,j

⇁i,jci,j, . (B.10)

There exists an optimal solution ⇁ that has exactly one entry of 1/n in each row and each

column with all other entries 0.

Theorem 34 (Rank Bound, Adopted from [198, Theorem 2] and [195, Lemma 1]). Consider
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the domain set

D =

{
S ↑ S+

m
: Trace(S) = 1

}

and the intersection of N linear inequalities:

E =

{
S ↑ Rm↘m

: ⇔S,Ai↖ ≃ bi, i ↑ [N ]

}
.

Then, any feasible extreme point in D I E has a rank at most 1 + D
√

2N + 9/4 ↗ 3/2E.

Such a rank bound can be strengthened by replacing N by the number of binding constraints

in E .

Proof of Theorem 10. By taking the dual of inner OT problem, we find (SDR) can be

reformulated as

max
S↔S2n
f,g↔Rn

{
1

n

n∑

i=1

(fi + gi) : fi + gj ∝ ⇔Mi,jM
T
i,j
, S↖, ↙i, j ↑ [n]

}
. (B.11)

Let S⇑ be the optimal solution of variable S to the optimization problem above. Then for

fixed S⇑, according to Theorem 33 and complementary slackness of OT, there exists optimal

solutions (f ⇑, g⇑
) such that only n constraints out of n2 constraints in (B.11) are binding.

Moreover, an optimal solution to (SDR) can be obtained by finding a feasible solution to the

following intersection of constraints:

Find S ↑ S2n

⋂
E ↭

{
S : f ⇑

i
+ g⇑

j
∝ ⇔Mi,jM

T
i,j
, S↖, i, j ↑ [n]

}
.

By Theorem 34, any feasible extreme point from S2nIE has rank at most 1+

⌊√
2n +

9
4 ↗ 3

2

⌋
.

Thus, we pick such a feasible extreme point to satisfy the requirement of Theorem 10.

Proof of Theorem 12. Recall that

(KMS) = max
S∋0,Trace(S)=1,rank(S)=1,

f,g↔Rn

{
1

n

n∑

i=1

(fi + gi) : fi + gj ∝ ⇔Mi,jM
T
i,j
, S↖, ↙i, j ↑ [n]

}
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and

(SDR) = max
S∋0,Trace(S)=1

f,g↔Rn

{
1

n

n∑

i=1

(fi + gi) : fi + gj ∝ ⇔Mi,jM
T
i,j
, S↖, ↙i, j ↑ [n]

}
.

It is easy to see Optval(KMS) ∝ Optval(SDR). On the other hand, let (Ŝ, f̂ , ĝ) be an

optimal solution to (SDR) such that rank(Ŝ) ∝ k ↭ 1 +

⌊√
2n +

9
4 ↗ 3

2

⌋
. Next, take

▷ ⇑ N (0, Ŝ), ◁ =
▷

→▷→2
, S̃ = ◁◁T.

It can be seen that S̃ ⊤ 0,Trace(S̃) = 1, rank(S̃) = 1. Then, for any ε ↑ (0, 1] and µ > 0,

it holds that

Pr
{

⇔Mi,jM
T
i,j
, S̃↖ ≃ ε ·


f̂i + ĝj


, ↙i, j ↑ [n]

}

≃Pr
{

⇔Mi,jM
T
i,j
, S̃↖ ≃ ε · ⇔Mi,jM

T
i,j
, Ŝ↖, ↙i, j ↑ [n]

}

=Pr
{

⇔Mi,jM
T
i,j
, S̃↖ ≃ ε · E[⇔Mi,jM

T
i,j
, ▷▷T↖], ↙i, j ↑ [n]

}

=Pr
{

⇔Mi,jM
T
i,j
, ▷▷T↖ · →▷→↑2

2 ≃ ε · E[⇔Mi,jM
T
i,j
, ▷▷T↖], ↙i, j ↑ [n]

}

≃Pr
{

⇔Mi,jM
T
i,j
, ▷▷T↖ ≃ ε

µ
· E[⇔Mi,jM

T
i,j
, ▷▷T↖], ↙i, j ↑ [n], →▷→↑2

2 ≃ µ
}

≃1 ↗
∑

(i,j)↔[n]

Pr
{

⇔Mi,jM
T
i,j
, ▷▷T↖ < ε

µ
· E[⇔Mi,jM

T
i,j
, ▷▷T↖]

}
↗ Pr

{
→▷→2 >

1
▽
µ

}

≃1 ↗ n2 ·


ε

µ
↗ µ.

As long as we take µ = 33/100, ε = 4 · (33/100)
3/n4, it holds that

Pr
{

⇔Mi,jM
T
i,j
, S̃↖ ≃ ε ·


f̂i + ĝj


, ↙i, j ↑ [n]

}
≃ 1/100.

In other words, there exists ◁ such that

(ε · f̂i) + (ε · ĝj) ∝ ⇔Mi,jM
T
i,j
, ◁◁T↖, ↙i, j ↑ [n]

2, →◁→2 = 1.
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Algorithm 14 Rank reduction algorithm for (SDR)

1: Run Algorithm 3 to obtain φ-optimal solution to (SDR), denoted as Ŝ.

// Step 2: Find n binding constraints

2: Run Hungarian algorithm [184] to solve OT (3.11) with S ∅ Ŝ, and obtain an optimal
assignment ϑ : [n] ⇒ [n] together with dual optimal solutoin (f ⇑, g⇑

).

// Step 3-9: Ca!ibrate !ow-rank so!ution using a greedy a!gorithm

3: Initialize φ⇑
= 1

4: while φ⇑ > 0 do
5: Perform eigendecomposition Ŝ = Q’QT, where ’ = diag(41, . . . ,4r) with

rank(Ŝ) = r
6: Find a direction Y = Q%QT, where % ↑ Sr is some nonzero matrix satisfying

Trace(%) = 0, ⇔QTMi,ς(i)M
T
i,j
Q,%↖ = 0, ↙i ↑ [n].

7: If such Y does not exist, then break the loop.
8: Take new solution Ŝ(φ⇑

) := Ŝ + φ⇑Y , where

φ⇑
= arg max

φ↙0

{
φ : 4min(’ + φ%) ≃ 0

}
.

9: Update Ŝ = Ŝ(φ⇑
)

10: end while
11: Return Ŝ

This indicates that (◁◁T, ε · f̂ , ε · ĝ) is a feasible solution to (KMS), and consequently,

Optval(KMS) ≃ ε

n

n∑

i=1

(ε · f̂i + ε · ĝi) = ε · (KMS).

B.9 Rank Reduction Algorithm

In this section, we develop a rank reduction algorithm that, based on the near-optimal

solution (denoted as Ŝ) returned from Algorithm 3, finds an alternative solution of the same

(or smaller) optimality gap while satisfying the desired rank bound in Theorem 10.

Step (i): Find n binding constraints. First, we fix S ∅ Ŝ in (3.14) and finds the optimal
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solution (f ⇑, g⇑
) such that only n constraints out of n2 constraints are binding. It suffices to

apply the Huangarian algorithm [184] to solve the following balanced discrete OT problem

max
f,g↔Rn

{
1

n

n∑

i=1

(fi + gi) : fi + gj ∝ ci,j

}
= min

ϑ↔”n

{
n∑

i,j=1

⇁i,jci,j

}

where ci,j = ⇔Mi,jMT
i,j
, Ŝ↖. The output of the Huangarian algorithm is a deterministic

optimal transport that moves n probability mass points from the left marginal distribution

of ⇁ to the right, which is denoted as a bijection ϑ that permutes [n] to [n]. Thus, these n

binding constraints are denoted as

f ⇑
i

+ g⇑
ς(i) ∝ ⇔Mi,jM

T
i,j
, S↖, i ↑ [n].

We denote by the intersection of these n constraints as En.

Step (ii): Calibrate low-rank solution using a greedy algorithm. Second, let us assume

Ŝ is not an extreme point of S2n I En, since otherwise one can terminate the algorithm to

output Ŝ following the proof of Theorem 10. We run the following greedy rank reduction

procedure:

(I) We find a direction Y ⇐= 0, along which Ŝ remains to be feasible, and the null space

of Ŝ is non-decreasing.

(II) Then, we move Ŝ along the direction Y until its smallest non-zero eigenvalue vanishes.

We update Ŝ to be such a new boundary point.

(III) We terminate the iteration until no movement is available.

To achieve (I), denote the eigendecomposition of Ŝ with rank(Ŝ) = r as

Ŝ =

(
Q 0

)



’ 0

0 0




(
QT

0

)
= Q’QT
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where ’ = diag(41, . . . ,4r) with 41 ≃ · · · ≃ 4r > 0 and Q ↑ R2n↘r. To ensure

Ŝ + φY ↑ S2n I En while Null(Ŝ + φY ) J Null(Ŝ), for some stepsize φ > 0, it suffices to

take

Y =

(
Q 0

)



% 0

0 0




(
QT

0

)
= Q%QT,

where % ↑ Sr \ {0} is a symmetric matrix satisfying

Trace(%) = 0, ⇔Mi,jM
T
i,j
, Q%QT↖ = 0, i ↑ [n].

To achieve (II), it suffices to solve the one-dimensional optimization

φ⇑
= arg max

φ↙0

{
φ : 4min(’ + φ%) ≃ 0

}
, (B.12)

where 4min(·) denotes the smallest eigenvalue of a given matrix. the optimization above

admits closed-form solution update. Let eigenvalues of % be 4≃
1 ≃ · · · ≃ 4≃

r
. It suffices to

solve

φ⇑
= arg max

φ↙0

{
φ : min

i↔[r]
(4i + φ4≃

i
) ≃ 0

}
.

As long as 4≃
r
≃ 0, we return φ⇑

= 0. Otherwise, let i be an index such that 4≃
i
≃ 0 > 4≃

i+1.

We take φ⇑
= maxi<j⇒r ↗↽j

↽
↓

j
as the desired optimal solution.

The overall algorithm is summarized in Algorithm 14. Its performance guarantee is

summarized in Propositions 13, 14, and Theorem 11.

B.10 Proof of Theorem 11

The proof of this theorem is separated into two parts.

Proposition 13. The rank of iteration points in Algorithm 14 strictly decreases. Thus,

Algorithm 14 is guaranteed to terminate within 2n iterations.

Proof of Proposition 13. Assume on the contrary that rank(Ŝ(φ⇑
)) = rank(Ŝ) = r. Since
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Ŝ(φ⇑
) = Q(’ + φ⇑

%)QT, the positive eigenvalues of Ŝ(φ⇑
) are those of the matrix ’ + φ⇑

%.

According to the solution structure of (B.12), this could happen only when ’ + φ⇑
% K 0,

i.e., either φ⇑
= 0 or % ⊤ 0. For the first case, this algorithm terminates. For the second

case, since Trace(%) = 0,% ↑ Sr, it implies that % = 0, which is a contradiction.

Thus, the rank of the iteration point reduces by at least 1 in each iteration.

Proposition 14. Let S⇑ be the output of Algorithm 14. Then, it holds that

(I) S⇑ is a φ-optimal solution to (SDR).

(II) The rank of S⇑ satisfies

rank(S⇑
) ∝ 1 +

⌊
2n +

9

4
↗ 3

2

⌋
.

Proof. Recall the solution Ŝ obtained from Step 1 of Algorithm 14 satisfies

F (Ŝ) = min
ϑ↔”n

∑

i,j

⇁i,j⇔Mi,jM
T
i,j
, Ŝ↖

= max
f,g↔Rn

{
1

n

n∑

i=1

(fi + gi) : fi + gj ∝ ⇔Mi,jM
T
i,j
, Ŝ↖

}
≃ objva!(SDR) ↗ φ.

Since Step 2 of Algorithm 14 solves the OT problem exactly, we obtain

1

n

n∑

i=1

(f ⇑
i

+ g⇑
i
) = F (Ŝ) ≃ objva!(SDR) ↗ φ

Since Step 3-7 always finds feasible solutions to the n binding constraints

f ⇑
i

+ g⇑
ς(i) ∝ ⇔Mi,jM

T
i,j
, S↖, i ↑ [n],

for any iteration points from Step 3-7, denoted as S̃, the pair (S̃, f ⇑, g⇑
) is guaranteed to be

the φ-optimal solution to (3.14), a reformulation of (SDR). Hence we finish the proof of

Part (I).
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For the second part, assume on the contrary that r = rank(S⇑
) ≃ 1 +

⌊√
2n +

9
4 ↗ 3

2

⌋
.

It implies n+ 1 < r(r + 1)/2. Recall that Step 6 of Algorithm 14 essentially solves a linear

system with n+ 1 constraints and r(r+ 1)/2 variables, so a nonzero matrix % is guaranteed

to exist. Thus, one can pick a sufficiently small φ > 0 such that 4min(’ + φ%) ≃ 0, which

contradicts to the termination condition φ⇑
= 0. Thus, we finish the proof of Part (II).

Combining both parts, we start to prove Theorem 11.

Proof. Algorithm 14 satisfies the requirement of Theorem 11. For computational complexity,

the computational cost of Step 2 of Algorithm 14 is O(n3
). In each iteration from Step 3-7,

the most computationally expansive part is to solve Step 6, which essentially solves a linear

system with n + 1 constraints and r(r + 1)/2 variables. The conservative bound r ∝ 2n.

Hence, the worst-case computational cost of Step 6 (which can be achieved using Gaussian

elimination) is

O((n + 1 + r(r + 1)/2) · (n + 1)
2
) = O(n4

).

Since Algorithm 14 terminates within at most 2n iterations, the overall complexity of it is

O(n5
).

B.11 Numerical Implementation Details

B.11.1 Setup for Computing KMS Wasserstein Distance

When implementing our mirror ascent algorithm, for small sample size (n ∝ 200), we

use the exact algorithm adopted from https://pythonot.github.io/ to solve the inner OT;

whereas for large sample size, we use the approximation algorithm adopted from https:

//github.com/YilingXie27/PDASGD to solve this subproblem. For the baseline BCD approach,

we implement it using the code from github.com/WalterBabyRudin/KPW_Test/tree/main.
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B.11.2 Setup for High-dimensional Hypothesis Testing

For baselines Sinkhorn Div, SW, MS, we implement them by calling the well-established

package POT [113]. For the ME baseline, we implement it using the code from https:

//github.com/wittawatj/interpretable-test.

Next, we outline how to generate the datasets for two-sample testing experiments in

Fig. 3.4:

(I) The Gaussian covariance shift dataset was generated by taking

µ = N (0, Id), ε = N (0, Id + 2E),

where the dimension d = 200, the sample size n = 200, and E is the all-one matrix.

We vary the hyper-parameter 2 from 0 to 0.06.

(II) The Gaussian mixture dataset was generated by taking

µ =
1

2
N (0d, Id)+

1

2
N (0.5·1d, Id), ε =

1

2
N (0d, Id+0.05E)+

1

2
N (0.5·1d, Id+0.05E),

where the dimension d = 40, and we vary the sample size n from 100 to 700.

(III) For MNIST or CIFAR10 examples, we take µ as the uniform distribution subsampled

from the target dataset, denoted as µ = pdata. We take ε as the one having a change of

abundance, i.e., ε = 0.85pdata + 0.15pdata of label 1, where pdata of label 1 corresponds to the

distribution of a subset of the class with label 1.

Finally, we outline the procedure for practically using the KMS Wasserstein distance for

two-sample testing, based on the train-test split method:

(I) We first do the 50%-50% training-testing data split such that xn
= xTr ′ xTe and

yn
= yTr ′ yTe.
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(II) Then we compute the optimal nonlinear projector f for training data (xTr, yTr
). We

specify the testing statistic as the Wasserstein distance between projected testing data

(f#xTe, f#yTe
).

(III) Then we do the permutation bootstrap strategy that shuffles (xTe, yTe
) for many times,

e.g., L = 500 times. For each time t, the permuted samples are (xTe
(t), y

Te
(t)), and we

obtain the testing statistic as the Wasserstein distance between projected samples (using

the estimated projector f , denoted as W(f#xTe
(t), f#yTe

(t)).

(IV) Finally, we obtain the threshold as (1↗ω)-quantile of the testing statistics for permuted

samples, where the type-I error ω = 0.05.

B.11.3 Setup for Human Activity Detection

The MSRC-12 Kinect gesture dataset contains sequences of human body movements

recorded by 20 sensors collected from 30 users performing 12 different gestures. We

pre-process the dataset by extracting 10 different users such that in the first 600 timeframes,

they are performing the throwing action, and in the remaining 300 timeframes, they are

performing the lifting action.

B.11.4 Setup for Generative Modeling

We follow Deshpande et al. [97] to design the optimization algorithm that solves the problem

min⇁ D

pdata, (f⇁)#pnoise


, where pdata denotes the empirical distribution of MNIST dataset,

pnoise denotes the Gaussian noise, and (f⇁)#pnoise represents the distribution of the fake

image dataset. We specify f⇁ as a 4-layer feed-forward neural-net with leaky relu activation,

and 6 denotes its weight parameters. We train the optimization algorithm in 30 epoches.

From Fig. 3.6, we observe that the KMS Wasserstein distance provides fake images that are

more closer to the ground truth compared with the Sliced Wasserstein distance.
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B.12 Additional Numerical Study

B.12.1 Experiment on Significance Level

Here we add the experiment in the following table to show that as long as we take ω = 0.05,

the practical type-I error of KMS Wasserstein test is guaranteed to be controlled within 0.05.

Table B.2: Type-I Error for two-sample testing with Gaussian mixture dataset.

Method 20 40 80 160 180 200
KMS 0.061 ± 0.015 0.055 ± 0.012 0.043 ± 0.014 0.059 ± 0.011 0.042 ± 0.014 0.062 ± 0.015

B.12.2 Rank Reduction Algorithm

Recall that Theorem 10 provides the rank bound regarding some optimal solution from

SDR. In this part, we compare the rank of the matrix estimated from Algorithm 3 with our

theoretical rank bound based on the CIFAR10 dataset. For a given positive semidefinite

matrix, we calculate the rank as the number of eigenvalues greater than the tolerance 1e-6.

The numerical performance is summarized in Table B.3. In these cases, one can run our

rank reduction algorithm to obtain a low-rank solution. Fig. B.2 illustrates the procedure

by showing the probability mass values associated with the eigenvectors of the estiamted

solution Ŝ. From the plot, we find that our rank reduction algorithm is capable of producing

low-rank solutions even though the matrix size is large.
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Figure B.2: Procedure of rank reduction algorithm for CIFAR10 example with sample size
n = 200.

Table B.3: Numerical performance on rank for CIFAR10 dataset

Sample Size n Rank Obtained from
Algorithm 3

Rank Bound from
Theorem 10

200 400 19
250 500 21
300 600 24
350 700 26
400 800 27
450 900 29
500 1000 31
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APPENDIX C

PROOFS AND ADDITIONAL DETAILS OF CHAPTER 4

C.1 ADMM for Solving SDP Problem (4.21)

Define the domain sets

C =

{
Z ↑ S+

D+1 : Z(0,0)
= 1,Tr(Z) = 2

}
,

B =

{
(Z, q) :

∑

j↔[D]


Z(i,j)

2 ∝ Z(i,i)q(i),




∑

j↔[D]

|Z(i,j)|




2

∝ dZ(i,i)q(i), ↙i ↑ [D], q ↑ Q
}
.

Let IA(·) denote the indicator function of set A. Then problem (4.21) can be reformulated

as

min
Z,q

{
↗ ⇔Ã, Z↖ + IC(Z) + IB(Z, q)

}
.

By introducing a new variable Y , the problem above can be written as

min
Z,Y,q

{
↗ ⇔Ã, Z↖ + IC(Z) + IB(Y, q) : Z = Y

}
. (C.1)

The augmented Lagrangian function for problem (C.1) is defined as

Lµ(Z, Y, q; ’) = ↗⇔Ã, Z↖ + IC(Z) + IB(Y, q) ↗ ⇔’, Z ↗ Y ↖ +
1

20
→Z ↗ Y →2

F
,
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where 0 > 0 is a penalty parameter. The ADMM approach produces the following iterations:

Zk+1 = arg min
Z

Lµ(Z, Yk, qk; ’k), (C.2a)

(Yk+1, qk+1) = arg min
Y,q

Lµ(Zk+1, Y, q; ’k), (C.2b)

’k+1 = ’k ↗ 1

0

[
Zk+1 ↗ Yk+1

]
. (C.2c)

The ADMM algorithm terminates at iteration k if for some tolerance parameter to! > 0, it

holds that
→Zk+1 ↗ Yk+1→

1 + →Ã→1

∝ to!.

The advantage of ADMM is that, based on the variable splitting trick, the subproblems

(C.2a) and (C.2b) are easier to solve than the original SDP problem.

Specifically, the subproblem (C.2a) reduces to

Zk+1 = arg min
Z↔C

∥∥∥Z ↗ (Yk + 0 Ã + 0’k)

∥∥∥
2

F

, (C.3)

which amounts to solving an eigenvalue problem. See the detailed algorithm design in

Remark 31.

Next, the subproblem (C.2b) reduces to

(Yk+1, qk+1) = arg min
(Y,q)↔B

→Y ↗ (Zk+1 ↗ 0’k)→2
F
, (C.4)

which amounts to solving a large-scale second-order cone program. See the detailed

algorithm design in Remark 32.

Remark 31. Given a symmetric matrix X ↑ R(D+1)↘(D+1), consider the optimization

problem

min
Z↔C

→Z ↗ X→2
F
.
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Since this problem is unitary-invariant, its optimal solution is given by Z⇑
= U diag(a⇑

)UT

for some vector a⇑ ↑ RD+1, where the matrix X admits eigendecomposition X = U diag(b)UT.

The vector a⇑ can be obtained by solving the following problem:

a⇑
= arg min

{
→a ↗ b→2

2 : a ≃ 0, a(0)
= 1,

D∑

i=0

a(i)
= 2

}
. (C.5)

Such a problem is a variant of the projection problem onto the simplex in Euclidean space.

We adopt the algorithm in [277] with complexity O(D logD) to solve this problem. See

details in Algorithm 15.

Algorithm 15 An O(D logD)-complexity algorithm to solving problem (C.5)

1: Sort b(1:D) to b̂ such that b̂(1) ∝ · · · ∝ b̂(D).

2: Find smallest index ĵ such that b̂(j) ↗ 1
D↑j+1

∑
D

i=j
b̂(i) ↗ 1


> 0.

3: Compute 6 =
1

D↑ĵ+1

∑
D

i=ĵ
b̂(i) ↗ 1



4: Return vector a such that a(0)
= 1 and a(i)

= max{0, b(i) ↗ 6}, i ↑ [D].

Remark 32. Given a matrix X ↑ R(D+1)↘(D+1), consider the optimization problem

min
(Y,q)↔B

→Y ↗ X→2
F
.

It can be reformulated as a second-order cone program that could be solved efficiently based

on some off-the-shelf solver:

min
Y,q↔Q,Ai,i↔[D]

→vec(Y ) ↗ vec(X)→2
2

s.t. →Y (i,:)→1 ∝ Ai, i ↑ [D],

(2Ai, Y
(i,i) ↗ dq(i), Y (i,i)

+ dq(i)
) ↑ C3, Y

(i,i) ≃ 0, i ↑ [D],

(Y (i,1), . . . , Y (i,i) ↗ 1

2
q(i), . . . , Y (i,D),

1

2
q(i)

) ↑ CD+1, i ↑ [D],
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where CD+1 denotes the second-order cone of dimension D + 1:

CD+1 = {(x, t) : x ↑ RD, t ↑ R, →x→2 ∝ t}.
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C.2 Proof of Example 2

Proof of Example 2. Note that the population version of the objective in (4.12) becomes

F (z) = MMD
2
(N (0, 1), N (0, (1 + ε)2); k1) ↗ ωϖ2

H1
(N (0, 1), N (0, (1 + ε)2); k1), if z(1) ⇐= 0,

when z = ẑ and otherwise F (z) = 0. Therefore, taking the variance regularization

4 ↑

0,

MMD
2
(N (0, 1),N (0, (1 + ϖ)2

); k1)

ϑ2
H1

(N (0, 1),N (0, (1 + ϖ)2)

)
,

achieves the desired result. It remains to compute MMD
2
(N (0, 1),N (0, (1 + ϖ)2

); k1) and

ϑ2
H1

(N (0, 1),N (0, (1 + ϖ)2
) to finish the proof. According to the definition, it holds that

MMD
2
(N (0, 1),N (0, (1 + ϖ)2

); k1)

=Ex,x↓↓N (0,1) [k1(x, x
≃
)] + Ey,y↓↓N (0,(1+ω)2) [k1(y, y

≃
)] ↗ 2Ex↓N (0,1),y↓N (0,(1+ω)2) [k1(x, y)]

=Ex,x↓↓N (0,1) [k1(x, x
≃
) + k1((1 + ϖ)x, (1 + ϖ)x≃

) ↗ 2k1(x, (1 + ϖ)y)]

=

√
0 2
1

0 2
1 + 2

+

√
0 2
1

0 2
1 + 2(1 + ϖ)2

↗ 2

√
0 2
1

0 2
1 + 1 + (1 + ϖ)2

,

where the last step is by substituting the expression k1(x, y) = e↑(x↑y)2/(2↼
2
1 ) and calculating

several integral of exponential functions. Also, we have that

ϑ2
H1

(N (0, 1),N (0, (1 + ϖ)2
); k1) = 4E[H1,2H1,3] ↗ 4MMD

4
(N (0, 1),N (0, (1 + ϖ)2

); k1).
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According to the definition of Hi,j in (4.3), it holds that

E[H1,2H1,3] = Ex1,x2,x3,x4↗N (0,1)

[
k1(x1, x2)k1(x1, x3) + 2k1(x1, x2)k1((1 + ε)x3, (1 + ε)x4)

↗ 4k1(x1, x2)k(x1, (1 + ε)x3) ↗ 4k1(x1, (1 + ε)x2)k1((1 + ε)x3, (1 + ε)x4)

+ 4k1(x1, (1 + ε)x2)k1(x1, (1 + ε)x3) + k1((1 + ε)x1, (1 + ε)x2)k1((1 + ε)x1, (1 + ε)x3)

]

=

√
ϑ4
1

(ϑ2
1 + 1)(3 + ϑ2

1 )
+

√
4ϑ4

1

(ϑ2
1 + 2)(ϑ2

1 + 2(1 + ε)2)

↗

√
16ϑ4

1

2ϑ2
1 + 1 + (1 + ε)2 + (1 + ϑ2

1 )((1 + ε)+ϑ2
1 )

↗

√
16ϑ4

1

(ϑ2
1 + 1 + (1 + ε)2)(ϑ2

1 + 2(1 + ε)2)
+

√
16ϑ4

1

(ϑ2
1 + (1 + ε)2)(ϑ2

1 + (1 + ε)2 + 2)

+

√
ϑ4
1

(ϑ2
1 + (1 + ε)2)(ϑ2

1 + 3(1 + ε)2)
.

The proof is completed.
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C.3 Proofs of Technical Results in Section 4.4

Proof of Theorem 13. A natural combinatorial reformulation of (STRS) is

max
S△[D]: |S|⇒d

z↔RD

{
zTAz + zTt : →z→2 = 1, z(k)

= 0, ↙k /↑ S
}
. (C.6)

Given a size-d set S ̸ [D], and problem parameters A ↑ SD, t ↑ RD, it holds that

max
z↔RD

{
zTAz + zTt : →z→2 = 1, z(k)

= 0, ↙k /↑ S
}

= max
z↔Rd

{
zTA(S,S)z + zTt(S)

: →z→2 = 1
}
.

(C.7)

Next, we linearize the problem (C.7) using the auxiliary variable defined as

Z =




1

z








1

z





T

=




1 zT

z zzT





and the matrix

Ã(S,S)
=




0

1
2(t

(S)
)
T

1
2t

(S) A(S,S)



 .

Assume the index of Z and Ã(S,S) is over {0, 1, . . . , d}2. Then we equivalently reformulate

the problem (C.7) as

max
Z↔S+

d+1

⇔Ã(S,S), Z↖

s.t. rank(Z) = 1,

Z(0,0)
= 1,Tr(Z) = 2.

(C.8)

In particular, constraints Z ⊤ 0, rank(Z) = 1, Z(0,0)
= 1 together imply that

Z =




1 zT

z zzT




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for some vector z ↑ Rd, and the condition Tr(Z) = 2 implies →z→2 = 1. By [195,

Corollary 3], we further obtain the following equivalent reformulation of problem (C.7)

when dropping the nonconvex rank constraint rank(Z) = 1:

max
Z↔S+

d+1

⇔Ã(S,S), Z↖

s.t. Z(0,0)
= 1,Tr(Z) = 2.

(C.9)

In summary, we obtain the following reformulation of (STRS):

max
Z↔S+

d+1,S△[D]: |S|⇒d

⇔Ã(S,S), Z↖

s.t. Z(0,0)
= 1,Tr(Z) = 2.

(C.10)

It remains to show the equivalence between formulations (4.16) and (C.10). We only need

to show for any feasible q ↑ Q with its support S := {k : q(k)
= 1}, it holds that

max
Z↔S+

D+1


⇔Ã, Z↖ : Zi,i ∝ q(i), i ↑ [D], Z(0,0)

= 1,Tr(Z) = 2



= max
Z↔S+

d+1


⇔Ã(S,S), Z↖ : Z0,0 = 1,Tr(Z) = 2


.

(C.11)

Since Z ↑ S+
D+1 is a positive semi-definite matrix, the condition Z(i,i)

= 0 for i ↑ [D] \ S

implies

Z(i,j)
= 0, ↙(i, j) /↑ S ⇓ S.

Leveraging this property, we check the relation (C.11) indeed holds true.

Proof of Corollary 2. It suffices to verify the following two valid inequalities hold for
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problem (4.16):

∑

j↔[D]

(Z(i,j)
)
2 ∝ Z(i,i)q(i), ↙i ↑ [D], (C.12)




∑

j↔[D]

|Z(i,j)|




2

∝ dZ(i,i)q(i), ↙i ↑ [D]. (C.13)

This verification step follows a similar argument in [194, Lemma 2].

Proof of Theorem 14. We first re-write f(q) as the optimal value to the following optimiza-

tion problem:

max
Z↔S+

D+1,U↙0,Y,y,t

⇔Ã, Z↖

Z(0,0)
= 1, [40]

Tr(Z) = 2, [4]

∑

j

U (i,j) ∝ y(i), ↙i ↑ [D], [↽(i)
]

↗ U (i,j) ∝ Z(i,j) ∝ U (i,j), ↙i, j ↑ [D], [W (i,j)
1 ,W (i,j)

2 ]

→(yi; ti)→2 ∝ 1

2
Z(i,i)

+
d

2
q(i), ↙i ↑ [D], [ε(i)

1 ]

ti =
1

2
Z(i,i) ↗ d

2
q(i), ↙i ↑ [D], [ε(i)

2 ]

Y (i,:)
= Z(i,:) ↗ 1

2
q(i)ei, ↙i ↑ [D], [’

(i,:)
]

∥∥Y (i,:)
∥∥

2
∝ 1

2
q(i), ↙i ↑ [D]. [µ(i)

]

Here, we associate dual variables with primal constraints in brackets. In detail, constraints

corresponding to [↽(i)
], [W (i,j)

1 ,W (i,j)
2 ], [ε(i)

1 ], [ε(i)
2 ] are reformulation of the valid inequality

(C.13), and constraints corresponding to [’
(i,:)

] and [µ(i)
] are second-order conic reformula-

tion of the valid inequality (C.12).

252



Its Lagrangian dual reformulation becomes

min
ϑ,ϑ0,ς2,”

φ,W1,W2,ς1,µ↘0

max
Z→S+

D+1,U↘0,Y,y,t
⇔Ã, Z↖ + ω0


1 ↗ Z(0,0)


+ ω


2 ↗ Tr(Z)


+

∑

i

1(i)
[
y(i) ↗

∑

j

U (i,j)
]

+

∑

i,j

W (i,j)
1

[
U (i,j)

+ Z(i,j)
]
+

∑

i,j

W (i,j)
2

[
U (i,j) ↗ Z(i,j)

]
+

∑

i

↽(i)
1


1

2
Z(i,i)

+
d

2
q(i) ↗ →(yi; ti)→2



+

∑

i

↽(i)
2

(
1

2
Z(i,i) ↗ d

2
q(i) ↗ ti

)
+

∑

i

”
(i,:)


Z(i,:) ↗ 1

2
q(i)ei ↗ Y (i,:)


+

∑

i

µ(i)

(
1

2
q(i) ↗

∥∥∥Y (i,:)
∥∥∥

2

)
.

Or equivalently, it can be written as

min
ϑ,ϑ0,ς2,”

φ,W1,W2,ς1,µ↘0

{
ω0 + 2ω +

d

2
(↽1 ↗ ↽2)

Tq +
1

2
(µ ↗ diag(”))

Tq

+ max
Z→S+

D+1




⇔Ã, Z↖ ↗ ω0Z
(0,0) ↗ ωTr(Z) +

∑

i,j

(W (i,j)
1 ↗ W (i,j)

2 + ”
(i,j)

)Z(i,j)
+

1

2

∑

i

(↽(i)
1 + ↽(i)

2 )Z(i,i)






+ max
U↘0




↗
∑

i

1(i)
∑

j

U (i,j)
+

∑

i,j

(W (i,j)
1 + W (i,j)

2 )U (i,j)




 + max
Y

{
↗

∑

i

”
(i,:)Y (i,:) ↗

∑

i

µ(i)→Y (i,:)→2

}

+ max
y,t

{
∑

i

1(i)y(i) ↗
∑

i

↽(i)
1 →(yi; ti)→2 ↗

∑

i

↽(i)
2 ti

} }
.

The inner maximization over Z can be simplified into the constraint




↗40

1
2t

T

1
2t A ↗ 4ID + W1 ↗ W2 + ’ +

1
2 diag(ε1 + ε2)



 △ 0.

The inner maximization over U can be simplified as

W1 + W2 ↗ diag(↽) ∝ 0.

The inner maximization over Y can be simplified as

∑

j

(’
(i,j)

)
2 ∝ (µ(i)

)
2, i ↑ [D].
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The inner maximization over (y, t) can be simplified as

(↽(i)
)
2
+ (ε(i)

2 )
2 ∝ (ε(i)

1 )
2, i ↑ [D].

Combining those relations, we arrive at the dual problem

min
↽,↽0,ε2,$

⇀,W1,W2,ε1,µ↙0

40 + 24 + qT


d

2
(ε1 ↗ ε2) +

1

2
(µ ↗ diag(’))






↗40

1
2t

T

1
2t A ↗ 4ID + W1 ↗ W2 + ’ +

1
2 diag(ε1 + ε2)



 △ 0,

W1 + W2 ↗ diag(↽) ∝ 0,
∑

j

(’
(i,j)

)
2 ∝ (µ(i)

)
2, i ↑ [D],

(↽(i)
)
2
+ (ε(i)

2 )
2 ∝ (ε(i)

1 )
2, i ↑ [D].

Proof of Theorem 15. The left-hand-side relation is easy to show. The proof for the right-

hand-side relation is separated into two parts:

• optval(4.21) ∝ →t→2 + d · {optval(4.16) ↗ mink |t[k]|};

• optval(4.21) ∝ →t→2 + D/d · optval(4.16).

(I) For any feasible solution (q, Z) to (4.21), we find

∑

i

t(i)Z(0,i) ∝
∑

i

|t(i)||Z(0,i)| ∝
∑

i

|t(i)|
▽
Z(0,0)Z(i,i)

=

∑

i

|t(i)|
▽
Z(i,i) ∝

(
∑

i

|t(i)|2
)1/2 (

∑

i

Z(i,i)

)1/2

= →t→2,

where the first inequality is due to taking absolute values, the second inequality is

254



because Z ⊤ 0 and |Z(0,i)| ∝
▽
Z(0,0)Z(i,i), and the last inequality is by the Cauchy-

Schwarz inequality.

As a consequence, for any feasible solution (q, Z) to (4.21), it holds that

⇔Ã, Z↖ =

∑

i,j

A(i,j)Z(i,j)
+

∑

i

t(i)Z(0,i) ∝
∑

i,j

A(i,j)
 Z(i,j)

 + →t→2. (C.14)

On the other hand, it is easy to verify that for any i ↑ [D], the following is a feasible

solution to (4.16):

Zi =




1

ei








1

ei





T

or Zi =




1

↗ei








1

↗ei





T

,

where ei is a basis vector with the i-th element being 1. This yields

optval(4.16) ≃ max
{
A(i,i)

+ t(i), A(i,i) ↗ t(i)
}

= A(i,i)
+ |t(i)|, ↙i ↑ [D].

Therefore, we obtain

A(i,i) ∝ optval(4.16) ↗ |t(i)| ∝ optval(4.16) ↗ min
i↔[D]

|t(i)|,

and |A(i,j)| ∝
▽
A(i,i)A(j,j) ∝ optval(4.16) ↗ mini↔[D] |t(i)| for any i, j ↑ [D]. Com-

bining this expression with (C.14) implies that

⇔Ã, Z↖ ∝
∑

i,j

Z(i,j)
·
(

max
i,j

A(i,j)

)

+→t→2 ∝
∑

i,j

Z(i,j)
·
(

optval(4.16) ↗ min
i↔[D]

|t(i)|
)

+→t→2.

(C.15)

Also, because of the valid inequality
∑

j

Z(i,j)

2

∝ dZ(i,i)q(i), it holds that

∑

i,j

Z(i,j)
 ∝

▽
d

∑

i

√
Z(i,i)q(i) ∝

▽
d

(
∑

i

Z(i,i)

)1/2 (
∑

i

q(i)

)1/2

= d.
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Combining this relation with (C.15) gives the desired result.

(II) For any feasible solution (Z, q) in (4.16), we enforce Z(0,i)
= Z(i,0)

= 0 for i ↑ [D],

then the updated solution is still feasible, with the associated objective value

⇔Z([D],[D]), A↖.

Therefore, we obtain the relation

optval(4.16) ≃ max
Z↔S+

D,q↔Q


⇔Z,A↖ : Z(i,i) ∝ q(i), i ↑ [D],Tr(Z) = 1


≃ d/D·4max(A),

(C.16)

where the last inequality is due to [194, Proposition 2 and proof of Theorem 5].

For any feasible solution (Z, q) in (4.21), according to Part (I), it holds that
∑

i
t(i)Z(0,i) ∝

→t→2, and therefore

⇔Ã, Z↖ =

∑

i,j

A(i,j)Z(i,j)
+

∑

i

t(i)Z(0,i) ∝ ⇔A,Z([D],[D])↖ + →t→2

∝ max
Z∋0,Tr(Z)=1

⇔A,Z↖ + →t→2 = 4max(A) + →t→2.

Combining this relation with (C.16) gives the desired result.

Proof of Theorem 16(I). Let z⇑ =
∑

i
y(i)ei be the optimal solution of (STRS), where ei is
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the i-th basis vector. Then it holds that

optval(STRS) =

∑

i

y(i)
[
eT

i
(Az⇑ + t)

]

∝
√∑

i

(y(i))2

√∑

i

(eT
i
(Az⇑ + t))2

∝
▽
dmax

i

eT
i
(Az⇑ + t)

∝
▽
dmax

i

{
max
z↔Z

eT
i
(Az + t)

}

=

▽
dmax

i

{
eT

i
(Aẑi + t)

}
,

where the last equality is because

ẑi = arg max
z↔Z

eT
i
(Az) = arg max

z↔Z
eT

i
(Az + t).

Based on the observation above, one can assert that there exists i ↑ [D] such that

▽
deT

i
(Aẑi + t) ≃ optval(STRS). (C.17)

Next, we provide the lower bound for V(I):

V(I) = max
i

max


eT

i
Aei + eT

i
t, ẑT

i
Aẑi + ẑT

i
t


≃ max
i

{
max


eT

i
Aei, ẑ

T
i
Aẑi


+ min


eT

i
t, ẑT

i
t
}

≃ max
i

{
eT

i
Aẑi + min


eT

i
t, ẑT

i
t
}

= max
i

{
eT

i
(Aẑi + t) + min


0, (ẑi ↗ ei)

Tt
}

≃ 1▽
d

optval(STRS) + max
i

min


0, (ẑi ↗ ei)

Tt


≃ 1▽
d

optval(STRS) ↗ 2→t→(d+1),

where the second inequality is because A ⊤ 0 and 0 ∝ (ei ↗ ẑi)
TA(ei ↗ ẑi) = (eT

i
Aei +
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ẑT
i
Aẑi) ↗ 2eT

i
Aẑi, i.e.,

eT
i
Aẑi ∝ 1

2
(eT

i
Aei + ẑT

i
Aẑi) ∝ max


eT

i
Aei, ẑ

T
i
Aẑi


,

the third inequality is due to (C.17), and the last inequality is because ẑi↗ei is a (d+1)-sparse

vector with →ẑi ↗ ei→2 = 2, and

max
i

min


0, (ẑi ↗ ei)

Tt


≃ ↗ max
i

max
a: ⇐a⇐0⇒d+1,⇐a⇐2⇒2

aTt = ↗2→t→(d+1).

The proof is completed.

Proof of Theorem 16(II). By [1, Theorem 1.1], the primal-dual pair (v,4) of the trust region

subproblem satisfies the following:






(A ↗ 4I)v = ↗t

A △ 4I

→v→2 ∝ 1

4(1 ↗ →v→2) = 0

Let z̄ be the d-sparse truncation of v. Then it holds that

zTAv + tTz = zTAv + zT
(↗A + 4I)v

= 4zTv = 4zTz̄ = 4→z̄→2 ≃ 4


d

D
.

On the other hand,

zTAv + tTz ∝
▽
zTAz

▽
vTAv + tTx ∝

▽
zTAz ·


4 ↗ tTv

1/2

+ tTz,
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where the last inequality is because (A ↗ 4I)v = ↗t and therefore

vTAv + tTv = 4→v→2
2 ∝ 4.

By re-arrangement, it holds that


d

D
4 ∝

▽
zTAz ·


4 ↗ tTv

1/2

+ tTz.

Or equivalently, the dual multiplier 4 satisfies

d

D
42 ↗


2


d

D
zTt + zTAz


4 + (zTt)2

+ (zTAz)(vTt) ∝ 0.

Consequently,

d

D
42 ↗


2


d

D
→t→(d) + zTAz


4 ↗ (zTAz)→t→ ∝ 0.

The determinant of the quadratic function on the left-hand-side above is non-negative:

% :=


2


d

D
→t→(d) + zTAz

2

+
4d

D
zTAz→t→ ≃ 0.

On the other hand,
▽

% ∝ zTAz + 2


d

D
→t→(d) +

2d

D
→t→2.

Hence, we find the upper bound of 4:

4 ∝
2

√
d

D
→t→(d) + zTAz +

▽
%

2
d

D

∝ D

d
zTAz + →t→2 +


D

d
→t→(d)

∝ D

d
V(II) + →t→2 +

(
D

d
+

D

d

)
→t→(d).
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This, together with the fact that 4 ≃ vTAv + tTv ≃ optval(STRS) completes the proof.

Proof of Theorem 17. Define the following two sets:

Td := {z ↑ RD
: →z→2 ∝ 1, →z→1 ∝

▽
d},

Sd := {z ↑ RD
: →z→2 ∝ 1, →z→0 ∝ d}.

It has been shown in [100, Lemma 1] that there exists a factor 2 ↑ (1, 1 +
√

d/(d + 1)]

such that

Td ̸ 2 · conv(Sd).

It follows that

optval(4.22) ∝ max
z↔ρ·conv(Sd)

{zTAz + zTt} = max
z↔conv(Sd)

{22zTAz + 2zTt}

∝ max
z↔conv(Sd)

{22zTAz + 22zTt} = 22 · max
z↔conv(Sd)

{zTAz + zTt}

=22optval(STRS),

where the second inequality follows from the fact that in the optimal solution to the problem

maxz↔conv(Sd) {22zTAz + 2zTt}, we have that zTt ≃ 0. The last equality is because the

objective function zTAz + zTt is a convex function.

Proof of Proposition 2. The proof of this proposition is a simple extension from [100].
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C.4 Extension of Technical Results in Section 4.5 for a Generic Kernel

We first make the following assumptions regarding the kernel choice Kz(·, ·), variance

regularization value 4, and data distributions µ, ε.

Assumption 10. The kernel Kz(·, ·) is uniformly bounded and satisfies the Lipshitz con-

tinuous condition, i.e., for any z, z≃ ↑ Z, x, y ↑ !, it holds that |Kz(x, y)| ∝ M and

|Kz(x, y) ↗ Kz↓(x, y)| ∝ L→z ↗ z≃→2.

Assumption 11. Under the alternative hypothesis H1 : µ ⇐= ε, there exists 4 ≃ 0 such that

for some ▷ ↑ Z , it holds that MMD
2
(µ, ε;Kϱ) > 0 and

%ϱ ↭ MMD
2
(µ, ε;Kϱ) ↗ 4

[
max
z↔Z

ϑ2
H1

(µ, ε;Kz) ↗ min
z↔Z

ϑ2
H1

(µ, ε;Kz)
]
> 0. (C.18)

Here ϑ2
H1

(µ, ε;Kz) denotes the population version of the empirical variance estimator

defined in (4.11).

Assumption 10 is a standard assumption used in the statistical analysis of kernel-based

testing in literature. Assumption 11 is imposed to ensure the expected value of the testing

statistic is strictly positive. It is worth noting that this assumption is not too restrictive. In the

following, we demonstrate that, under mild conditions, our proposed kernels in (4.5)-(4.7)

indeed satisfy Assumptions 10 and 11.

Proposition 15 (Sufficient Condition of Assumptions 10 and 11). (I) (Linear Kernel) For

the kernel in (4.5), Assumption 10 is guaranteed to hold with M =
▽
d and L =

▽
2d.

As long as there exists s⇑ ↑ [D] such that Proj
s↔#µ ⇐= Proj

s↔#ε, Assumption 11 is

guaranteed to hold with

4 ↑

0,

maxz↔Z
∑

s↔[D] z
(s)

MMD
2
(Proj

s#µ,Proj
s#ε; ks)

16d

)
.

(II) (Quadratic Kernel) For the kernel in (4.6), Assumption 10 is guaranteed to hold with
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M = 2c2
+ 2d and L = 4d + 2c

▽
2d. As long as there exists s⇑ ↑ [D] such that

Proj
s↔#µ ⇐= Proj

s↔#ε or (A(µ, ε))
(s↔

,s
↔) > 0 holds, Assumption 11 is guaranteed to

hold with

4 ↑

0,

maxz↔Z zTA(µ, ε)z + zTT (µ, ε)

16(2d + 2c2)2

)
.

(III) (Gaussian Kernel) For the kernel in (4.7), if additionally assuming that ! ̸ {x ↑

RD
: →x→→ ∝ R}, Assumption 10 is guaranteed to hold with M = 1 and L =

2R

ς
↖

e
. As long as there exists S ̸ [D] with |S| ∝ d such that Proj

S#µ ⇐= Proj
S#ε,

Assumption 11 is guaranteed to hold with

4 ↑

0,

maxz↔Z MMD
2
(µ, ε;Kz)

16

)
.

Proposition 16 (Non-asymptotic Concentration Properties). Under Assumption 10, with

probability at least 1 ↗ φ, (i) the bias approximation error can be bounded as

sup
z↔Z

S2
(x

n,yn
;Kz) ↗ MMD

2
(µ, ε;Kz)

 ∝ ϖ1
n,φ

↭ 8▽
n


M

√

2 log

(
D

d

)
2

φ
+ 2d log(4

▽
n) + L



= O

(
1▽
n


M ·

(
d(log n + log

D

d
+ log

1

φ
)

)1/2

+ L

)
,

where O(·) hides constants that are independent to parameters D, d, n,M,L.

(ii) and the variance approximation error can be bounded as

sup
z→Z

ϖ̂2
H1

(xn,yn
; Kz) ↗ ϖ2

H1
(µ, ↽; Kz)

 ∝ ε2n,ϱ ↭ 64▽
n


7

√

2 log

(
D

d

)
2

δ
+ 2d log(4

▽
n) +

18M2

▽
n

+ 8LM



= O

(
1▽
n

·

LM +

M2

▽
n

+

(
d(log n + log

D

d
+ log

1

δ
)

)1/2
)

,

where ϑ2
H1

(µ, ε;Kz) ↭ Exn↓µ,yn↓ε [ϑ̂2
H1

(x
n,yn

;Kz)].

Proof of the proposition above follows similar covering number arguments in [202,

Theorem 6]. The main difference is that when applying union bound on the set Z , the

corresponding error bound is sharper because the covering number of sparse-constrained set
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Z is much smaller.

C.5 Proofs of Technical Results in Section 4.5

Proof of Proposition 15. (I) We first verify the boundness and Lipschitz continuity condi-

tions. Specifically, it holds that

|Kz(x, y)| ∝
∑

s↔[D]

|z(s)| ∝ max
z↔Z

∑

s↔[D]

|z(s)| ∝ max
z↔Rd: ⇐z⇐2=1

∑

s↔[d]

|z(s)| ∝
▽
d,

where the first inequality is because |ks(x, y)| ∝ 1 for any x, y ↑ R, and the third

inequality is because any vector in Z only has at most d non-zero entries. Next, we find

|Kz(x, y) ↗ Kz↓(x, y)| =



∑

s↔[D]

(z(s) ↗ (z≃
)
(s)

)ks(x
(s), y(s)

)



∝
∑

s↔[D]

|z(s) ↗ (z≃
)
(s)| = →z ↗ z≃→1

∝
▽

2d→z ↗ z≃→2,

where the first inequality is because |ks(x, y)| ∝ 1 for any x, y ↑ R, s ↑ [D], the

second inequality is because the vector z ↗ z≃ only has at most 2d non-zero entries.

The remaining of Part (I) can be proved by noting that

MMD
2
(µ, ε, Kz̄) ∝ max

z↔Z

∑

s↔[D]

z(s)
MMD

2
(Proj

s#µ,Proj
s#ε; ks)

and

max
z↔Z

ϑ2
H1

(µ, ε;Kz)
 ∝ 8d.
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(II) For quadratic kernel, we find

|Kz(x, y)| ∝ 2




∑

s↔[D]

z(s)ks(x
(s), y(s)

)




2

+ 2c2 ∝ 2d + 2c2,

where the first inequality is based on the relation (a + b)2 ∝ 2a2
+ 2b2, and the second

inequality is because in Part (I) we have shown that |
∑

s↔[D] z
(s)ks(x(s), y(s)

)| ∝
▽
d.

Besides, it holds that

|Kz(x, y) ↗ Kz↓(x, y)| =



∑

s↔[D]

(z(s) ↗ (z≃
)
(s)

)ks(x
(s), y(s)

)





∑

s↔[D]

(z(s)
+ (z≃

)
(s)

)ks(x
(s), y(s)

) + 2c


.

Recall the first term on the right-hand-side can be bounded by
▽

2d→z ↗ z≃→2, and the

second term can be upper bounded by a constant:



∑

s↔[D]

(z(s)
+ (z≃

)
(s)

)ks(x
(s), y(s)

) + 2c



∝
∑

s↔[D]

|z(s)
+ (z≃

)
(s)||ks(x

(s), y(s)
)| + 2c

∝
∑

s↔[D]

|z(s)
+ (z≃

)
(s)| + 2c

∝ max
v: ⇐v⇐0⇒2d,⇐v⇐2⇒2

→v→1 + 2c ∝ 2

▽
2d + 2c.

Combining those two relations gives the desired result. The remaining of Part (II) can

be proved by noting that

MMD
2
(µ, ε, Kz̄) ∝ max

z↔Z
max
z↔Z

zTA(µ, ε)z + zTT (µ, ε)

and

max
z↔Z

ϑ2
H1

(µ, ε;Kz)
 ∝ 8(2d + 2c2

)
2.
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(III) The boundness of the Gaussian kernel is easy to check. The Lipscthiz continuity

condition of the Gaussian kernel follows from [202, Lemma 20]. The remaining of

Part (III) can be proved by noting that

max
z↔Z

ϑ2
H1

(µ, ε;Kz)
 ∝ 8.

Before showing the proof of Theorem 16, we list two useful technical lemmas.

Lemma 19 ([138, Theorem 10]). Assume the kernel Kz(·, ·) is uniformly bounded, i.e., for

any z ↑ Z, x, y ↑ !, it holds that |Kz(x, y)| ∝ M . For fixed z ↑ Z , with probability at

least 1 ↗ φ,
S2

(x
n,yn

;Kz) ↗ MMD
2
(µ, ε;Kz)

 ∝ 16M▽
2n


log

2

φ
.

Lemma 20 ([202, Lemma 17 and 18]). Assume the kernel Kz(·, ·) is uniformly bounded, i.e.,

for any z ↑ Z, x, y ↑ !, it holds that |Kz(x, y)| ∝ M . For fixed z ↑ Z , with probability at

least 1 ↗ φ,

ϑ̂2
H1

(x
n,yn

;Kz) ↗ ϑ2
H1

(µ, ε;Kz)

 ∝ 448


2

n
log

2

φ
+

1152M2

n
.

Proof of Theorem 16. We first consider an ϖ-cover of Z , denoted as {zi}i↔[T ]. According

to the definition of Z , it can be shown that T ∝


D

d


(4/ϖ)d. Applying the union bound

regarding the concentration inequality in Lemma 19, we obtain with probability at least

1 ↗ φ,

max
z↔{zi}i≃[T ]

S2
(x

n,yn
;Kz) ↗ MMD

2
(µ, ε;Kz)

 ∝ 16M▽
2n


log

2T

φ
.

For any z ↑ Z , there exists z≃ from {zi}i↔[T ] such that →z↗ z≃→2 ∝ ϖ. Based on the Lipschitz

assumption regarding the kernel function, we find with probability at least 1 ↗ φ, it holds
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that

sup
z↔Z

S2
(x

n,yn
;Kz) ↗ MMD

2
(µ, ε;Kz)



∝ max
z↔{zi}i≃[T ]

S2
(x

n,yn
;Kz) ↗ MMD

2
(µ, ε;Kz)

 + 8Lϖ

∝16M▽
2n


log

2T

φ
+ 8Lϖ ∝ 16M▽

2n

√

log

(
D

d

)
2

φ
+ d log

4

ϖ
+ 8Lϖ.

Setting ϖ = 1/
▽
n gives the desired result.

Next, applying the union bound regarding the concentration inequality in Lemma 20, we

obtain with probability at least 1 ↗ φ,

max
z↔{zi}i≃[T ]

ϑ̂2
H1

(x
n,yn

;Kz) ↗ ϑ2
H1

(µ, ε;Kz)

 ∝ 448


2

n
log

2T

φ
+

1152M2

n
.

Similar as in the first part, we find with probability at least 1 ↗ φ, it holds that

sup
z↔Z

ϑ̂2
H1

(x
n,yn

;Kz) ↗ ϑ2
H1

(µ, ε;Kz)



∝ max
z↔{zi}i≃[T ]

ϑ̂2
H1

(x
n,yn

;Kz) ↗ ϑ2
H1

(µ, ε;Kz)

 + 512LMϖ

∝448


2

n
log

2T

φ
+

1152M2

n
+ 512LMϖ

∝448

√
2

n
log

(
D

d

)
2

φ
+

2

n
d log

4

ϖ
+

1152M2

n
+ 512LMϖ.

Also, setting ϖ = 1/
▽
n gives the desired result.

Proof of Theorem 4. To simplify notation, let us define the population version of the objec-

tive in (4.12) as follows:

F ⇑
(z) = MMD

2
(µ, ε;Kz) ↗ 4ϑ2

H1
(µ, ε;Kz).

We first derive the lower bound of F ⇑
(ẑTr) in terms of F ⇑

(z̄) with z̄ defined in Assumption 11
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using concentration analysis. It is clear that |F ⇑
(z) ↗ F (z)| ∝ ϖn,φ/2 with probability at

least 1 ↗ φ. As a consequence, with probability at least 1 ↗ φ, it holds that

F ⇑
(ẑTr) ≃ F (ẑTr) ↗ ϖnTr,φ/4 ≃ F (z̄) ↗ ϖnTr,φ/4 ≃ F ⇑

(z̄) ↗ 2ϖnTr,φ/4, (C.19)

where we use this observation in the first and last inequalities, and the second inequality is

because of the sub-optimality of z̄. Now we are ready to show part (I) of this theorem. By

definition, we find

E[TnTe ] = MMD
2
(µ, ε;KẑTr)

= F ⇑
(ẑTr) + 4ϑ2

H1
(µ, ε;KẑTr) ≃ F ⇑

(ẑTr) + 4min
z↔Z

ϑ2
H1

(µ, ε;Kz).

Combining the relation above and (C.19) implies that, with probability at least 1 ↗ φ, it

holds that

E[TnTe ] ≃ F ⇑
(z̄) ↗ 2ϖnTr,φ/4 + 4min

z↔Z
ϑ2

H1
(µ, ε;Kz) = %z̄ ↗ 2ϖnTr,φ/4.

The second part of this theorem follows from [138, Theorem 12].

Lemma 21 (Asymptotics of Inverse Error Function [106]). Denote by S(x) the inverse of

the error function

&(x) :=
1▽
2⇁

∫
x

↑→
e↑t

2
/2

dt.

As x ⇒ 1, it holds that

S(x) ⇒

√

LW
(

1

2⇁(x ↗ 1)2

)
,

where LW(x) denotes the function Lambert W (x) admitting the series expansion

LW(x) =

∑

n↙1

(↗1)
n↑1

n!
xn.
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Specifically, LW(x) ⇒ ln(x) ↗ ln ln(x) as x ⇒ ↓.

Proof of Theorem 19. It is worth noting that

P(TnTe > tthres) = P
(
TnTe >

0

nTe

)
= 1 ↗ P

(▽
nTe(TnTe ↗ ETnTe)

ϑH1

∝ 0

ϑH1

▽
nTe

↗
▽
nTeETnTe

ϑH1

)

≃ 1 ↗ &

(
0

ϑH1

▽
nTe

↗
▽
nTeETnTe

ϑH1

)
↗ C2

ϑ3
H1

▽
nTe

,

where for the inequality above we apply the Berry–Esseen theorem to argue that the distri-

bution of
▽
nTe(TnTe ↗ ETnTe)/ϑH1 can be approximated as the normal distribution with

residual error O(1/
▽
nTe). Therefore, as long as we ensure that

0

ϑH1

▽
nTe

↗
▽
nTeETnTe

ϑH1

∝ &
↑1

(ϖ) LM ETnTe ≃ 0

nTe
+

&
↑1

(1 ↗ ϖ)
▽
nTe

,

it holds that the testing power is lower bounded:

P(TnTe > tthres) ≃ 1 ↗ ϖ ↗ C2

ϑ3
H1

▽
nTe

.

Taking ϖ = 1/
▽
nTe and applying the asymptotic formula on the inverse cdf &

↑1
(·) in

Lemma 21 gives the desired result. The type-I risk upper bound follows a similar argument.
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APPENDIX D

PROOFS AND ADDITIONAL DETAILS OF CHAPTER 5

D.1 Detailed Experiment Setup

Unless stated otherwise, we solved the SAA, Wasserstein DRO, and KL-divergence DRO

baseline models exactly using the off-the-shelf solver Mosek [7]. Optimization hyperparam-

eters, such as step size, maximum iterations, and number of levels, were tuned to minimize

training error after 10 outer iterations. We use RT-MLMC subgradient estimator to solve

the Sinkhorn DRO model. We employed the warm starting strategy during the iterative

procedure: we set the initial guess of parameter 6 at the beginning of outer iteration as

the one obtained from the SAA approach. At other outer iterations, the initial guess of

parameter 6 is set to be the final obtained solution 6 at the last outer iteration. The following

subsections outline some special reformulations, optimization algorithms used to solve the

baseline models.

D.1.1 Setup for Newsvendor Problem and Running Time

To solve the 2-Wasserstein DRO model with radius 2, we approximate the support of worst-

case distribution using discrete grid points. Denote by Dn = {x1, . . . , xn} the set of observed

n samples and G200↑n the set of 200 ↗ n points evenly supported on the interval [0, 10].

Then the support of worst-case distribution is restricted to Dn ′ G200↑n := {ẑ1, . . . , ẑ200}.

The corresponding 2-Wasserstein DRO problem has the following linear programming

reformulation:

min
⇁,↽,s

42 +
1

n

n∑

i=1

si

s.t. k6 ↗ umin(6, ẑj) ↗ 4(xi ↗ ẑj)
2 ∝ si, ↙i ↑ [n], ↙j ↑ [200].
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D.1.2 Setup for Mean-risk Portfolio Optimization

From [226, Eq. (27)] we can see that the 1-Wasserstein DRO formulation with radius 2 for

the portfolio optimization problem becomes

min
⇁,↼,↽,s

42 +
1

n

n∑

i=1

si

s.t. 6 ↑ (, bj0 + aj⇔6, ẑi↖ ∝ si, i ↑ [n], j ↑ [H],

→aj6→2 ∝ 4, j ↑ [H].

Also, we argue that the 2-Wasserstein DRO formulation with radius 2 for the portfolio

optimization problem has a finite convex reformulation:

inf
⇁↔%,↼

sup

P: W2(P,P̂n)⇒ρ

EP
[
max
j↔[H]

aj⇔6, z↖ + bj0
]

= inf
⇁↔%,↼,↽↙0

{
422

+
1

n

n∑

i=1

sup
si


max
j↔[H]

aj⇔6, si↖ + bj0 ↗ 4→si ↗ ẑi→2
2

}
.

In particular, the inner subproblem has the following reformulation:

sup
si


max
j↔[H]

aj⇔6, si↖ + bj0 ↗ 4→si ↗ ẑi→2
2



= max
j↔[H]

bj0 + sup
si

{
aj⇔6, si↖ ↗ 4→si ↗ ẑi→2

2

}

= max
j↔[H]

bj0 +
a2

j

44
→6→2

2 + aj⇔6, ẑi↖.

Hence, the 2-Wasserstein DRO can be reformulated as

min
⇁,↼,↽,s

422
+

1

n

n∑

i=1

si

s.t. 6 ↑ (, bj0 + aj⇔6, ẑi↖ +
a2

j

44
→6→2

2 ∝ si, i ↑ [n], j ↑ [H].

270



D.1.3 Setup for Adversarial Multi-class Logistic Regression

The procedure for generating various adversarial perturbations is reported in the following:

(I) For a given classifer B and data sample (x,y), the ϱp-norm (p ↑ {1, 2}) adversarial

attack based on projected gradient method [212] iterates as follows: x0 ℑ x and






%xk+1 ℑ arg max
⇐◁⇐p⇒4

{
∞xhB(xk,y)

Tς
}
,

xk+1 ℑ Proj{x↓: ⇐x↑x↓⇐p⇒4}

{
xk

+
ω▽
k + 1

%xk+1
}
.

We perform the gradient update above for 15 steps with initial learning rate ω = 1.

When p = 1, the radius of attack ◁ ↑ {0, 3e-3, 6e-3, 9e-3, 1.2e-2} · 1; and when

p = 2, the radius ◁ ↑ {0, 8e-3, 1.6e-2, 2.4e-2, 3.2e-2} · 1.

(II) For a given feature vector x, the perturbed feature using white Laplacian noise becomes

x + ◁ · ▷, where the random vector ▷ follows the isotropic Laplace distribution with

zero mean and unit variance. The ratio ◁ ↑ {0, 2e-3, 4e-3, 6e-3, 8e-3} · 1. Similarly,

the perturbed feature using white Gaussian noise becomes x + ◁ · ▷ , with ▷ being the

isotropic Gaussian distribution with zero mean and unit variance. In this case, the ratio

◁ ↑ {0, 5e-2, 1e-1, 1.5e-1, 2e-1} · 1.

In this example, we use stochastic gradient methods to solve the SAA formulation and all

penalized DRO formulations. We terminate the training of SAA or DRO models when the

number of epoches, i.e., the number of times for processes each training sample, exceeds 30.

In is worth mentioning that the Wasserstein DRO model with a fixed Lagrangian multiplier

4 using samples {xi,yi}n

i=1 can be reformulated as

min
B

1

n

n∑

i=1


max
x↔Rd

{
hB(x,yi) ↗ 4c(xi, x)

}
. (D.1)
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D.2 Additional Validation Experiments

D.2.1 Comparison of Optimization Algorithms: Linear Regression

To examine the performance of different (sub)gradient estimators, we study the problem of

distributionally robust linear regression (see the setup in Example 4). We take the nominal

distribution P̂ as the empirical one based on samples {(ai, bi)}n

i=1. As a consequence, the

inner objective function in (5.12) has the closed form expression:

F (6) =
1

n

n∑

i=1

(aT
i
6↗ bi)

2
+

1
n

∑
n

i=1(a
T
i
6 ↗ bi)

2

1
24→6→↑2

2 ↗ 1
↗ 4ϖ

2
log det

(
I ↗ 66T

1
24

)
, if →6→2

2 <
4

2
,

and otherwise F (6) = ↓. We take the constraint set ( = {6 : →6→2
2 ∝ 0.999· ↽

2}. Similar to

the setup in [192, Section 5.1], we examine the performance using three LIBSVM regression

real world datasets [67]: housing, mg, and mpg.

Figure D.1: Comparison results of SG, (V-)MLMC, RT-MLMC, RU-MLMC, and RR-
MLMC on robust linear regression problem in terms of sample complexties from P̂ and Qx,ω.
From left to right, the figures correspond to three different regression datasets: (a) housing;
(b) mg; and (c) mpg. From top to bottom, the figures correspond to plots of (a) Sinkhorn
DRO objective values; and (b) RMSE of obtained solutions.

The quality of proposed gradient estimators is examined in a single BSMD step with
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specified hyper-parameters (4, ϖ) = (10
3, 10

↑1
). For baseline comparison, we examine

the SG, RT-MLMC estimators together with the (V-)MLMC, RU-MLMC, and RR-MLMC

estimators that have been proposed in [156]. We have validated in Theorem 21 that both SG

and RT-MLMC estimators have convergence guarantees for smooth and nonsmooth loss

functions, whereas SG estimator has slower convergence rate. The (V-)MLMC estimator

only have convergence guarantees for smooth loss functions, and RU-MLMC/RR-MLMC

estimators do not have convergence guarantees as their (sub)gradient second-order moments

are unbounded.

For a given solution 6, we quantify its performance using the corresponding Sinkhorn

DRO objective value. Besides, we report its root-mean-square error (RMSE) on training data.

Thus, the smaller those two performance criteria are, the smaller the solution’s optimization

performance has. Fig. D.1 shows the performance of various gradient estimators in terms of

the number of generated samples from P̂ and Qx,ω, x ↑ suppP̂ based on these criteria. The

results demonstrate that the SG scheme does not perform competitively, as expected from

our theoretical analysis, which shows that SG has the worst complexity order. In contrast,

using other four types of MLMC methods lead to faster convergence behavior. While the

RU-MLMC and RR-MLMC schemes exhibit competitive performance, the optimization

procedure shows some oscillations. One possible explanation is that the variance values of

those gradient estimators are unbounded, making these two approaches unstable.

D.2.2 Comparison of Optimization Algorithms: Portfolio Optimization

In this subsection, we validate the competitive performance of RT-MLMC gradient estimator

on the case where the loss is convex and nonsmooth, and we try to solve the 2-SDRO

formulation. We consider the portfolio optimization problem, and specify instances (n, d) =

(50, 50), (100, 100), (400, 400). We quantify the performance of obtained solution using the

Sinkhorn DRO objective value. Since in this problem setup no analytical expression of

the objective value is available, we estimate the objective value using (5.18) with hyper-
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Figure D.2: Comparison results of SG, (V-)MLMC, RT-MLMC, RU-MLMC, and RR-
MLMC on portfolio optimization problem. From left to right, plots correspond to three
different instances of (n, d) ↑ {(50, 50), (100, 100), (400, 400)}.

parameters L = 8 and no
L

= 10
3. Fig. D.2 shows the performance in terms of the number of

generated samples based on this criterion. The results demonstrate that even for nonsmooth

loss function, those listed MLMC-based gradient estimators have better performance than

the SG estimator. Besides, the proposed RT-MLMC and standard (V-)MLMC schemes

have comparable performance, and in some cases (V-)MLMC estimator even has better

performance. It is an open question that whether the (V-)MLMC estimator will have

the similar performance guarantees as the RT-MLMC estimator for convex nonsmooth

optimization, which can be a topic for future study.

D.2.3 Comparison of Running Time for Different Baselines

The computational time for the newsvendor problem in Section 5.5.1 is reported in Table D.1.

We observe that the training time of 2-Wasserstein DRO model increases quickly as the

sample size increases, while the training time of other DRO models increases mildly in the

training sample size.

The computational time for the portfolio optimization problem in Section 5.5.2 is

reported in Table D.2. We observe that the computational time of 1- or 2-SDRO model

increases mildly as the problem input size increases. Also, SDRO models do not have the

smallest computational time in general. The reason is that in this example, other DRO

models have tractable finite-dimensional conic programming formulations so that off-the-

shelf software can solve them efficiently. In contrast, Sinkhorn DRO models do not have

274



Table D.1: Average computational time (in seconds) per problem instance for the newsvendor
problem.

Model Exponential Gamma Gaussian Mixture

n = 10 n = 30 n = 100 n = 10 n = 30 n = 100 n = 10 n = 30 n = 100

SAA 4.11e-3 4.66e-3 4.67e-3 3.96e-3 4.57e-3 5.81e-3 3.82e-3 4.60e-3 4.79e-3
KL-DRO 6.92e-3 8.17e-3 1.15e-2 8.07e-3 8.24e-3 1.16e-2 7.77e-3 8.47e-3 1.12e-2
1-SDRO 8.77e-2 8.88e-2 1.03e-1 2.76e-2 3.40e-2 4.72e-2 2.90e-2 3.13e-2 4.50e-2
2-WDRO 1.68e00 5.67e00 2.71e01 1.72e00 5.63e00 2.77e01 1.51e00 5.47e00 2.84e01
2-SDRO 3.16e-2 3.77e-2 5.92e-2 2.64e-2 2.95e-2 5.02e-2 2.57e-2 3.10e-2 4.87e-2

special reformulation, but they can still be solved in a reasonable amount of time.

Table D.2: Average computational time (in seconds) per problem instance for portfolio
optimization problem.

(n, d) Values SAA KL-DRO 1-WDRO 1-SDRO 2-WDRO 2-SDRO

(30, 30) 6.76e-03 1.42e-02 7.80e-03 4.91e-02 8.95e-03 5.00e-02
(50, 30) 7.31e-03 1.84e-02 8.33e-03 1.87e-01 1.11e-02 5.88e-02
(100, 30) 8.99e-03 2.95e-02 1.03e-02 2.78e-01 1.12e-02 6.00e-02
(150, 30) 1.12e-02 4.14e-02 1.21e-02 2.80e-01 1.22e-02 6.95e-02
(200, 30) 1.12e-02 5.66e-02 1.35e-02 2.99e-01 1.48e-02 7.67e-02
(400, 30) 1.89e-02 6.45e-02 2.09e-02 2.99e-01 2.30e-02 1.62e-01
(100, 5) 5.76e-03 1.46e-02 6.79e-03 1.05e-01 7.62e-03 5.40e-02
(100, 10) 6.18e-03 1.70e-02 7.70e-03 1.08e-01 8.73e-03 5.55e-02
(100, 20) 7.43e-03 1.82e-02 8.41e-03 1.12e-01 9.44e-03 5.58e-02
(100, 40) 9.87e-03 3.25e-02 1.13e-02 1.16e-01 1.18e-02 5.70e-02
(100, 80) 1.31e-02 6.48e-02 1.56e-02 1.19e-01 1.68e-02 5.72e-02
(100, 100) 1.54e-02 7.00e-02 1.87e-02 1.22e-01 1.93e-02 5.73e-02

The computational time of adversarial multi-class classification problem in Section 5.5.3

is reported in Table D.4, with the basic statistics of classification datasets presented in

Table D.3. The results indicate that Sinkhorn DRO models have shorter computational time

than Wasserstein DRO models in general. Note that we solve all baseline methods with

stochastic algorithms. For large-scale datasets optimizing the log-sum-exp type loss for

Sinkhorn DRO seems to be more efficient than solving the minimax game formulation for

Wasserstein DRO.
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Table D.3: Basic statistics of adversarial multi-class logistic regression datasets.

MNIST CIFAR-10 tinyImageNet STL-10

Image Size

(before pre-processing)
784 3072 12288 27648

Feature Dimension

(after pre-processing)
512 512 512 512

# of classes 10 10 200 10

Training Size 50000 50000 90000 5000

Testing Size 10000 10000 10000 8000

Table D.4: Average computational time (in seconds) per problem instance for adversarial
multi-class logistic regression problem.

Dataset SAA KL-DRO 1-WDRO 1-SDRO 2-WDRO 2-SDRO

MNIST 37.2 60.1 154 94.1 166 84.0

CIFAR-10 31.6 51.7 133 98.3 140 80.6

tinyImageNet 58.1 102 248 153 259 143

STL-10 3.42 5.15 13.5 10.1 14.2 8.61

D.2.4 Coefficient of Prescriptiveness for Different Parameter(s) Combination

In this subsection, we report the coefficient of prescriptiveness for different parameter(s)

combination on instances which are omitted in the main content. Specifically,

• Fig. D.3 and D.4 correspond to the omitted experiment results in Section 5.5.1.

• Fig. D.5 and D.6 correspond to the omitted experiment results in Section 5.5.2.

• Fig. D.7 corresponds to the omitted experiment results in Section 5.5.3.
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Figure D.3: Experiment results of the newsvendor model for gamma data distribution.
Details of these subplots follow the same setup from Figure 5.4.
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Figure D.4: Experiment results of the newsvendor model for the mixture of truncated normal
distributions. Details of these subplots follow the same setup from Figure 5.4.
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Figure D.5: Additional experiment results of the portfolio optimization model for different
data dimensions in heatmaps. Here we fix the data dimension d = 30 and vary the sample
size n ↑ {50, 100, 150, 200, 400}. Details of these subplots follow the same setup from
Fig. 5.6. (a) (n, d) = (50, 30); (b) (n, d) = (100, 30); (c) (n, d) = (150, 30); (d) (n, d) =

(200, 30); (e) (n, d) = (400, 30).
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Figure D.6: Additional experiment results of the portfolio optimization model for different
data dimensions in heatmaps. Here we fix the sample size n = 100 and vary the data
dimension d ↑ {5, 10, 20, 40, 80, 100}. Details of these subplots follow the same setup
from Fig. 5.6. (a) (n, d) = (100, 5); (b) (n, d) = (100, 10); (c) (n, d) = (100, 20); (d)
(n, d) = (100, 40); (e) (n, d) = (100, 80); (f) (n, d) = (100, 100).
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Figure D.7: Additional experiment results of the adversarial classification problem for
different datasets and different types of perturbations. Details of these subplots follow the
same setup from Fig. 5.8.
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D.3 Sufficient Condition for Condition 1

Proposition 17. Condition 1 holds if there exists p ≃ 1 so that the following conditions are

satisfied:

(I) For any x, y, z ↑ Z , c(x, y) ≃ 0, and (c(x, y))1/p ∝ (c(x, z))1/p
+ (c(z, y))1/p.

(II) The nominal distribution P̂ has a finite mean, denoted as x. Moreover, ε{z : 0 ∝

c(x, z) < ↓} = 1 and Pr
x↓P̂{c(x, x) < ↓} = 1.

(III) Assumption 4(III) holds, and there exists 4 > 0 such that Ez↓ε

[
ef(z)/(↽ω)e↑21→p

c(x,z)/ω

]
<

↓.

We make some remarks for the sufficient conditions listed above. The first condition can

be satisfied by taking the transport cost as the p-th power of the metric defined on Z for any

p ≃ 1. The second condition requires the nominal distribution P̂ is finite almost surely, e.g.,

it can be a subguassian distribution with respect to the transport cost c. We first present an

useful technical lemma before showing the proof of Proposition 17.

Lemma 22. Under the first condition of Proposition 17, for any x ↑ Z , it holds that

Ez↓ε

∫
e↑c(x,z)/ω


≃ e↑2p→1

c(x,x)/ωEz↓ε

[
e↑2p→1

c(x,z)/ω

]
.

Proof of Lemma 22. Based on the inequality (a + b)p ∝ 2
p↑1

(ap
+ bp

), we can see that

c(x, z) ∝ (c(y, z)1/p
+ c(z, y)1/p

)
p ∝ 2

p↑1
(c(y, z) + c(z, y)), ↙x, y, z ↑ Z.

Since c(x, z) ∝ 2
p↑1

(c(x, z) + c(x, x)), we can see that

Ez↓ε

∫
e↑c(x,z)/ω


≃ exp


↗2

p↑1c(x, x)/ϖ

Ez↓ε

[
e↑2p→1

c(x,z)/ω

]
.

The proof is completed.
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Proof of Proposition 17. One can see that for any x ↑ supp P̂, it holds that

Ez↓Qx,ε

[
ef(z)/(↽ω)

]
= Ez↓ε


ef(z)/(↽ω) e↑c(x,z)/ω

Eu↓ε [e↑c(x,u)/ω]



∝Ez↓ε


ef(z)/(↽ω) e↑c(x,z)/ω

Eu↓ε [e↑2p→1c(x,u)/ω]


∝ Ez↓ε


ef(z)/(↽ω) e

↑21→p
c(x,z)/ωec(x,x)/ω

Eu↓ε [e↑2p→1c(x,u)/ω]



=
ec(x,x)(1+2p→1)/ω

Eu↓ε [e↑2p→1c(x,u)/ω]
Ez↓ε

[
ef(z)/(↽ω)e↑21→p

c(x,z)/ω

]
,

where the first inequality is based on the lower bound in Lemma 22, the second inequality is

based on the triangular inequality c(x, z) ≃ 2
1↑pc(x, z)↗c(x, x). Note that almost surely for

all x ↑ supp P̂, c(x, x) < ↓. Moreover, 0 < Ez↓ε

[
e↑2p→1

c(x,z)/ω

]
∝ Ez↓ε

[
e↑c(x,z)/ω

]
<

↓, where the lower bound is because c(x, z) < ↓ almost surely for all z, the upper bound

is because c(x, z) ≃ 0 almost surely for all z. Based on these observations, we have that

Ez↓Qx,ε

[
ef(z)/(↽ω)

]
∝ ec(x,x)(1+2p→1)/ω

Ez↓ε [e↑2p→1c(x,z)/ω]
Ez↓ε

[
ef(z)/(↽ω)e↑21→p

c(x,z)/ω

]
< ↓

almost surely for all x ⇑ P̂.

D.4 Proofs of Technical Results in Section 5.3.2 and 5.3.3

Proof of Remark 13. Recall the dual objective function in (5.1) is

v(4; ϖ) = 42 + E
x↓P̂

[
4ϖ logEz↓ε

[
e(f(z)↑↽c(x,z))/(↽ω)

]]
.
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We take limit for the second term in v(4; ϖ) to obtain:

lim
ω↗0

E
x↓P̂

[
4ϖ logEz↓ε

[
e(f(z)↑↽c(x,z))/(↽ω)

]]
= E

x↓P̂


lim

⇀↗→

4

↽
logEz↓ε

[
e(f(z)↑↽c(x,z))⇀/↽

]

=E
x↓P̂


lim

⇀↗→
4∞⇀ logEz↓ε

[
e(f(z)↑↽c(x,z))⇀/↽

]

=E
x↓P̂


lim

⇀↗→

Ez↓ε

[
e(f(z)↑↽c(x,z))⇀/↽

[
f(z) ↗ 4c(x, z)

]]

Ez↓ε

[
e(f(z)↑↽c(x,z))⇀/↽

]


=E
x↓P̂

[
sup

z↔supp ε

{
f(z) ↗ 4c(x, z)

}]
.

Particularly, when supp ε = Z , it holds that

sup
z↔supp ε

{
f(z) ↗ 4c(x, z)

}
= sup

z↔Z

{
f(z) ↗ 4c(x, z)

}

and in this case the dual objective function of the Sinkhorn DRO problem converges into

that of the Wasserstein DRO problem.

Proof of Example 4. In this example, the dual objective becomes

VD = inf
↽↙0


42 + E(a,b)↓P̂


4ϖ logEa↓↓N (a,ωId)


exp

(
(6Ta≃ ↗ b)2

4ϖ

)
. (D.2)

Specially, for any a ↑ Rd, b ↑ R, 6 ↑ Rd, it holds that

ωε log

(
Ea↓↓N (a,ωId) exp

(
(ϱTa≃ ↗ b)2

ωε

))
= ωε log

(
E#a↓N (0,Id) exp

([
(ϱTa ↗ b) + (

▽
εϱ)T#a

]2

ωε

))

=(ϱTa ↗ b)2 + ωε log




E#a↓N (0,Id) exp

(
ε(ϱT

#a)
2 ↗ 2(b ↗ ϱTa)

▽
εϱT

#a

ωε

)

︸ ︷︷ ︸
(I)




.
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The term (I) can be simplified using the integral of exponential functions method:

(I) =






det

(
I ↗ 266T

4

)↑1/2

exp

(
2
(6Ta ↗ b)2

42ϖ
6TA↑16

)
, when →6→2

2 <
4

2
,

↓, otherwise,

where the matrix A = I ↗ 2⇁⇁
T

↽
. Finally, we obtain that if →6→2

2 <
↽

2 ,

4ϖ log

(
Ea↓↓N (a,ωId) exp

(
(6Ta≃ ↗ b)2

4ϖ

))
= (6Ta ↗ b)2

+
(6Ta ↗ b)2

1
24→6→↑2

2 ↗ 1
↗ 4ϖ

2
log det

(
I ↗ 266T

4

)
.

Substituting this expression into (D.2) gives the desired result.

Proof of Corollary 3. We now introduce the epi-graphical variables si, i = 1, . . . , n to

reformulate VD as

VD =






inf
↽↙0,si

42 +
1

n

n∑

i=1

si

s.t. 4ϖ logEz↓Qx̂i,ε

[
ef(z)/(↽ω)

]
∝ si, ↙i

For fixed i, the i-th constraint can be reformulated as

{
exp

 si

4ϖ


≃ Ez↓Qx̂i,ε

[
ef(z)/(↽ω)

]}
=

{
1 ≃ Ez↓Qx̂i,ε

[
e(f(z)↑si)/(↽ω)

]}

=

{
4ϖ ≃ Ez↓Qx̂i,ε

[
4ϖe(f(z)↑si)/(↽ω)

]}

=

{
4ϖ ≃

Lmax∑

▷=1

Qx̂i,ω(z▷)ai,▷

}
⋂ 

ai,▷ ≃ 4ϖ exp

(
f(z▷) ↗ si

4ϖ

)
, ↙ϱ


,

where the second constraint set can be formulated as (4ϖ, ai,▷, f(z▷) ↗ si) ↑ Kexp. Substitut-

ing this expression into VD completes the proof.

D.5 Proofs of Technical Results in Section 5.3.4

We rely on the following technical lemma to derive our strong duality result.
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Lemma 23. ([161, Section 2.1] or [279]) For fixed 0 and a reference measure ε ↑ M(Z),

consider the optimization problem

v(0) = sup
P↔P(Z)


Ez↓P


f(z) ↗ 0 log

(
dP(z)

dε(z)

)
. (D.3)

Suppose there exists a probability measure Q ↑ P(Z) such that Q ℜ ε.

(I) When 0 = 0,

v(0) = ess sup
ε

(f) ↭ inf{t ↑ R : ε{f(z) > t} = 0}.

(II) When 0 > 0 and

Ez↓ε

[
ef(z)/↼

]
< ↓,

it holds that

v(0) = 0 log

Ez↓ε

[
ef(z)/↼

]
,

and lim↼▽0 v(0) = v(0). The optimal solution in (D.3) has the expression

dP(z) =
ef(z)/↼

Eu↓ε [ef(u)/↼ ]
dε(z).

(III) When 0 > 0 and

Ez↓ε

[
ef(z)/↼

]
= ↓,

we have that v(0) = ↓.

Lemma 24 (Measurability of vx(4)). Assume Assumptions 4(I), 4(II), 4(III) hold. For fixed

4 ≃ 0, define the function vx(4) : supp P̂ ⇒ R ′ {+↓} as

vx(4) = sup
γx↔P(Z)


Ez↓γx


f(z) ↗ 4c(x, z) ↗ 4ϖ log

(
d5x(z)

dε(z)

)
.
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The function vx(4) is measurable with respect to x ⇑ P̂ regardless of the choice of 4 ≃ 0.

Proof of Lemma 24. When 4 = 0, by Lemma 23, it holds that

vx(4) = ess sup
ε

(f),

which is a constant independent of x, which is clearly measurable. When 4 > 0 and satisfies

Condition 1, by Lemma 23, it holds that

vx(4) = 4ϖ logEz↓ε

[
e(f(z)↑↽c(x,z))/(↽ω)

]
< ↓.

As loss function f and cost function c are both measurable, by conditioning Lemma [173,

Lemma 2.11], vx(4) is measurable. When 4 > 0 such that the event

E =
{
x : Ez↓Qx,ε

[
ef(z)/(↽ω)

]
= ↓

}
=

{
x : Ez↓ε

[
e(f(z)↑↽c(x,z))/(↽ω)

]
= ↓

}

satisfies P̂(E) > 0, by Lemma 23, it holds that

vx(4) =






4ϖ logEz↓ε

[
e(f(z)↑↽c(x,z))/(↽ω)

]
< ↓, if x ↑ Ec,

↓, if x ↑ E.

For fixed ω ↑ R, the level set

{x : vx(4) ≃ ω} = {x ↑ Ec
: vx(4) ≃ ω}′E =

{
x ↑ Ec

: 4ϖ logEz↓ε

[
e(f(z)↑↽c(x,z))/(↽ω)

]
≃ ω

}
′E,

which is clearly a measurable set, and therefore vx(4) is measurable. The proof is completed.
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Proof of Lemma 4. Recall from (5.6) that

V = sup
{γx}x≃supp P̂∝P(Z)


E

x↓P̂Ez↓γx [f(z)] : E
x↓P̂Ez↓γx


c(x, z) + ϖ log

(
d5x(z)

dε(z)

)
∝ 2


.

Based on the change-of-measure identity log


dγx(z)
dε(z)


= log


dQx,ε(z)

dε(z)


+ log


dγx(z)

dQx,ε(z)



and the expression of Qx,ω, the constraint can be reformulated as

E
x↓P̂Ez↓γx


c(x, z) + ϖ log

(
e↑c(x,z)/ω

∫
e↑c(x,u)/ω dε(u)

)
+ ϖ log

(
d5x(z)

dQx,ω(z)

)
∝ 2.

Combining the first two terms within the expectation term and substituting the expression of

2, it is equivalent to

ϖE
x↓P̂Ez↓γx


log

(
d5x(z)

dQx,ω(z)

)
∝ 2.

In summary, the primal problem (Prima!) can be reformulated as a generalized KL-

divergence DRO problem

V = sup
{γx}x≃supp P̂∝P(Z)


E

x↓P̂Ez↓γx [f(z)] : ϖE
x↓P̂Ez↓γx


log

(
d5x(z)

dQx,ω(z)

)
∝ 2


.

In the remaining of this subsection, we provide the full proof of Theorem 20. We first

show that the dual minimizer exists.

Lemma 25 (Existence of Dual Minimizer). Suppose 2 > 0 and Condition 1 is satisfied,

then the dual minimizer 4⇑ exists, which either equals to 0 or satisfies Condition 1.

Proof of Lemma 25. We first show that 4⇑ < ↓. Denote by v(4) the objective function for

the dual problem:

v(4) = 42 + 4ϖE
x↓P̂

[
logEz↓Qx,ε

[
ef(z)/(↽ω)

]]
.
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The integrability condition for the dominated convergence theorem is satisfied, which implies

lim
↽↗→

4ϖE
x↓P̂

[
logEz↓Qx,ε

[
ef(z)/(↽ω)

]]
= E

x↓P̂


lim
⇀↗0

ϖ

↽
logEz↓Qx,ε

[
e⇀f(z)/ω

]

=E
x↓P̂


lim
⇀↗0

ϖ∞⇀ logEz↓Qx,ε

[
e⇀f(z)/ω

]
= E

x↓P̂


lim
⇀↗0

Ez↓Qx,ε

[
f(z)e⇀f(z)/ω

]

Ez↓Qx,ε [e⇀f(z)/ω]



=E
x↓P̂Ez↓Qx,ε [f(z)],

where the first equality follows from the change-of-variable technique with ↽ = 1/4, the

second equality follows from the definition of derivative, the third and the last equality

follows from the dominated convergence theorem. As a consequence, as long as 2 > 0, we

have lim↽↗→ v(4) = ↓. We can take 4 satisfying Condition 1 and then v(4) < ↓. This,

toegther with the fact that v(·) is continuous, guarantees the existence of the dual minimizer.

Hence 4⇑ < ↓, which implies that either 4⇑
= 0 or 4⇑ satisfies Condition 1.

Next, we establish first-order optimality condition for cases 4⇑ > 0 or 4⇑
= 0, cor-

responding to whether the Sinkhorn distance constraint in (Prima!) is binding or not.

Lemma 26 below presents a necessary and sufficient condition for the dual minimizer

4⇑
= 0, corresponding to the case where the Sinkhorn distance constraint in (Prima!) is not

binding.

Lemma 26 (Necessary and Sufficient Condition for 4⇑
= 0). Suppose 2 > 0 and Condition 1

is satisfied, then the dual minimizer 4⇑
= 0 if and only if all the following conditions hold:

(I) ess sup
ε
f ↭ inf{t : ε{f(z) > t} = 0} < ↓.

(II) 2≃
= 2 + ϖE

x↓P̂
[
logEz↓Qx,ε [1A(z)]

]
≃ 0, where A := {z : f(z) = ess sup

ε
f}.

Recall that we have the convention that the dual objective evaluated at 4 = 0 equals

ess sup
ε
f . Thus Condition (I) ensures that the dual objective function evaluated at the

minimizer is finite. When the minimizer 4⇑
= 0, the Sinkhorn ball should be large enough
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to contain at least one distribution with objective value ess sup
ε
f , and Condition (II)

characterizes the lower bound of 2.

Proof of Lemma 26. Suppose the dual minimizer 4⇑
= 0, then taking the limit of the dual

objective function gives

lim
↽↗0

v(4) = E
x↓P̂

[
Hu

(x)
]
< ↓,

where Hu
(x) := inf{t : Qx,ω{f(z) > t} = 0} ↭ ess sup

Qx,ε

f. For notational simplicity we

take Hu
= ess sup

ε

f . One can check that Hu
(x) ∅ Hu for any x ↑ supp P̂: for any t so

that Qx,ω{f(z) > t} = 0, we have that

Ez↓ε

[
1{f(z) > t}e↑c(x,z)/ω

]
= 0,

which, together with the fact that ε{c(x, z) < ↓} = 1 for fixed x, implies

Ez↓ε [1{f(z) > t}] = 0.

On the contrary, for any t so that ε{f(z) > t} = 0, we have that

0 ∝ Ez↓ε

[
1{f(z) > t}e↑c(x,z)/ω

]
∝ Ez↓ε [1{f(z) > t}] = 0,

where the second inequality is because that ε{c(x, z) ≃ 0} = 1. As a consequence,

Qx,ω{f(z) > t} = 0. Hence we can assert that Hu
(x) = Hu for all x ↑ supp P̂, which

implies

lim
↽↗0

v(4) = Hu < ↓.

Then we show that almost surely for all x,

Ez↓Qx,ε [1A(z)] > 0, where A = {z : f(z) = Hu}.
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Denote by D the collection of samples x so that Ez↓Qx,ε [1A(z)] = 0. Assume the condition

above does not hold, which means that P̂{D} > 0. For any 0 > 0 and x ↑ D, there exists

H l
(x) < Hu such that

0 < hx := Ez↓Qx,ε [1B(x)(z)] ∝ 0, where B(x) = {z : H l
(x) ∝ f(z) ∝ Hu}.

Define Hgap
(x) = Hu ↗ H l

(x), hc

x
= 1 ↗ hx. Then we find that for x ↑ D,

vx(4) = 4ϖ log

Ez↓Qx,ε

[
ef(z)/(↽ω)

1B(x)(z)
]
+ Ez↓Qx,ε

[
ef(z)/(↽ω)

1B(x)c(z)
]

∝ Hu
+ 4ϖ log


hx + e↑H

gap(x)/(↽ω)
h

c

x


.

Since P̂{D} > 0, the dual objective function for 4 > 0 is upper bounded as

v(4) = 42 + E
x↓P̂[vx(4)]

∝ Hu
+ 42 + 4ϖE

x↓P̂
[
log


hx + e↑H

gap(x)/(↽ω)
h

c

x


1D(x)

]
.

We can see that

lim
↽↗0

42 + 4ϖE
x↓P̂

[
log


hx + e↑H

gap(x)/(↽ω)
h

c

x


1D(x)

]
= 0,

and

lim
↽↗0

∞
[
42 + 4ϖE

x↓P̂
[
log


hx + e↑H

gap(x)/(↽ω)
h

c

x


1D(x)

]]

=2 + ϖE
x↓P̂ [log (hx) 1D(x)] ∝ 2 + ϖ log(0)P̂{D} ∝ ↗2 < 0,

where the second inequality is by taking the constant 0 = exp


↗ 2ρ

ωP̂{D}


. Hence, there
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exists 4 > 0 such that

v(4) ∝ Hu
+ 42 + 4ϖE

x↓P̂

[
log


hx + e↑H

gap(x)/(↽ω)
h

c

x


1D(x)

]
< v(0),

which contradicts to the optimality of 4⇑
= 0. As a result, almost surely for all x, we have

that

Ez↓Qx,ε [1A(z)] > 0.

To show the second condition, we re-write the dual objective function for 4 > 0 as

v(4) = 42 + 4ϖE
x↓P̂

[
log


Ez↓Qx,ε [1A(z)] + Ez↓Qx,ε

[
e[f(z)↑H

u]/(↽ω)
1Ac(z)

]]
+ Hu.

The gradient of v(4) becomes

∞v(4) = 2 + ϖE
x↓P̂

[
log


Ez↓Qx,ε [1A(z)] + Ez↓Qx,ε

[
e[f(z)↑H

u]/(↽ω)
1Ac(z)

]]

+ E
x↓P̂


Ez↓Qx,ε

[
e[f(z)↑H

u]/(↽ω)
1Ac(z)(Hu ↗ f(z))/(4)

]

Ez↓Qx,ε [1A(z)] + Ez↓Qx,ε [e[f(z)↑Hu]/(↽ω)1Ac(z)]


.

We can see that lim↽↗→ ∞v(4) = 2. Take

v1,x(4) = Ez↓Qx,ε

[
e[f(z)↑H

u]/(↽ω)
1Ac(z)

]
.

Then lim↽↗0 v1,x(4) = 0 and v1,x(4) ≃ 0. Take

v2,x(4) =
Ez↓Qx,ε

[
e[f(z)↑H

u]/(↽ω)
1Ac(z)(Hu ↗ f(z))/(4)

]

Ez↓Qx,ε [1A(z)] + Ez↓Qx,ε [e[f(z)↑Hu]/(↽ω)1Ac(z)]
.

Then lim↽↗0 v2,x(4) = 0 and v2,x(4) ≃ 0. It follows that

lim
↽↗0

∞v(4) = 2 + ϖE
x↓P̂

[
logEz↓Qx,ε [1A(z)]

]
= 2≃.
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Hence, if the last condition is violated, based on the mean value theorem, we can find 4 > 0

so that ∞v(4) = 0, which contradicts to the optimality of 4⇑
= 0.

Now we show the converse direction. For any 4 > 0, we find that

∞v(4) = 2 + ϖE
x↓P̂

[
log


Ez↓Qx,ε [1A(z)] + v1,x(4)

]
+ E

x↓P̂[v2,x(4)].

For fixed x, when EQx,ε [1A] = 1, we can see that v1,x(4) = v2,x(4) = 0, then

2 + ϖ
[
log


Ez↓Qx,ε [1A(z)] + v1,x(4)

]
+ v2,x(4) = 2 > 0.

When Ez↓Qx,ε [1A(z)] ↑ (0, 1), we can see that v1,x(4) > 0, v2,x(4) > 0. Then

2 + ϖ
[
log


Ez↓Qx,ε [1A(z)] + v1,x(4)

]
+ v2,x(4) > 2 + ϖ log(Ez↓Qx,ε [1A(z)]) = 2≃ ≃ 0.

Therefore, ∞v(4) > 0 for any 4 > 0. By the convexity of v(4), the dual minimizer

4⇑
= 0.

Proof of Lemma 5. Recall that v(4) denotes the objective function for the dual problem. The

optimality condition can be derived by taking ∞↽ v(4) |↽=↽↔= 0. To show the uniqueness

of 4⇑, we find that

∞2
ϑv(ω)

=
1

ω3ε
Ex↗P̂


Ez↗Qx,ω [e

f(z)/(ϑω)
]

↑2
·

Ez↗Qx,ω [e

f(z)/(ϑω)f2
(z)]Ez↗Qx,ω [e

f(z)/(ϑω)
] ↗

{
Ez↗Qx,ω [e

f(z)/(ϑω)f(z)]
}2


.

It can be shown by the Cauchy-Schwarz inequality that ∞2
↽
v(4) ≃ 0 for any 4 > 0, and the

equality holds if and only if f(·) is a constant. If it is the case, the dual objective v(4) has

the unique minimizer 4⇑
= 0, which contradicts to our assumption. Hence, strict convexity

holds for the dual objective and it implies the uniquess of 4⇑.

Proof of Theorem 20. Recall the feasibility result in Theorem 20(I) can be easily shown by

considering the reformulation of V in Lemma 4 and the non-negativity of KL-divergence.
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When 2 = 0, one can see that

VD = inf
↽↙0

{
4ϖE

x↓P̂

[
logEz↓Qx,ε

[
ef(z)/(↽ω)

]]}

∝ lim
↽↗→

4ϖE
x↓P̂

[
logEz↓Qx,ε

[
ef(z)/(↽ω)

]]
= E

x↓P̂Ez↓Qx,ε [f(z)] = V.

Therefore, the strong duality result holds in this case. Theorem 20(IV) can be shown by

Lemma 26. It remains to show the strong duality result for 2 > 0, which can be further

separated to two cases: Condition 1 holds or not.

• When Condition 1 holds, by Lemma 25, the dual minimizer 4⇑ exists. The proof

for 4⇑ > 0 can be found in main context. When 4⇑
= 0, the optimality condition in

Lemma 26 holds. We construct the primal (approximate) solution P⇑ = Proj2#5⇑,

where 5⇑ satisfies

d5⇑(x, z) = d5x

⇑ (z) dP̂(x), where d5x

⇑ (y) =






0, if z /↑ A,

e
→c(x,z)/ε dε(z)

Eu⇑ϱ[e→c(x,u)/ε1A]
, if z ↑ A.

We can verify easily that the primal solution is feasible based on the optimality

condition 2≃ ≃ 0 in Lemma 26. Moreover, we can check that the primal optimal value

is lower bounded by the dual optimal value:

V ≃E(x,z)↓γ↔
[f(z)] = E

x↓P̂Ez↓γx
↔
[f(z)] = E

x↓P̂Ez↓γx
↔


ess sup

ε

f


= ess sup

ε

f = VD,

where the second equality is because that z ↑ A so that f(z) = ess sup
ε

f . This,

together with the weak duality result, completes the proof in this part.

• When Condition 1 does not hold, we consider a sequence of real numbers {Rj}j such

that Rj ⇒ ↓ and take the objective function fj(z) = f(z)1{f(z) ∝ Rj}. Hence,

there exists 4 > 0 satisfying Pr
x↓P̂

{
x : EQx,ε

[
efj(z)/(↽ω)

]
= ↓

}
= 0. According
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to the necessary condition in Lemma 26, the corresponding dual minimizer 4⇑
j
> 0

for sufficiently large index j. Then we can apply the duality result in the first part of

Theorem 20(III) to show that for sufficiently large j, it holds that

sup

P↔Bω,ε(P̂)

{Ez↓P[fj(z)]} ≃ 4⇑
j
2 + 4⇑

j
ϖE

x↓P̂

[
logEz↓Qx,ε

[
efj(z)/(↽ω)

]]
.

Taking j ⇒ ↓ both sides implies that V = ↓.

D.6 Proof of Theorem 21 in Section 5.4.2

In this section, we omit the dependence of 4 when defining objective or subgradient terms,

e.g., we write F (6) for F (6;4). We first present some preliminaries that can be useful for

developing the proof result in Section 5.4.2. As any two norms on a finite-dimensional

vector space are equivalent, we impose the following assumption throughout Section 5.4

without loss of generality:

Assumption 12. There exists c and d such that c→ · →2 ∝ → · → ∝ d→ · →2.

By Assumption 12, we obtain the bound regarding the dual norm → · →⇑:

d
↑1 · → · →2 ∝ → · →⇑ ∝ c

↑1 · → · →2.

The complexity result of our proposed gradient estimators is summarized below.

Remark 33 (Complexity of Gradient Estimators [156, Appendix B]). To generate the

SG estimator vSG
(6), one needs to generate 1 sample from P̂ and 2

L samples from Qx,ω

for some x ↑ supp P̂. To generate the RT-MLMC estimator vRT-MLMC
(6), one needs to

generate 1 sample from P̂ and the required (expected) number of samples from Qx,ω for some

x ↑ supp P̂ equals L

2↑2→L = O(L). A

295



Next, we present some basic properties regarding the approximation function F ▷
(6)

defined in (5.14) in Lemma 27, which can be used to show Theorem 21. Recall that we

defined the constant K↽,ω,B = B/(4ϖ).

Lemma 27. (I) Under Assumption 5(III), it holds that

F ▷
(6) ↗ F (6)

 ∝ 4ϖ exp (2K↽,ω,B) · 2
↑(▷+1), ↙6 ↑ (.

(II) Under Assumption 5(III) and 5(II), it holds that

∥∥∞F ▷
(6) ↗ ∞F (6)

∥∥2

2
∝ L2

f
exp (4K↽,ω,B) · 2

↑▷, ↙6 ↑ (.

(III) Under Assumption 5(II), it holds that

E
[∥∥g▷

(6, ▷▷
)
∥∥2

2

]
∝ L2

f
, ↙6 ↑ (.

Additionally when Assumption 5(III) holds, it holds that

E
[∥∥G▷

(6, ▷▷
)
∥∥2

2

]
∝ L2

f
exp (4K↽,ω,B) · 2

↑▷, ↙6 ↑ (.

Proof of Lemma 27. Recall that (5.12) is a special CSO problem in (5.13), by taking

H1
(·) = 4ϖ log(·) and H2

(·, z) = exp(f·(z)/(4ϖ)). Under the assumptions stated in

Lemma 27, it can be shown that H2
(·, z) is exp(K↽,ω,B)-uniformly bounded, exp(K↽,ω,B)Lf/(4ϖ)-

Lipschitz continuous. The function H1
(·) has the domain set [1, exp(K↽,ω,B)], and is there-

fore 4ϖ-Lipschitz continuous and 4ϖ-smooth. Thus, the desired results hold by applying

[154, Lemma 3.1] and [156, Proposition 4.1].
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D.6.1 Proof of Theorem 21

We first study the convergence guarantees for solving a generic nonsmooth convex opti-

mization min
⇁↔%

F (6). Let F (6) denote its approximation, with the approximation bias %F

satisfying

|F (6) ↗ F (6)| ∝ %F , ↙6 ↑ (.

Denote by ∞F (6) a subgradient of F at 6. Suppose for a given 6, the subgradient estimate

of F (6), denoted as v(6), satisfies

E[v(6)] = ∞F (6), E
[
→v(6)→2

⇑
]

∝ M2
⇑ .

Let 6⇑ ↑ arg min
⇁↔%

F (6) and 6⇑ ↑ arg min
⇁↔%

F (6). We then establish the following result.

Lemma 28 (BSMD for Nonsmooth Convex Optimization). Under the assumptions stated

above and with the initial guess 60 ↑ (, consider the BSMD algorithm that generates the

following iteration:

6t+1 = Prox⇁t


hv(6t)


, 60 ↑ (, t = 0, . . . , T ↗ 1,

where the stepsize parameter h =

√
22Dς(⇁0,⇁

↔
)

TM2
↔

. Let the estimated optimal solution gener-

ated by BSMD algorithm be 6̂ =
1
T

∑
T

t=1 6t. Then, the suboptimality gap satisfies:

E
[
F (6̂) ↗ F (6⇑

)
]

∝ 2%F + M⇑

√
2Dϖ(60, 6

⇑
)

7T
.

Remark 34. If the approximation bias is zero (i.e., %F = 0), the BSMD algorithm reduces

to the standard SMD studied in [233]. By [233, Section 2.3], the suboptimality gap in

Lemma 28 is bounded by M⇑

√
2Dς(⇁0,⇁

↔
)

2T
. For the case where %F > 0, the proof of

Lemma 28 follows from the decomposition argument similar to [156, Eq. (9)]. However,

our result generalizes to the BSMD algorithm with (potentially) nonsmooth loss functions,
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whereas [156] focuses only on the SGD algorithm for unconstrained optimization with

smooth loss functions. A

Now we are ready to show complexity results for BSMD using SG and RT-MLMC

estimators. Both estimators rely on the same approximation function FL
(6) defined in

(5.14). By Lemma 27(I), %F = 4ϖ exp (2K↽,ω,B) · 2
↑(L+1). We now analyze each estimator

separately.

SG. It can be shown from the first part of Lemma 27(III) that E
[
→vSG

(6)→2
⇑
]

∝

MSG

⇑
2

:=

c
↑2L2

f
. To obtain φ-optimal solution for SG estimator, by Lemma 28, it suffices to ensure

2%F ∝ φ

2
, MSG

⇑

√
2Dϖ(60, 6

⇑
)

7T
∝ φ

2
.

To satisfy these conditions, we specify the following hyper-parameters:

L =

⌈
1

log 2


log

24ϖ exp(2K↽,ω,B)

φ

⌉
, T =

⌈
8L2

f
Dϖ(60, 6

⇑
)

7c2φ2

⌉
, h =

√
27c2Dϖ(60, 6

⇑
)

TL2
f

.

RT-MLMC. By the second part of Lemma 27(III) and basic calculation, we find

E
[∥∥vRT↑MLMC

(6)
∥∥2

⇑

]
∝ c

↑2E
[∥∥vRT↑MLMC

(6)
∥∥2

2

]
=

L∑

▷=0

1

p▷

E
[∥∥G▷

(6, ▷▷

1)
∥∥2

2

]

∝

MRT↑MLMC

⇑
2

:= 2(L + 1)L2
f
exp(4K↽,ω,B).

Similar to the case of SG, we ensure

2%F ∝ φ

2
, MRT↑MLMC

⇑

√
2Dϖ(60, 6

⇑
)

7T
∝ φ

2
.
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To satisfy these conditions, we select the following hyper-parameters:

L =

⌈
1

log 2


log

24ϖ exp(2K↽,ω,B)

φ

⌉
, T =

⌈
16(L + 1)L2

f
Dϖ(60, 6

⇑
) exp(4K↽,ω,B)

7c2φ2

⌉
,

h =

√√√√ 27Dϖ(60, 6
⇑
)

T

MRT↑MLMC

⇑
2 .

By Remark 33, when running BSMD with SG estimator, the sample complexity from P̂

equals O(T ) and that from Qx,ω equals O(T2
L
); when running BSMD with RT-MLMC

estimator, the sample complexity from P̂ equals O(T ) and that from Qx,ω equals O(TL).

Substituting the expressions of T, L gives the desired result.

D.7 Proofs of Technical Results in Section 5.4.2

We first provide two technical lemmas that can be useful to show the main results in

Section 5.4.2.

Lemma 29. Under Assumption 5(III), it holds that E[(A▷
(6, ▷▷

;4))
2
] ∝ 42ϖ2 exp(2K↽,ω,B) ·

2
↑▷.

Proof of Lemma 29. The proof follows the similar procedure from [156, Proposition 4.1].

Lemma 30 (Complexity of RT-MLMC-based Objective Estimator). Let error probability

ω ↑ (0, 1) and accuracy level φ > 0. Assume Assumption 5(III) holds and specify

L =

⌈
1

log 2


log

4ϖ exp(2K↽,ω,B)

φ

⌉
, m≃

= O(1)
42ϖ2 exp(2K↽,ω,B)(L + 1)

φ2
· log

2

ω
.

(D.4)

Then, the RT-MLMC estimator (5.18) has an accuracy error φ with probability at least 1↗ω.

Its sample complexity from P̂ equals O(m≃
) = Õ(42ϖ2K↽,ω,B exp(2K↽,ω,B) · φ↑2

) and that
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from Qx,ω equals O(m≃ ·L) = Õ(42ϖ2K2
↽,ω,B

exp(2K↽,ω,B) · φ↑2
). Here Õ(·) hides constants

linearly depending on (log
↽ω

φ
)
2 and log

1
0

.

Proof of Lemma 30. We first specify L as in (D.4) such that |FL
(6;4) ↗ F (6;4)| ∝ φ

2 . The

RT-MLMC estimator (5.18) satisfies that

E[F̂ (6;4)] = FL
(6;4),

Var


F̂ (6;4)


∝ 1

m≃

L∑

▷=0

1

p▷

E[(A▷
(6, ▷▷

))
2
] ∝ 1

m≃4
2ϖ2 exp(2K↽,ω,B) · (L + 1).

Consequently, there exists φ≃ > 0 such that

Pr
{

|F (6;4) ↗ F̂ (6;4)| > φ
}

∝ Pr


|FL
(6;4) ↗ F̂ (6;4)| > φ

2



∝2 exp



↗ φ2

4(φ≃ + 2)Var


F̂ (6;4)





 ∝ 2 exp

(
↗ φ2m≃

4(φ≃ + 2)42ϖ2 exp(2K↽,ω,B)(L + 1)

)
,

where the second inequality is based on the Cramer’s large deviation theorem [176], and the

last inequality is by the upper bound on Var


F̂ (6;4)


. To make the desired coverage prob-

ability, we take m≃ as in (D.4). The complexity results are derived by standard calculation

similar to Remark 33.

In the following, we provide the proof of Proposition 5.

Proof of Proposition 5. Denote by 6⇑
= arg min

⇁↔%
F (6;4). The goal is to choose hyper-

parameters such that

Pr
 min

i↔[m]
F̂ (6̂i;4) ↗ F (6⇑

;4)

 ∝ φ


≃ 1 ↗ ς.

On the one hand,

min
i↔[m]

F̂ (6̂i;4) ↗ F (6⇑
;4) ∝ min

i↔[m]
F (6̂i;4) ↗ F (6⇑

;4) + max
i↔[m]

|F (6̂i;4) ↗ F̂ (6̂i;4)|.
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On the other hand,

F (ϱ⇑
; ω)↗min

i↔[m]
F̂ (ϱ̂i; ω) ∝ F (ϱ⇑

; ω)↗min
i↔[m]

F (ϱ̂i; ω)+max
i↔[m]

|F (ϱ̂i; ω)↗F̂ (ϱ̂i; ω)| ∝ max
i↔[m]

|F (ϱ̂i; ω)↗F̂ (ϱ̂i; ω)|.

Based on those two inequalities, it suffices to choose hyper-parameters such that

Pr


max
i↔[m]

|F (6̂i;4) ↗ F̂ (6̂i;4)| ∝ φ

2


≃ 1 ↗ ς

2
(D.5)

and

Pr


min
i↔[m]

F (6̂i;4) ↗ F (6⇑
;4) ∝ φ

2


≃ 1 ↗ ς

2
. (D.6)

To ensure the relation (D.5), it suffices to apply Lemma 30 with error probability ◁

2m
and

accuracy level φ/2. It implies that the sample complexity from P̂ at Step 3 of Algorithm 8

for each independent repetition is Õ(42ϖ2K↽,ω,B exp(2K↽,ω,B) · φ↑2
), and that from Qx,ω is

Õ(42ϖ2K2
↽,ω,B

exp(2K↽,ω,B) · φ↑2
). To ensure the relation (D.6), it suffices to take

Pr

F (6̂i;4) ↗ F (6⇑

;4) ∝ φ

2


≃ 1 ↗

ς
2

1/m

, ↙i ↑ [m].

By Markov’s inequality, it suffices to ensure

E[F (6̂i;4) ↗ F (6⇑
;4)] ∝ φ

2

ς
2

1/m

, ↙i ↑ [m]. (D.7)

By Theorem 21(II) with accuracy level φ

2


◁

2

1/m, the sample complexity from P̂ at Step 2 of

Algorithm 8 for each independent repetition is Õ(K↽,ω,B exp(4K↽,ω,B) · φ↑2ς↑2/m
), and that

from Qx,ω is Õ(K2
↽,ω,B

exp(4K↽,ω,B) · φ↑2ς↑2/m
). Therefore, the sample complexity from P̂

of Algorithm 8 is

m ·
[
Õ(K↽,ω,B exp(4K↽,ω,B) · φ↑2ς↑2/m

) + Õ(42ϖ2K↽,ω,B exp(2K↽,ω,B) · φ↑2
)

]

=Õ(H↽,ω,BK↽,ω,B exp(2K↽,ω,B)φ↑2 · m(1 + ς↑2/m
))
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and that from Qx,ω is

m ·
[
Õ(K2

↽,ω,B
exp(4K↽,ω,B) · φ↑2ς↑2/m

) + Õ(42ϖ2K2
↽,ω,B

exp(2K↽,ω,B) · φ↑2
)

]

=Õ(H↽,ω,BK
2
↽,ω,B

exp(2K↽,ω,B)φ↑2 · m(1 + ς↑2/m
)).

In the above deviation, we defined the constant H↽,ω,B = max(exp(2K↽,ω,B),42ϖ2). Hence,

it suffices to specify m such that Õ(m(1 + ς↑2/m
)) is minimized. One valid choice is

m = Dlog2
2
◁
E, which leads to the desired complexity bounds.

Finally, we show the proof of Theorem 22. A key technique is the following complexity

result on bisection search with inexact oracles.

Lemma 31 (Complexity for Noisy Bisection). Let the accuracy level φ > 0, and ) : R ⇒ R

be a L’-Lipschitz continuous and convex function defined on the interval [4l,4u]. Assume

there exists an oracle )̂ : R ⇒ R such that |)̂(4) ↗ )(4)| ∝ φ, ↙4. Let us run Algorithm 9

for T ≃
= Dlog2


L!(↽u↑↽l)

φ


E iterations, then with at most 3 + 2T ≃ calls to )̂, Algorithm 9

outputs 4̂ so that

)(4̂) ↗ min
↽↔[↽l,↽u]

)(4) ∝ 4φ.

Proof of Lemma 31. The proof is straightforward by following [83, Lemma 33]

Proof of Theorem 22. It can be verified that ) is a convex function with a subgradient

3

34
)(4) = 2 + E

x↓P̂

[
ϖ logEz↓Qx,ε

[
e

fϑ↔

φ
(z)/(↽ω)

]]
↗ E

x↓P̂




Ez↓Qx,ε

[
e

fϑ↔

φ
(z)/(↽ω)

f⇁
↔

φ
(z)

]

4Ez↓Qx,ε

[
e

fϑ↔

φ
(z)/(↽ω)

]



 ,

where 6⇑
↽

↑ arg min
⇁↔%

F (6;4). By Assumption 5 and 4 ↑ [4l,4u], this subgradient vector is

bounded: 
3

34
)(4)

 ∝ L’ := 2 +
B

4l

[1 + exp(K↽l,ω,B
)] .

In summary, )(4) is a L’-Lipschitz and convex function defined on [4l,4u]. Applying

Lemma 31 with accuracy level φ/4 together with the union bound, we are able to find the
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optimal multiplier up to accuracy φ with probability at least 1 ↗ ς by calling the oracle )̂

for 3 + 2

⌈
log2

4L!(↽u↑↽l)
φ

⌉
times.

Lemma 32. Under Assumption 5, the optimal multiplier 4⇑ to (D) satisfies 4⇑ ∝ B

ρ
.

Proof. It can be verified that

0 =
3

34
)(4)


↽=↽↔

= 2 + E
x↓P̂

[
ϖ logEz↓Qx,ε

[
e

fϑ↔

φ↔
(z)/(↽ω)

]]
↗ E

x↓P̂




Ez↓Qx,ε

[
e

fϑ↔

φ↔
(z)/(↽ω)

f⇁
↔

φ↔
(z)

]

4⇑Ez↓Qx,ε

[
e

fϑ↔

φ↔
(z)/(↽ω)

]





≃ 2 ↗ E
x↓P̂




Ez↓Qx,ε

[
e

fϑ↔

φ↔
(z)/(↽ω)

f⇁
↔

φ↔
(z)

]

4⇑Ez↓Qx,ε

[
e

fϑ↔

φ↔
(z)/(↽ω)

]





≃ 2 ↗ B

4⇑ ,

where the two inequalities is based on the fact that 0 ∝ f⇁(z) ∝ B. The desired result holds

directly.
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APPENDIX E

PROOFS AND ADDITIONAL DETAILS OF CHAPTER 6

E.1 Preliminaries on Projected Stochastic (Sub-)Gradient Descent

In the following, we present the convergence results on the standard projected stochastic

(sub-)gradient descent algorithm with unbiased gradient estimates, which can be useful for

the complexity analysis in Section 6.3.3.

Consider minimization of the objective function F (6) over the constrained domain set

(.

Nonsmooth Convex Optimization.

Let the objective F (6) be a convex function in 6. Assume one can obtain stochastic estimate

G(6, ◁) such that for any 6 ↑ (,

• E[G(6, ◁)] ↑ 3F (6), where 3F (6) denotes the subgradient of F at 6;

• E →G(6, ◁)→2 ∝ M2.

Starting from an initial guess 61 ↑ (, the projected stochastic subgradient descent algorithm

generates iterates

6t+1 = Proj%(6t ↗ 5G(6t, ◁t)), t = 1, . . . , T ↗ 1. (Projected-SGD)

where 5 > 0 is a constant step size, and ◁1, . . . , ◁T↑1 are i.i.d. copies of ◁. We take the

average of all iterates {61, . . . , 6T } as the estimated optimal solution, denoted as 6̃.

Lemma 33 ([233]). Under the above setting, suppose we take the step size 5 =
D↔

M
↖

T
, then

it holds that

E

F (6̃) ↗ min

⇁↔%
F (6)


∝ D⇑M▽

T
,
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where the constant D⇑ = F (61) ↗ min
⇁↔%

F (6).

Smooth Non-Convex Optimization.

In this part, we do not assume the convexity of F (6). Instead, we assume the objecitve F (6)

is continuously differentiable and S-smooth such that

→F (6) ↗ F (6≃
)→ ∝ S→6 ↗ 6≃→, ↙6, 6≃ ↑ (.

Besides, assume one can obtain stochastic estimate G(6, ◁) such that for any 6 ↑ (,

• E[G(6, ◁)] = ∞F (6);

• E →G(6, ◁) ↗ ∞F (6)→2 ∝ ϑ2.

We generate iteration points using nearly the same procedure as in (Projected-SGD), except

that we update iteration points using mini-batch gradient estimator:

6t+1 = Proj%(6t ↗ 5V (6t, ◁
1:m
t

)), t = 1, . . . , T ↗ 1, V (6t, ◁
1:m
t

) =
1

m

m∑

i=1

G(6t, ◁
i

t
),

(Mini-Projected-SGD)

where ◁t

i
, t = 1, . . . , T ↗1, i = 1, . . . ,m are i.i.d. copies of ◁. We take the estimated optimal

solution 6̃ as the one that is randomly selected from {61, . . . , 6T } with equal probability.

Lemma 34 (Corollary 3 in [132]). Under the above setting, suppose we take the step size

5 =
1
2S

, then it holds that

E
∥∥∥∥

1

5

[
6̃ ↗ Proj%


6̃ ↗ 5∞F (6̃)

]∥∥∥∥
2

∝ 8SD⇑

T
+

6ϑ2

m
,

where the constant D⇑ := F (61) ↗ min⇁↔% F (6).
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E.2 Proofs of Technical Results in Section 6.2

Proof of Theorem 23. Based on the assumption, it holds that d5(z, z≃
) = dP̂ (z) d5z(z≃

)

for some conditional optimal transport mapping 5z. Then, Problem (Primal-↼-Reg) can be

reformulated as

sup
{γz}z≃supp P̂


E

z↓P̂
Ez↓↓γz [f(z)] ↗ ςE

z↓P̂
Ez↓↓εz


↼

(
d5z(z≃

)

dεz(z≃)

)
. (E.1)

Since the optimization over z ↑ supp P̂ is decomposable, it holds that (Primal-↼-Reg)

equals

E
z↓P̂


sup

γz↔P(Z)


Ez↓↓γz [f(z≃

)] ↗ ςEz↓↓εz


↼

(
d5z(z≃

)

dεz(z≃)

)
. (E.2)

The inner supremum problem above is a phi-divergence regularized linear program. Based

on the strong duality result (see, e.g., Lemma 35) that reformulates this subproblem, we

arrive at the reformulation of Problem (Primal-↼-Reg).

Next, we show how to construct the worst-case distribution, which suffices to construct

an optimal conditional transport mapping 5⇑
z

for z ↑ supp P̂ . By the change-of-measure

technique with ▷(z≃
) =

dγz(z↓)
dεz(z↓) , the inner supremum of (E.2) becomes

sup
ϱ↔Z↔

+

{
Ez↓↓εz

[
f(z≃

)▷(z≃
) ↗ ς↼(▷(z≃

))
]

: Eεz [▷] = 1

}
. (E.3)

We now construct the Lagrangian function associated with (E.3) as

L(▷, µ) = Ez↓↓εz

[
(f(z≃

) ↗ µ)▷(z≃
) ↗ ς↼(▷(z≃

))
]
+ µ.

Recall from [53, Proposition 3.3] that, if there exists (▷⇑
z
, µ⇑

z
) such that

▷⇑
z

↑ Z⇑
+, Eεz [▷

⇑
z
] = 1, ▷⇑

z
↑ arg max

ϱ↔Z↔

+

L(▷, µ⇑
z
),
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it holds that ▷⇑
z

solves (E.3). The proof is completed by substituting the expression of 5⇑ in

terms of 5⇑
z

and then substituting the expression of 5⇑
z

in terms of ▷⇑
z
.

Lemma 35 ([279, Section 3.2]). Given a probability reference measure 5 ↑ P(Z) and

regularization value ς > 0, consider the ↼-divergence regularized problem:

sup
γ↔P(Z)


Ez↓γ[f(z)] ↗ ςEz↓ε


↼

(
d5(z)

dε(z)

)
.

There exists an optimal solution to this primal problem, and also, it can be reformulated as

the dual problem

inf
µ↔R


µ + Ez↓ε


ς↼⇑

(
f(z) ↗ µ

ς

) 
.

Proof of Proposition 6. It is easy to verify that

Optval(Primal-↼-Reg) = E
z↓P̂


sup

γz↔P(Z)


Ez↓↓γz [f(z≃

)] ↗ ςEz↓↓εz


↼

(
d5z(z≃

)

dεz(z≃)

)

∝ E
z↓P̂


sup

γz↔P(Z)

{
Ez↓↓γz [f(z≃

)]

}
= E

z↓P̂


max

z↓↔Bω(z)
f(z≃

)


.

Now, it suffices to show the other direction. For fixed ς > 0 and z, let µ⇑
z,◁

be the minimizer

to

inf
µ


µ + Ez↓↓εz

[
(ς↼)

⇑f(z≃
) ↗ µ

] 
.

(I) For the case where limt↗→
1(t)

t
< ↓, by [22], the dual formulation (Dual-↼-Reg)

implicitly imposes an extra constraint:

µ⇑
z,◁

≃ f(z≃
) ↗ ς lim

t↗→

↼(t)

t
, ↙z≃ ↑ supp εz =M µ⇑

z,◁
≃ ess sup

εz

f ↗ ς lim
t↗→

↼(t)

t
.
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It follows that

(Dual-↼-Reg) = E
z↓P̂


µ⇑

z,◁
+ Ez↓↓εz


ς↼⇑

(
f(z≃

) ↗ µ⇑
z,◁

ς

)

≃ ess sup
εz

f ↗ ς lim
t↗→

↼(t)

t
+ ςEz↓↓εz


↼⇑

(
f(z≃

) ↗ µ⇑
z,◁

ς

)

By taking ς ⇒ 0 both sides, we find

Optval(Primal-↼-Reg) ≃ ess sup
εz

f.

(II) For the case where limt↗→
1(t)

t
= ↓, it holds that ↼⇑

(s) ↑ (↗↓,↓) for any finite s.

In this case, for fixed ς > 0,

(Dual-↼-Reg) = E
z↓P̂


µ⇑

z,◁
+ Ez↓↓εz


ς↼⇑

(
f(z≃

) ↗ µ⇑
z,◁

ς

)
.

For sufficiently small ς, assume on the contrary that µ⇑
z,◁

< ess sup
εz

f , then the event

Ez,◁ := {z≃
: f(z≃

) > µ⇑
z,◁

} satisfies εz(Ez,◁) > 0.

• For z≃ /↑ Ez,◁,

lim
◁↗0

ς↼⇑
(
f(z≃

) ↗ µ⇑
z,◁

ς

)
= lim

◁↗0
ς↼⇑

(0) = 0.

• For z≃ ↑ Ez,◁,

lim
◁↗0

ς↼⇑
(
f(z≃

) ↗ µ⇑
z,◁

ς

)
= lim

t↗→

1

t
↼⇑ 

t

f(z≃

) ↗ µ⇑
z,◁


⇒ ↓.

Then it follows that

Ez↓↓εz


ς↼⇑

(
f(z≃

) ↗ µ⇑
z,◁

ς

)

=Ez↓↓εz


ς↼⇑

(
f(z≃

) ↗ µ⇑
z,◁

ς

)
1(Ec

z,◁
)


+ Ez↓↓εz


ς↼⇑

(
f(z≃

) ↗ µ⇑
z,◁

ς

)
1(Ez,◁)


⇒ ↓.
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In summary, under the case where µ⇑
z,◁

< ess sup
εz

f , (Dual-↼-Reg) ⇒ ↓ as ς ⇒ 0,

which is a contradiction. Therefore, µ⇑
z,◁

≃ ess sup
εz

f , which follows that

(Dual-↼-Reg) ≃ ess sup
εz

f + ςEz↓↓εz


↼⇑

(
f(z≃

) ↗ µ⇑
z,◁

ς

)

By taking ς ⇒ 0 both sides, we obtain Optval(Primal-↼-Reg) ≃ ess sup
εz

f.
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E.3 Proofs of Technical Results in Section 6.3

Proof of Proposition 7. We define Case 1 as the scenarios where ↼≃
(s) ⇒ ↗↓ as s ⇒ 0+,

and Case 2 as the scenarios where ↼≃
(s) ⇒ K as s ⇒ 0+, with the constant K > ↗↓

being lower bounded.

For any fixed Lagrangian multiplier µ, 5⇑
(µ) ↑ Rm

+ is the optimum solution to maxγ↔Rm
+

L(µ, 5)

if and only if

fi ↗ µ ↗ ς↼≃
(m(5⇑

(µ))i) ∝ 0, ↙i, (5⇑
(µ))i ·


fi ↗ µ ↗ ς↼≃

(m(5⇑
(µ))i)


= 0.

Under Case 1, the above optimality condition simplifies into fi↗µ↗ς↼≃
(m(5⇑

(µ))i) = 0, ↙i,

which implies

(5⇑
(µ))i =

1

m
(↼≃

)
↑1

fi ↗ µ

ς


.

Under Case 2, the above optimality condition simplifies into

(5⇑
(µ))i =






0, if i ↑ N ↭
{
i ↑ [m] : fi ∝ µ + ςK

}
,

1

m
(↼≃

)
↑1

fi ↗ µ

ς


, otherwise.

Therefore, the remaining task of Algorithm (11) is to find the optimal Lagrangian

multiplier µ such that

h(µ) :=

∑

i↔[m]

(5⇑
(µ))i ↗ 1 =

1

m

∑

i↔[m]\N

(↼≃
)
↑1

fi ↗ µ

ς


↗ 1 = 0.

Due to the strict convexity of ↼, h(µ) is strictly decreasing in µ. Also, it can be verified that

the optimal multiplier belongs to the interval [µ, µ]:

• By the increasing property of (↼≃
)
↑1, it holds that h(4) ≃ 0;

• Under Case 1, it holds that h(µ) ∝ 0. Under Case 2, it holds that h(µ) ∝ ↗1.
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Hence, we only need to perform O(log
1
ω
) iterations of bisection search to obtain a near-

optimal multiplier with ϖ precision. At each iteration of bisection search, the worst-case

computational cost is O(m). To compute the index set N at each iteration, we need to

enumerate all support points {f1, . . . , fm}, whose computational cost is O(m). In summary,

the overall cost is O(m log
1
ω
).

Proposition 18 (Error Bound on Function Approximation). Under Assumption 8(II), it

holds that 0 ∝ F (6) ↗ F ▷
(6) ∝ Gidf · 2

↑▷, ↙6 ↑ (.

Proof of Proposition 18. It is worth noting that

F (6) ↗ F ▷
(6) = E

z↓P̂
E{z

↓

i}i≃[2ϖ]↓εz

[
R(6; z) ↗ R̂


6; z, {z≃

i
}i↔[2ϖ]

]
,

where
R(6; z) = inf

µ

{
µ + Ez↓εz [(ς↼)

⇑
(f⇁(z

≃
) ↗ µ)]

}
,

R̂

6; z, {z≃

i
}i↔[2ϖ]


= inf

µ

{
µ +

1

2▷

∑

i↔[2ϖ]

[(ς↼)
⇑
(f⇁(z

≃
i
) ↗ µ)]

}
.

By Jensen’s inequality, it holds for any fixed (z, 6) that

R(6; z) ≃ E{z
↓

i}i≃[2ϖ]↓εz [R̂

6; z, {z≃

i
}i↔[2ϖ]


],

and therefore F (6) ↗ F ▷
(6) ≃ 0.

On the other hand, R(6; z) denotes the optimal value of the standard ↼-divergence DRO

with reference distribution εz, and R̂

6; z, {z≃

i
}i↔[2ϖ]


denotes its sample estimate using 2

▷

i.i.d. samples generated from εz. By [191, Proposition 1], it holds for any fixed z that

E{z
↓

i}i≃[2ϖ]↓εz

[
R(6; z) ↗ R̂


6; z, {z≃

i
}i↔[2ϖ]

]
∝ Gidf

2▷
.

The proof is completed.
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To prove Proposition 8, we rely on the following technical lemma that has been revealed

in literature.

Lemma 36 (Lemma 6 in [191]). Let 5 ↑ %
m with m being an even integer. Let I be a

random subset of [1 : m] of size m/2. Then it holds that

E

∑

i↔I

5i ↗ 1

2

2

∝ 1

2m
D52(5,

1

m
1).

Proof of Proposition 8. (I) By definition, SG and RT-MLMC estimators V SG
(6) and V RT-MLMC

(6)

are the unbiased gradient estimators from some objective function F̃ ▷
(6) such that

|F̃ ▷
(6) ↗ F ▷

(6)| ∝ ϖ. Therefore, the bias can be bounded as

|F̃ ▷
(6) ↗ F (6)| ∝ |F̃ ▷

(6) ↗ F ▷
(6)| + |F ▷

(6) ↗ F (6)| ∝ ϖ +
Gidf

2▷
,

where the last inequality follows from Proposition 18.

(II) By definition,

∥∥V SG
(6)

∥∥2
=

∥∥∥∥∥∥
1

no
L

n
o
L∑

i=1

gL
(6, ▷L

i
)

∥∥∥∥∥∥

2

∝ 1

no
L

n
o
L∑

i=1

∥∥gL
(6, ▷L

i
)
∥∥2

.

Since {▷L

i
}i are no

L
i.i.d. copies of ▷L, it holds that

E
∥∥V SG

(6)
∥∥2 ∝ E

∥∥gL
(6, ▷L

)
∥∥2

To bound E
∥∥gL

(6, ▷L
)
∥∥2, we define the following notations. Let 5̂ be the optimal

solution to R̂

6; z, {z≃

i
}i↔[1:2L]


defined in (6.9), and 5̃ be the estimated solution used
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by the estimator gL
(6, ▷L

). As a consequence,

→g▷
(6, ▷▷

)→ =

∥∥∥∥∥∥

∑

i↔[1:2ϖ]

5̃i∞⇁f⇁(z
≃
i
)

∥∥∥∥∥∥
∝ Lf

∑

i↔[1:2ϖ]

5̃i

∝ Lf

∑

i↔[1:2ϖ]


5̂i + →5̂ ↗ 5̃→→


= Lf ·


1 +


2ϖ

7ς


.

Therefore,

E
∥∥gL

(6, ▷L
)
∥∥2 ∝ L2

f


1 +


2ϖ

7ς

2

∝ 2L2
f


1 +

2ϖ

7ς


.

Following the similar argument as in bounding E
∥∥V SG

(6)
∥∥2, we find

E
∥∥V RT-MLMC

(6)
∥∥2 ∝ E

L̂1
E

ϱL̂1

∥∥∥∥∥
1

P(L̂ = L̂1)
GL̂1(6, ▷ L̂1)

∥∥∥∥∥

2

=

L∑

▷=0

P(L̂ = ϱ)E
ϱ
ϖ
i

∥∥∥∥∥
1

P(L̂ = ϱ)
G▷

(6, ▷▷
)

∥∥∥∥∥

2

=

L∑

▷=0

1

P(L̂ = ϱ)
· Eϱϖ

∥∥G▷
(6, ▷▷

)
∥∥2

.

It suffices to bound Eϱϖ

∥∥G▷
(6, ▷▷

)
∥∥2 for fixed level ϱ = 0, 1, . . . , L. To simplify

notation,

• Let 5, 5≃, 5≃≃ be the estimated optimal solutions corresponding to the objectives

R̃

6; z, {z≃

i
}i↔[1:2ϖ]


, R̃


6; z, {z≃

i
}i↔[1:2ϖ→1]


, and R̃


6; z, {z≃

i
}i↔[2ϖ→1+1:2ϖ]


defined

in (6.10), respectively.

• Let 5̄, 5̄≃, 5̄≃≃ be the optimal solutions for R̃

6; z, {z≃

i
}i↔[1:2ϖ]


, R̃


6; z, {z≃

i
}i↔[1:2ϖ→1]



and R̃

6; z, {z≃

i
}i↔[2ϖ→1+1:2ϖ]


defined in (6.9), respectively.

313



Then it holds that

→G▷
(6, ▷▷

)→ =

∥∥∥∥∥∥

∑

i↔[1:2ϖ]


5i ↗ 1

2
5≃

i
· 1{i ↑ [1 : 2

▷↑1
]} ↗ 1

2
5≃≃

i↑2ϖ→1 · 1{i ↑ [2
▷↑1

+ 1 : 2
▷
]}


∞⇁f⇁(z

≃
i
)

∥∥∥∥∥∥

∝ Lf

∑

i↔[1:2ϖ→1]

|5i ↗ 5≃
i
/2| + Lf

∑

i↔[2ϖ→1+1:2ϖ]

|5i ↗ 5≃≃
i↑2ϖ→1/2|.

Recall that for each i ↑ [1 : 2
▷↑1

], 5i =
1
m

(↼≃
)
↑1

(
f(zi)↑µ

◁
) and 5≃

i
/2 =

1
m

(↼≃
)
↑1

(
f(zi)↑µ

↓

◁
)

for constants µ, µ≃ ↑ R. Since ↼ is strongly convex, (↼≃
)
↑1

(·) is a strictly increasing

function, and 5i ↗ 5≃
i
/2 is always of a constant sign for all i ↑ [1 : 2

▷↑1
]. Therefore,

∑

i↔[1:2ϖ→1]

|5i ↗ 5≃
i
/2| =



∑

i↔[1:2ϖ→1]

5i ↗ 1

2

∑

i↔[1:2ϖ→1]

5≃
i



∝ 2
▷↑1→5 ↗ 5̄→→ + 2

▷→5≃ ↗ 5̄≃→→ +



∑

i↔[1:2ϖ→1]

5̄i ↗ 1

2

∑

i↔[1:2ϖ→1]

5̄≃
i



∝


2ϖ

7ς
+



∑

i↔[1:2ϖ→1]

5̄i ↗ 1

2


,

where the first inequality is by triangular inequality, the second inequality is by Propo-

sition 7(II) and the relation
∑

i↔[1:2ϖ→1] 5̄
≃
i
= 1. One can follow the similar procedure to

bound
∑

i↔[2ϖ→1+1:2ϖ] |5i ↗ 5≃≃
i↑2ϖ→1/2|. As a consequence,

Eϱϖ→G▷
(6, ▷▷

)→2 ∝ L2
f
E



2


2ϖ

7ς
+



∑

i↔[1:2ϖ→1]

5̄i ↗ 1

2


+



∑

i↔[2ϖ→1+1:2ϖ]

5̄i ↗ 1

2






2

∝ 3L2
f

·



 8ϖ

7ς
+ E



∑

i↔[1:2ϖ→1]

5̄i ↗ 1

2



2

+ E



∑

i↔[2ϖ→1+1:2ϖ]

5̄i ↗ 1

2



2



∝
24L2

f

7ς
· ϖ +

3L2
f
D52(5̄, 1

2ϖ 1)

2▷

∝
24L2

f

7ς
· ϖ +

3L2
f
C

2▷
.
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Finally,

E
∥∥V RT-MLMC

(6)
∥∥2 ∝

96L2
f

7ς
· 2

L · ϖ + 6(L + 1)L2
f
C.

(III) Since the random vectors gL
(6, ▷L

i
) for i = 1, . . . , no

L
are i.i.d., it holds that

Var[V SG
(ϱ)] = Var



 1

no
L

n
o
L∑

i=1

gL
(ϱ, 0L

i )



 =
Var[gL

(ϱ, 0L
)]

no
L

∝ E→gL
(ϱ, 0L

)→2

no
L

∝
2L2

f
[1 + (2ε)/(2φ)]

no
L

.

The same argument applies when bounding Var[V RT-MLMC
(6)].

(IV) For fixed i = 1, . . . , no
L

, computing gL
(6, ▷L

i
) requires generating 2

L samples and then

solve the penalized ↼-divergence DRO with 2
L support points with controlled optimality

gap ϖ. According to Lemma 7, its complexity is O(2
L

log
1
ω
). Hence, generating the

SG estimator V SG
(6) has cost O(no

L
· 2

L
log

1
ω
).

For fixed i = 1, . . . , no
L

and ϱ = 0, . . . , L, computing G▷
(6, ▷▷

i
), according to the

definition in (6.12), requires computatonal cost O(2
▷+1

log
1
ω
). Hence, generating the

RT-MLMC estimator has expected computational cost

no
L

·
L∑

▷=0

P(L̂ = ϱ) · O(2
▷+1

log
1

ϖ
) = O(no

L
· L log

1

ϖ
). (E.4)

Proof of Theorem 24. We first show the generic result on SGD with biased gradient esti-

mators. Denote by 6⇑ the optimal solution to min F (6), and 6̃⇑ is the optimal solution to

min F̃ (6), where SG and RT-MLMC estimators are unbiased gradient estimators of F̃ (·).

Based on the triangle inequality, it holds that

E
[
F (6̃1:T ) ↗ F (6⇑)

]
∝ E

[
F (6̃1:T ) ↗ F̃ (6̃1:T )

]
+ E

[
F̃ (6̃1:T ) ↗ F̃ (6⇑)

]
+ E

[
F̃ (6⇑) ↗ F (6⇑)

]

∝ 2→F̃ ↗ F→→ + E
[
F̃ (6̃1:T ) ↗ F̃ (6̃⇑)

]
,
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where the last inequality is because of the sub-optimality of 6⇑ in terms of the objective F̃ .

According to Proposition 8, it holds that

→F̃ ↗ F→→ ∝ ϖ +
Gidf

2L
.

According to Lemma 33, for SG or RT-MLMC estimator V (6) satisfying E→V (6)→2
2 ∝ M2

and if we take step size 5 =
D̃↔

M
↖

T
, it holds that

E
[
F̃ (6̃1:T ) ↗ F̃ (6̃⇑)

]
∝ D̃⇑M▽

T
,

where the constant

D̃⇑ = F̃ (61) ↗ F̃ (6̃⇑) ∝ F (61) ↗ F (6⇑) + 2→F̃ ↗ F→→ ∝ F (61) ↗ F (6⇑) + 2


ϖ +

Gidf

2L


.

In summary, the error bound for 6̃1:T becomes

E
[
F (6̃1:T ) ↗ F (6⇑)

]
∝ 2


ϖ +

Gidf

2L


+

M
[
F (61) ↗ F (6⇑) + 2

[
ϖ +

Gidf
2L

] ]

▽
T

.

SG Estimator. For SG estimator V SG
(6), by Lemma 8, it holds that M = 2L2

f
[1+2ϖ/(7ς)].

To obtain the desired error bound E
[
F (6̃1:T ) ↗ F (6⇑)

]
∝ φ, we specify hyper-parameters

such that

2


ϖ +

Gidf

2L


∝ φ

2
,

M
[
F (61) ↗ F (6⇑) + 2

[
ϖ +

Gidf
2L

] ]

▽
T

∝ φ

2
.

We take ϖ =
φ

8 and L = log
8Gidf

φ
to make the relation on the left-hand-side holds. Then

M = O(1). To make the other relation holds, it suffices to take

T ≃
4M2

[
F (61) ↗ F (6⇑) +

φ

2

]2

φ2
= O(1/φ2

).
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RT-MLMC Estimator. For SG estimator V RT-MLMC
(6), by Lemma 8, it holds that M =

96L
2
f

2◁
· (2

Lϖ) + 6(L + 1)L2
f
C. To obtain the desired error bound E

[
F (6̃1:T ) ↗ F (6⇑)

]
∝ φ,

we specify hyper-parameters such that

2


ϖ +

Gidf

2L


∝ φ

2
,

M
[
F (61) ↗ F (6⇑) + 2

[
ϖ +

Gidf
2L

] ]

▽
T

∝ φ

2
.

Following the same argument as in the SG estimator part, we take ϖ =
φ

8 and L = log
8Gidf

φ
.

Then M = O(log
1
φ
). To make the other relation holds, it suffices to take

T ≃
4M2

[
F (61) ↗ F (6⇑) +

φ

2

]2

φ2
= O((log 1/φ)2/φ2

).

In the following, we present a technical lemma that is helpful for the proof of Theorem 25.

The proof of this technical lemma follows from [154, Lemma 3.1] and [155, Proposition 4.1].

Lemma 37. (I) Under Assumption 7(III), it holds that

F ▷
(6) ↗ F (6)

 ∝ ςe2B/◁ · 2
↑(▷+1), ↙6 ↑ (.

(II) Under Assumptions 7(III) and 7(II), it holds that

∥∥∞F ▷
(6) ↗ ∞F (6)

∥∥2

2
∝ L2

f
e4B/◁ · 2

↑▷, ↙6 ↑ (.

(III) Under Assumptions 7(III) and 7(II), it holds that

E
[∥∥G▷

(6, ▷▷
)
∥∥2

2

]
∝ L2

f
e4B/◁ · 2

↑▷, ↙6 ↑ (.

(IV) Under Assumptions 7(III), 7(II) and 7(IV), it holds that for any ϱ ≃ 0, F ▷
(6) is
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S-smooth with

S := (S2
f

+ L2
f
/ς)eB/◁

+ L2
f
/ςe2B/◁. (E.5)

Now we present the formal proof of Theorem 25.

Proof of Theorem 25. At the beginning, it is without the loss of generality to assume that

there exists c, d such that

c→ · →2 ∝ → · →ϖ ∝ d→ · →2,

where → · →ϖ is the norm function used in defining the distance generating function for

proximal mapping.

(I) We first specify the maximum level L such that 2L2
f
e4B/◁ · 2

↑L ∝ 1
2ϖ

2, i.e.,

L =

⌈
1

log 2


log

4L2
f

· e4B/◁

ϖ2

⌉
.

It suffices to specify hyper-parameters no
L
, T, 5 to make

2E
∥∥∥∥

1

5

[
6̃ ↗ Prox

⇁̃


5∞FL

(6̃)
]∥∥∥∥

2

2

∝ 1

2
ϖ2.

Before applying Lemma 34 to derive upper bound on the left-hand-side term, it is

worth noting that

• According to Lemma 37(IV), the objective FL
(6) is c↑1

dS-smooth (with respect

to → · →ϖ) with the constant S defined in (E.5).

• According to Lemma 37(III), the term

E
∥∥v(6t) ↗ ∞FL

(6t)
∥∥2

ϖ
∝

2d
2
(L + 1)L2

f
e4B/◁

no
L

.
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Therefore, when taking the step size 5 = 7/(2S), it holds that

2E
∥∥∥∥

1

ς

[
ϱ̃ ↗ Prox

⇁̃


ς∞FL

(ϱ̃)
]∥∥∥∥

2

2

∝
16c

↑3
dS


FL

(ϱ1) ↗ min⇁ FL
(ϱ)



22T
+

24c
↑2

d
2 · (L + 1)L2

f
e4B/◁

22no
L

,

With the configuration of the following hyper-parameters, one can guarantee the

RT-MLMC scheme finds ϖ-stationary point:

no
L

=

⌈
96d

2
(L + 1)L2

f
e4B/◁

72c2ϖ2

⌉
, L =

⌈
1

log 2


log

4L2
f

· e4B/◁

ϖ2

⌉
,

T =

⌈
64dS


FL

(61) ↗ min⇁ FL
(6)



72c3ϖ2

⌉
, 5 = 7c/(2dS).

(II) The proof in this part is a simple corollary from [155, Corollary 4.1]. With the

configuration of the following hyper-parameters, one can guarantee the RT-MLMC

scheme finds ϖ-stationary point:

no
L

= 1, L =

⌈
1

log 2


log

4L2
f

· e4B/◁

ϖ2

⌉
,

T =

⌈
128


FL

(61) ↗ min⇁ FL
(6)


SM2

ϖ4

⌉
, 5 =

√
2

FL(61) ↗ min⇁ FL(6)



STM2

,

where the constant M2 := 2(L + 1)L2
f
e4B/◁.
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E.4 Proofs of Technical Results in Section 6.4

We first show the following technical result, from which one can easily derive the main

result in Section 6.4.

Proposition 19. Under Assumption 9, it holds that E
P̂
(f ; 2, ς) = Ẽ

P̂
(f ; 2, ς) + O(22

),

where O(·) hides the multiplicative constant dependent on E
z↓P̂

[S(z)].

Proof of Proposition 19. By definition,

E
P̂
(f ; 2, ς) = E

z↓P̂


sup

γz↔P(Z)


Ez↓↓γz [f(z≃

) ↗ f(z)] ↗ ςEz↓↓εz


↼

(
d5z(z≃

)

dεz(z≃)

)
.

For any z≃ ↑ supp 5z ̸ Bρ(z), it holds that

|f(z≃
) ↗ f(z) ↗ ∞f(z)T

(z ↗ z≃
)| = |∞f(z̃)T

(z ↗ z≃
) ↗ ∞f(z)T

(z ↗ z≃
)|

=|(∞f(z̃) ↗ ∞f(z))T
(z ↗ z≃

)| ∝ →∞f(z̃) ↗ ∞f(z)→⇑→z ↗ z≃→

=→z̃ ↗ z→ · →z ↗ z≃→ · S(z) ∝ S(x)→z ↗ z≃→2 ∝ S(z)22,

where the second equality is by the mean value theorem and take z̃ to be some point on the

line segment between z and z≃, and the second inequality is based on the fact that z≃ ↑ Bρ(z).

Based on the relation above, it holds that

E
P̂
(f ; 2, ς) ↗ Ẽ

P̂
(f ; 2, ς)

 ∝ E
z↓P̂

[S(z)]22,
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where

Ẽ
P̂
(f ; 2, ς)

=E
z↓P̂


sup

γz↔P(Z)


Ez↓↓γz [∞f(z)T

(z ↗ z≃
)] ↗ ςEz↓↓εz


↼

(
d5z(z≃

)

dεz(z≃)

)

=E
z↓P̂


inf
µ↔R


µ + Ez↓↓εz


ς↼⇑

∞f(z)T
(z ↗ z≃

) ↗ µ

ς



=E
z↓P̂


inf
µ↔R


µ + Eb↓⇀


ς↼⇑

2∞f(z)Tb ↗ µ

ς


.

By the change of variable technique that replaces µ by 2µ,

Ẽ
P̂
(f ; 2, ς) = 2 · E

z↓P̂


inf
µ↔R


µ +

1

2/ς
Eb↓⇀


↼⇑

2
ς

· (∞f(z)Tb ↗ µ)


.

The proof is completed.

Proof of Theorem 26(I). For all z ↑ supp P̂ , by strong duality theory of ↼-divergence

DRO [279],

inf
µ↔R


µ +

1

2/ς
Eb↓⇀


↼⇑

2
ς

· (∞f(z)Tb ↗ µ)


= sup

⇀↓↔P(B1(0))

{
Eb↓⇀↓ [∞f(z)Tb]↗ 1

2/ς
D1(↽

≃, ↽)

}

Since the optimization problem on the right-hand-side (RHS) satisfies Slater’s condition, the

problem on the left-hand-side (LHS) must contain a non-empty and bounded set of optimal

solutions [54, Theorem 2.165]. Subsequently, it holds from [280, Theorem 5.4] that, as

2/ς ⇒ C,

inf
µ↔R


µ +

1

2/ς
Eb↓⇀


↼⇑

2
ς

· (∞f(z)Tb ↗ µ)


⇒ inf

µ↔R


µ +

1

C
Eb↓⇀

[
↼⇑


C · (∞f(z)Tb ↗ µ)

]
.

Therefore,

Ẽ
P̂
(f ; 2, ς) = 2·E

z↓P̂


inf
µ↔R


µ +

1

C
Eb↓⇀

[
↼⇑


C · (∞f(z)Tb ↗ µ)

]
+o(2) = R1(f ; 2, ς)+o(2).

321



By the relation above and Proposition 19, we obtain the desired result.

Proof of Theorem 26(II). According to Proposition 19, it suffices to build the error bound

between Ẽ
P̂
(f ; 2, ς) and R2(f ; 2, ς). As 2/ς ⇒ ↓, by repeating the proof argument as in

Proposition 6, one can show that

E
z↓P̂


inf
µ↔R


µ +

1

2/ς
Eb↓⇀


↼⇑

2
ς

· (∞f(z)Tb ↗ µ)



=E
z↓P̂


max

b↔B1(0)
[∞f(z)Tb]


+ o(1) = E

z↓P̂
[→∞f(z)→⇑] + o(1).

As such,
Ẽ

P̂
(f ; 2, ς) ↗ R2(f ; 2, ς)

 = o(2).

This completes the proof.

Proof of Theorem 26(III). Recall that

Ẽ
P̂
(f ; 2, ς) = 2 · E

z↓P̂


inf
µ↔R


µ +

1

2/ς
Eb↓⇀


↼⇑

2
ς

· (∞f(z)Tb ↗ µ)



= 2 · E
z↓P̂


sup

⇀↓↔P(B1(0))

{
Eb↓⇀↓ [∞f(z)Tb] ↗ 1

2/ς
D1(↽

≃, ↽)

}

and it suffices to analyze the approximation of sup
⇀↓↔P(B1(0))

{
Eb↓⇀↓ [∞f(z)Tb]↗ 1

ρ/◁
D1(↽≃, ↽)

}

for z ↑ supp P̂ when 2/ς ⇒ 0.

Note that we can re-write

sup

⇀↓↔P(B1(0))

{
Eb↓⇀↓ [∞f(z)

Tb]↗ 1

⇀/φ
D1(1≃, 1)

}
= sup

(↙0: E↼ [(]=1

{
Eb↓⇀ [∞f(z)

Tb·$(b)]↗ 1

⇀/φ
·Eb↓⇀ [⇁($(b))]

}
,

where * is a non-negative random variable satisfying E⇀[*] = 1. We use the change-of-

variable technique to define % = (2/ς)↑1 ·(*↗1), then by the relation Eb↓⇀[∞f(z)Tb] = 0,
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the optimization above can be equivalently reformulated as

2

ς
· sup

#↙↑(ρ/◁)→1: E↼ [#]=0

{
Eb↓⇀[∞f(z)Tb · %(b)] ↗ (2/ς)↑2 · Eb↓⇀[↼(1 + 2/ς · %(b))]

}
.

We take a feasible solution %(b) = a · ∞f(z)Tb with some constant a > 0 provided that

a · →∞f(z)→⇑ ∝ (2/ς)↑1. Then, it holds that

sup

#↙↑(ρ/◁)→1: E↼ [#]=0

{
Eb↓⇀[∞f(z)Tb · %(b)] ↗ (2/ς)↑2 · Eb↓⇀[↼(1 + 2/ς · %(b))]

}

≃ sup
a↙0: a·⇍f(z)⇐↔⇒(ρ/◁)→1

{
a · Varb↓⇀[∞f(z)Tb] ↗ (2/ς)↑2 · Eb↓⇀[↼(1 + a2/ς · ∞f(z)Tb)]

}

(E.6)

Since ↼(t) is two times continuously differentiable at t = 1, as 2/ς ⇒ 0, the following

convergence holds uniformly for any bounded a · ∞f(z)Tb:

(2/ς)↑2 · ↼(1 + a2/ς · ∞f(z)Tb) ⇒ a2
(∞f(z)Tb)2↼≃≃

(1)/2.

Consequently, for any ϖ > 0, there exists φ0 > 0 such that as long as 2/ς < φ0, (E.6) can be

lower bounded as the following:

(E.6) ≃ sup
a↙0: a·⇍f(z)⇐↔⇒(ρ/◁)→1

{
a · Varb↓⇀[∞f(z)Tb] ↗ (1 + ϖ)a2 · Varb↓⇀[∞f(z)Tb] · ↼≃≃

(1)/2
}

=
Varb↓⇀[∞f(z)Tb]

2(1 + ϖ)↼≃≃(1)
.

Since ϖ can be arbitrarily small, it holds that

Ẽ
P̂
(f ; 2, ς) ≃ 22

2ς · ↼≃≃(1)
· E

z↓P̂

[
Varb↓⇀[∞f(z)Tb]

]
+ o(2).
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For the upper bound, by strong duality result,

sup

#↙↑(ρ/◁)→1: E↼ [#]=0

{
Eb↓⇀[∞f(z)Tb · %(b)] ↗ (2/ς)↑2 · Eb↓⇀[↼(1 + 2/ς · %(b))]

}

= min
µ

{
sup

#↙↑(ρ/◁)→1

Eb↓⇀[(∞f(z)Tb + µ) · %(b)] ↗ (2/ς)↑2 · Eb↓⇀[↼(1 + 2/ς · %(b))]
}

= min
µ

{
Eb↓⇀

[
sup

#↙↑(ρ/◁)→1

(∞f(z)Tb + µ) · % ↗ (2/ς)↑2 · ↼(1 + 2/ς · %)

]}

∝Eb↓⇀

[
sup

#↙↑(ρ/◁)→1

∞f(z)Tb · % ↗ (2/ς)↑2 · ↼(1 + 2/ς · %)

]

Since ↼ is convex with ↼≃≃
(1) > 0, it holds that the family of continuous functions

sφ(y) := sup

#↙↑(ρ/◁)→1

y · % ↗ (2/ς)↑2 · ↼(1 + 2/ς · %)

converges uniformly on compact sets to

s0(y) := sup

#

y · % ↗ %
2
↼≃≃

(1)

2
=

y2

2↼≃≃(1)
.

Consequently,

Ẽ
P̂
(f ; 2, ς) ∝ 22

ς
E

z↓P̂
Eb↓⇀

[
sup

#↙↑(ρ/◁)→1

∞f(z)Tb · % ↗ (2/ς)↑2 · ↼(1 + 2/ς · %)

]
.

When we take 2/ς ⇒ 0 both sides, the RHS becomes

22

ς
E

z↓P̂
Eb↓⇀

[
(∞f(z)Tb)2

2↼≃≃(1)

]
+ o(2) =

22

2ς · ↼≃≃(1)
· E

z↓P̂

[
Varb↓⇀[∞f(z)Tb]

]
+ o(2).

Combining lower and upper bounds gives our desired result.
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E.5 Proof of Technical Result in Section 6.5

Proof of Lemma 10. Let C(G) =

{
(cj

i
(·)) : i ↑ [n]

}
be a (ϖ, → · →→)-cover of the set G|S .

Define the operator

c̃j

i
= inf

µ↔R


µ + Eb↓⇀

[
(ς↼)

⇑

cj

i
(b) ↗ µ

] 
.

We now claim that C(Gadv) =

{
c̃j

i
: i ↑ [n]

}
is a (ϖ, | · |)-cover of the set Gadv|S . Indeed, for

any 6 ↑ (, there exists an index (by definition) j(6) such that

max
i↔[n]

max
b↔B1(0)

ϱ(g⇁(xi + b), yi) ↗ cj(⇁)
i

(xi, yi)

 = max
i↔[n]

→ϱ(g⇁(xi + ·), yi) ↗ cj(⇁)
i

(·)→→ ∝ ϖ.

Define the functional T : RB1(0) ⇒ R as

T (g) = inf
µ

{
µ + Eb↓⇀

[
(ς↼)

⇑

g(b) ↗ µ

] }

= sup
P↔P(Z)


EP[g] ↗ ςEb↓P


↼

(
dP(b)

d↽(b)

)
.

Since ↼ is strictly convex, its directional derivative is well-defined, which is denoted as

∞T (g)V = Eb↓P↔
g

[
V (b)

]
,

where

P⇑
g

= arg max
P↔P(Z)


EP[g] ↗ ςEb↓P


↼

(
dP(b)

d↽(b)

)
.
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For fixed i, with slight abuse of notation, let 0i(·; t) = tϱ(g⇁(xi + ·), yi) + (1 ↗ t)cj(⇁)
i

(·).

Therefore, we have that for g ↑ Gadv,

max
i↔[n]

g(xi, yi) ↗ c̃j(⇁)
i

 = max
i↔[n]

T (ϱ(g⇁(xi + ·), yi)) ↗ T (cj(⇁)
i

(·))


∝ max
i↔[n]

sup
t↔[0,1]

∞T (0i(·; t))(ϱ(g⇁(xi + ·), yi) ↗ cj(⇁)
i

(·))


= max
i↔[n]

sup
t↔[0,1]

E6↓P↔

↽i(·;t)

[
ϱ(g⇁(xi + ε), yi) ↗ cj(⇁)

i
(ε)

]

∝ max
i↔[n]

→ϱ(g⇁(xi + ·), yi) ↗ cj(⇁)
i

(·)→→ ∝ ϖ.

The proof is completed.
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E.6 Proof of Strong Duality for ↓-Type Casual Optimal Transport DRO

Let us consider the ↓-type Casual Optimal transport DRO problem

min
⇁

{
sup
P,γ

E(x,z)↓P[)(f⇁(x), z)] :
((X̂, Ẑ), (X,Z)) ⇑ 5 =M X N Ẑ | X̂,

ess sup
γ

→(X̂, Ẑ) ↗ (X,Z)→ ∝ 2,Proj1#5 = P̂ ,Proj2#5 = P

}
,

(E.7)

where the norm →(X̂, Ẑ) ↗ (X,Z)→ ↭ →X̂ ↗ X→ + ↓ · 1{Ẑ ⇐= Z}, meaning we take into

account only the distribution shift of the covariate and omit the random vector distribution

shift. Here the transport mapping 5 is said to be casual since ((X̂, Ẑ), (X,Z)) ⇑ 5 implies

X N Ẑ | X̂ , and it additionally satisfies the ↓-type optimal transport constraint with

transportation budget 2. In the following, we derive the strong dual reformulation of (E.7).

We expand its objective as

E(x,z)↓P[)(f⇁(x), z)] = E((x̂,ẑ),(x,z))↓γ[)(f⇁(x), z)]

=Ex̂↓γ(x̂)Ex↓γ(x|x̂)Eẑ↓γ(ẑ|x,x̂)Ez↓γ(z|ẑ,x,x̂)[)(f⇁(x), z)]

=Ex̂↓γ(x̂)Ex↓γ(x|x̂)Eẑ↓γ(ẑ|x̂)Ez↓φẑ
[)(f⇁(x), z)]

=Ex̂↓γ(x̂)Ex↓γ(x|x̂)Eẑ↓γ(ẑ|x̂)[)(f⇁(x), ẑ)]

where the first and second equality is by the law of total probability, the third equality is

because 5 satisfies casual property and we impose infinity transportation cost for moving ẑ

327



to other locations. Since 5(x̂) = P̂x̂ and 5(ẑ | x̂) = P̂ẑ|x̂, we are able to reformulate (E.7) as

min
⇁

{
sup
P,γ

E
x̂↓P̂x̂

Ex↓γ(x|x̂)Eẑ↓P̂ẑ|x̂
[)(f⇁(x), ẑ)] :

ess sup
γ

→X̂ ↗ X→ ∝ 2,

Proj1#5 = P̂ ,Proj2#5 = P

}

(E.8)

= min
⇁

{
E

x̂↓P̂X̂


sup

x↓↔Bω(x̂)
E

ẑ↓P̂Ẑ|X̂=x̂
[)(f⇁(x

≃
), ẑ)]

}
, (E.9)

where the last equality is by the ↓-Wasserstein DRO strong duality result, adopted from

[123, Lemma EC.2], with loss E
ẑ↓P̂Ẑ|X̂=x̂

[)(f⇁(x≃
), ẑ)].

Following similar procedure, one can express (6.26) using its primal reformulation that

involves ↼-divergence regularization:

min
ϖ

{
sup
P,↼

E(x,z)↗P[%(f(x), z)]↗φD↽(ς, ς0) :
((X̂, Ẑ), (X, Z)) ⇑ ς =M X N Ẑ | X̂,

ess sup↼ →(X̂, Ẑ) ↗ (X, Z)→ ∝ ⇀, Proj1#ς = P̂ , Proj2#ς = P

}
,

(6.26-Primal)

where the reference measure 50 satisfies the bicasual property, 50(x | x̂) ∅ εx̂(x), ↙x and

50(z | z̃, x̂, x) ∅ 50(z | z̃) ∅ φz̃(z), ↙z. Namely, its joint distribution is decomposed as

50((x̂, ẑ), (x, z)) = 50(x̂)50(x | x̂)50(ẑ | x̂, x)50(z | ẑ, x̂, x)

= 50(x̂)50(x | x̂)50(ẑ | x̂)50(z | ẑ) = 50(x̂)εx̂(x)50(ẑ | x̂)φẑ(z).

E.7 Implementation Details for Loss in Section 6.2.2

For the loss f(·) displayed in Section 6.2.2, we take the loss f(z) = (g(z) ↗ 0)
2, where

g : R ⇒ R is a feed-forward neural network function. The structure of g is as follows. We

first take a basis expansion to form z≃
= (z,

√
|z|, z2, sin(z), cos(z)) ↑ R5. Then take

g(z) = W4 · Sigmoid(W3 · Sp(W2 · Sp(W1z
≃
))),
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where Sig(·) and Sp(·) are the sigmoid and softplus activation functions, respectively.

Weight matrics W1 ↑ R512↘5,W2 ↑ R512↘512,W2 ↑ R10↘512,W4 ↑ R10↘1, and the entries

of W2,W3,W4 follow i.i.d. from N (0, 1) whereas that of W1 follow N (0, 0.25). This

example can be viewed as adversarial robust supervised learning for using a neural network

to fit a constant function at the origin.
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