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E(K , b) The edge loop group of the space K w.r.t. the basepoint b
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1.3. Monday for MAT4002

1.3.1. Introduction to Topology
We will study global properties of a geometric object, i.e., the distrance between 2 points

in an object is totally ignored. For example, the objects shown below are essentially

invariant under a certain kind of transformation:

Another example is that the coffee cup and the donut have the same topology:

However, the two objects below have the intrinsically different topologies:

In this course, we will study the phenomenon described above mathematically.
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1.3.2. Metric Spaces

In order to ingnore about the distances, we need to learn about distances first.

Definition 1.7 [Metric Space] Metric space is a set X where one can measure distance

between any two objects in X.

Specifically speaking, a metric space X is a non-empty set endowed with a function

(distance function) d : X ⇥ X ! R such that

1. d(xxx, yyy) � 0 for 8xxx, yyy 2 X with equality iff xxx = yyy

2. d(xxx, yyy) = d(yyy, xxx)

3. d(xxx, zzz)  d(xxx, yyy) + d(yyy, zzz) (triangular inequality)

⌅

⌅ Example 1.10 1. Let X =Rn, with

d2(xxx, yyy) =
vt

n’
i=1

(xi � yi)2

d1(xxx, yyy) = max
i=1,...,n

|xi � yi |

2. Let X be any set, and define the discrete metric

d(xxx, yyy) =
8>>><
>>>:

0, if x = y

1, if x , y

Homework: Show that (1) and (2) defines a metric. ⌅

Definition 1.8 [Open Ball] An open ball of radius r centered at xxx 2 X is the set

Br (xxx) = {yyy 2 X | d(xxx, yyy) < r}

⌅

12



⌅ Example 1.11 1. The set B1(0,0) defines an open ball under the metric (X =R2, d2),

or the metric (X =R2, d1). The corresponding diagram is shown below:

Figure 1.3: Left: under the metric (X =R2, d2); Right: under the metric (X =R2, d1)

2. Under the metric (X =R2,discrete metric), the set B1(0,0) is one single point, also

defines an open ball.

⌅

Definition 1.9 [Open Set] Let X be a metric space, U ✓ X is an open set in X if 8u 2 U,

there exists ✏u > 0 such that B✏u (u) ✓ U. ⌅

Definition 1.10 The topology induced from (X , d) is the collection of all open sets in

(X , d), denoted as the symbol T . ⌅

Proposition 1.5 All open balls Br (xxx) are open in (X , d).

Proof. Consider the example X =R with metric d2. Therefore Br (x) = (x � r , x + r). Take

yyy 2 Br (xxx) such that d(xxx, yyy) = q < r and consider B(r�q)/2(yyy): for all z 2 B(r�q)/2(yyy), we have

d(xxx, zzz)  d(xxx, yyy) + d(yyy, zzz) < q +
r � q

2
< r ,

which implies zzz 2 Br (x). ⌅

Proposition 1.6 Let (X , ddd) be a metric space, and T is the topology induced from

(X , d), then

1. let the set {G↵ | ↵ 2 A} be a collection of (uncountable) open sets, i.e., G↵ 2 T ,

13



then
–

↵2A G↵ 2 T .

2. let G1, . . . ,Gn 2 T , then
—

n

i=1 Gi 2 T . The finite intersection of open sets is open.

Proof. 1. Take x 2 –
↵2A G↵, then x 2 G� for some � 2 A. Since G� is open, there

exists ✏x > 0 s.t.

B✏x (x) ✓ G� ✓
ÿ
↵2A

G↵

2. Take x 2 —
n

i=1 Gi, i.e., x 2 Gi for i = 1, . . . ,n, i.e., there exists ✏i > 0 such that

B✏i (x) ✓ Gi for i = 1, . . . ,n. Take ✏ =min{✏1, . . . ,✏n}, which implies

B✏ (x) ✓ B✏i (x) ✓ Gi,8i

which implies B✏ (x) ✓
—

n

i=1 Gi

⌅

Exercise.

1. let T2,T1 be topologies induced from the metrices d2, d1 in R2. Show that J2 = J1,

i.e., every open set in (R2, d2) is open in (R2, d1), and every open set in (R2, d1)

is open in (R2, d2).

2. Let T be the topology induced from the discrete metric (X , ddiscrete). What is T ?

14



1.6. Wednesday for MAT4002
Reviewing.

• Metric Space (X , d)

• Open balls and open sets (note that the emoty set ; is open)

• Define the collection of open sets in X , say T is the topology.

Exercise.

1. Show that the T2 under (X =R2, d2) and T1 under (X =R2, d1) are the same.

Ideas. Follow the procedure below:

An open ball in d2-metric is open in d1;

Any open set in d2-metric is open in d1;

Switch d2 and d1. ⌅

2. Describe the topology Tdiscrete under the metric space (X =R2, ddiscrete).

Outlines. Note that {x} = B1/2(x) is an open set.

For any subset W ✓ R2, W =
–

w2W {w} is open.

Therefore Tdiscrete is all subsets of R2. ⌅

1.6.1. Forget about metric
Next, we will try to define closedness, compactness, etc., without using the tool of

metric:

Definition 1.18 [closed] A subset V ✓ X is closed if X \V is open. ⌅

⌅ Example 1.19 Under the metric space (R, d1),

R \ [b,a] = (a,1)
ÿ

(�1, b) is open =) [b,a] is closed

⌅
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Proposition 1.14 Let X be a metric space.

1. ;, X is closed in X

2. If F↵ is closed in X , so is
—

↵2A F↵.

3. If F1, . . . , Fk is closed, so is
–

k

i=1 Fi.

Proof. 1. Note that X is open in X , which implies ; = X \ X is closed in X ;

Similarly, ; is open in X , which implies X = X \ ; is closed in X ;

2. The set F↵ is closed implies there exists open U↵ ✓ X such that F↵ = X \U↵. By

De Morgan’s Law,

Ÿ
↵2A

F↵ =
Ÿ
↵2A

(X \U↵) = X \ (
ÿ
↵2A

U↵).

By part (a) in proposition (1.6), the set
–

↵2AU↵ is openm which implies
—

↵2A F↵

is closed.

3. The result follows from part (b) in proposition (1.6) by taking complements.

⌅

We illustrate examples where open set is used to define convergence and continuity.

1. Convergence of sequences:

Definition 1.19 [Convergence] Let (X , d) be a metric space, then {xn}! x means

8" > 0,9N such that d(xn, x) < ",8n � N .

⌅

We will study the convergence by using open sets instead of metric.

Proposition 1.15 Let X be a metric space, then {xn}! x if and only if for 8 open

set U 3 x, there exists N such that xn 2 U for 8n � N .

Proof. Necessity: Since U 3 x is open, there exists " > 0 such that B"(x) ✓ U.

Since {xn}! x, there exists N such that d(xn, x) < ", i.e., xn 2 B"(x) ✓ U for 8n � N .

Sufficiency: Let " > 0 be given. Take the open set U = B"(x) 3 x, then there exists N

28



such that xn 2 U = B"(x) for 8n � N , i.e., d(xn, x) < ", 8n � N .

⌅

2. Continuity:

Definition 1.20 [Continuity] Let (X , d) and (Y , ⇢) be given metric spaces. Then

f : X ! Y is continuous at x0 2 X if

8" > 0,9� > 0 such that d(x, x0) < � =) ⇢( f (x), f (x0)) < ".

The function f is continuous on X if f is continous for all x0 2 X. ⌅

We can get rid of metrics to study continuity:

Proposition 1.16 (a) The function f is continuous at x if and only if for all

open U 3 f (x), there exists � > 0 such that the set B(x,�) ✓ f
�1(U).

(b) The function f is continuous on X if and only if f
�1(U) is open in X for

each open set U ✓ Y .

During the proof we will apply a small lemma:

Proposition 1.17 f is continuous at x if and only if for all {xn} ! x, we have

{ f (xn)}! f (x).

Proof. (a) Necessity:

Due to the openness of U 3 f (x), there exists a ball B( f (x),") ✓ U.

Due to the continuity of f at x, there exists � > 0 such that d(x, x
0) < � implies

d( f (x), f (x 0)) < ", which implies

f (B(x,�)) ✓ B( f (x),") ✓ U,

which implies B(x,�) ✓ f
�1(U).

Sufficiency:

Let {xn}! x. It suffices to show { f (xn)}! f (x). For each open U 3 f (x), by

hypothesis, there exists � > 0 such that B�(x) ✓ f
�1(U).
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Since {xn}! x, there exists N such that

xn 2 B�(x) ✓ f
�1(U),8n � N =) f (xn) 2 U,8n � N

Let " > 0 be given, and then construct the U = B"( f (x)). The argument above

shows that f (xn) 2 B"( f (x)) for 8n � N , which implies ⇢( f (xn), f (x)) < ", i.e.,

{ f (xn)}! f (x).

(b) For the forward direction, it suffices to show that each point x of f
�1(U) is

an interior point of f
�1(U), which is shown by part (a); the converse follows

trivially by applying (a).

⌅

R As illustracted above, convergence, continuity, (and compactness) can be

defined by using open sets T only.

1.6.2. Topological Spaces

Definition 1.21 A topological space (X ,T) consists of a (non-empty) set X, and a

family of subsets of X (“open sets” T ) such that

1. ;, X 2 T

2. U,V 2 T implies U
—

V 2 T

3. If U↵ 2 T for all ↵ 2 A, then
–

↵2A U↵ 2 T .

The elements in T are called open subsets of X. The T is called a topology on X. ⌅

⌅ Example 1.20 1. Let (X , d) be any metric space, and

T = {all open subsets of X}

It’s clear that T is a topology on X.
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2. Define the discrete topology

Tdis = {all subsets of X}

It’s clear that Tdis is a topology on X, (which also comes from the discrete metric

(X , ddiscrete)).

R We say (X ,T) is induced from a metric (X , d) (or it is metrizable) if

T is the faimly of open subsets in (X , d).

3. Consider the indiscrete topology (X ,Tindis), where X contains more than one element:

Tindis = {;, X}.

Question: is (X ,Tindis) metrizable? No. For any metric d defined on X, let x, y be

distinct points in X, and then " := d(x, y) > 0, hence B 1
2 "
(x) is a open set belonging

to the corresponding induced topology. Since x 2 B 1
2 "
(x) and y < B 1

2 "
(y), we conclude

that B 1
2 "
(x) is neither ; nor X, i.e., the topology induced by any metric d is not the

indiscrete topology.

4. Consider the cofinite topology (X ,Tcofin):

Tcofin = {U | X \U is a finite set}
ÿ

{;}

Question: is (X ,Tcofin) metrizable?

⌅

Definition 1.22 [Equivalence] Two metric spaces are topologically equivalent if they

give rise to the same topology. ⌅

⌅ Example 1.21 Metrics d1, d2, d1 in Rn are topologically equivalent. ⌅

1.6.3. Closed Subsets

31



Definition 1.23 [Closed] Let (X ,T) be a topology space. Then V ✓ X is closed if

X \V 2 T ⌅

⌅ Example 1.22 Under the topology space (R,Tusual), (b,1)–(�1,a) 2 T . Therefore,

[a, b] =R \
⇣
(b,1)

ÿ
(�1,a)

⌘

is closed in R under usual topology. ⌅

R It is important to say that V is closed in X . You need to specify the underlying

the space X .
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2.3. Monday for MAT4002
Reviewing.

1. Topological Space (X ,J): a special class of topological space is that induced from

metric space (X , d):

(X ,T), with T = {all open sets in (X , d)}

2. Closed Sets (X \U) with U open.

Proposition 2.8 Let (X ,T) be a topological space,

1. ;, X are closed in X

2. V1,V2 closed in X implies that V1
–

V2 closed in X

3. {V↵ | ↵ 2 A} closed in X implies that
—

↵2A V↵ closed in X

Proof. Applying the De Morgan’s Law

(X \
ÿ
i2I

Ui) =
Ÿ
i2I

(X \Ui)

⌅

2.3.1. Convergence in topological space

Definition 2.4 [Convergence] A sequence {xn} of a topological space (X ,T) converges

to x 2 X if 8U 3 x is open, there 9N such that xn 2 U,8n � N. ⌅

⌅ Example 2.9 1. The topology for the space (X =Rn, d2)! (X ,T) (i.e., a topological

space induced from meric space (X =Rn, d2)) is called a usual topology on Rn.

When I say Rn (or subset of Rn) is a topological space, it is equipeed with usual

topology.

Convergence of sequence in (Rn,T) is the usual convergence in analysis.

For Rn or metric space, the limit of sequence (if exists) is unique.
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2. Consider the topological space (X ,Tindiscrete). Take any sequence {xn} in X, it is

convergent to any x 2 X. Indeed, for 8U 3 x open, U = X. Therefore,

xn 2 U(= X),8n � 1.

3. Consider the topological space (X ,Tcofinite), where X is infinite. Consider {xn} is a

sequence satisfying m , n implies xm , xn. Then {xn} is convergent to any x 2 X.

(Question: how to define openness for Tcofinite and Tindiscrete)?

4. Consider the topological space (X ,Tdiscrete), the sequence {xn}! x is equivalent to

say xn = x for all sufficiently large n.

⌅

R The limit of sequences may not be unique. The reason is that “T is not big

enough”. We will give a criterion to make sure the limit is unique in the

future. (Hausdorff)

Proposition 2.9 If F ✓ (X ,T) is closed, then for any convergent sequence {xn} in F,

the limit(s) are also in F.

Proof. Let {xn} be a sequence in F with limit x 2 X . Suppose on the contrary that x < F

(i.e., x 2 X \ F that is open). There exists N such that

xn 2 X \ F,8n � N ,

i.e., xn < F, which is a contradiction. ⌅

R The converse may not be true. If the (X ,T) is metrizable, the converse holds.

Counter-example: Consider the co-countable topological space (X =R,Tco-co),

where

Tco-co = {U | X \U is a countable set}
ÿ

{;},

and X is uncontable. Then note that F = [0,1] $ X is an un-countable set, and

under co-countable topology, F ◆ {xn} ! x implies xn = x 2 F for all n. It’s

clear that X \ F < Tco-co, i.e., F is not closed.
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2.3.2. Interior, Closure, Boundary

Definition 2.5 Let (X ,T) be a topological space, and A ✓ X a subset.

1. The interior of A is

A
� =

ÿ
U✓A,U is open

U

2. The closure of A is

A =
Ÿ

A✓V ,V is closed

V

If A = X, we say that A is dense in X.

The graph illustration of the definition above is as follows:

(a) Illustration of A (b) Illustration of A
� (c) Illustration of A

Figure 2.1: Graph Illustrations

⌅

⌅ Example 2.10 1. For [a, b) ✓ R, we have:

[a, b)� = (a, b), [a, b) = [a, b]

2. For X =R, Q� = ; and Q =R.

3. Consider the discrete topology (X ,Tdiscrete), we have

S
� = S, S = S

⌅

The insights behind the definition (2.5) is as follows
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Proposition 2.10 1. A
� is the largest open subset of X contained in A;

A is the smallest closed subset of X containing A.

2. If A ✓ B, then A
� ✓ B and A ✓ B

3. A is open in X is equivalent to say A
� = A; A is closed in X is equivalent to say

A = A.

⌅ Example 2.11 Let (X , d) be a metric space. What’s the closure of an open ball Br (x)?

The direct intuition is to define the closed ball

B̄r (x) = {y 2 X | d(x, y)  r}.

Question: is B̄r (x) = Br (x)?

1. Since B̄r (x) is a closed subset of X, and Br (x) ✓ B̄r (x), we imply that

Br (x) ✓ B̄r (x)

2. Howover, we may find an example such that Br (x) is a proper subset of B̄r (x):

Consider the discrete metric space (X , ddiscrete) and for 8x 2 X,

B1(x) = {x} =) B1(x) = {x}, B̄1(x) = X

The equality B̄r (x) = Br (x) holds when (X , d) is a normed space.

⌅

Here is another characterization of A:

Proposition 2.11

A = {x 2 X | 8open U 3 x,U
Ÿ

A , ;}

Proof. Define

S = {x 2 X | 8open U 3 x,U
Ÿ

A , ;}

It suffices to show that A = S.
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1. First show that S is closed:

X \ S = {x 2 X | 9Ux 3 x open s.t. Ux

Ÿ
A = ;}

Take x 2 X \ S, we imply there exists open Ux 3 x such that Ux

—
A = ;. We claim

Ux ✓ X \ S:

• For 8y 2 Ux , note that Ux 3 y that is open, such that Ux

—
A = ;. Therefore,

y 2 X \ S.

Therefore, we have x 2 Ux ✓ X \ S for any 8x 2 X \ S.

Note that

X \ S =
ÿ

x2X\S
{x} ✓

ÿ
x2X\S

Ux ✓ X \ S,

which implies X \ S =
–

x2X\S Ux is open, i.e., S is closed in X .

2. By definition, it is clear that A ✓ S:

8a 2 A,8open U 3 a,U
Ÿ

A ◆ {a} , ; =) a 2 S.

Therefore, A ✓ S = S.

3. Suppose on the contrary that there exists y 2 S \ A.

Since y < A, by definition, there exists F ◆ A closed such that y < F.

Therefore, y 2 X \ F that is open, and

(X \ F)
Ÿ

A ✓ (X \ A)
Ÿ

A = ; =) y < S,

which is a contradiction. Therefore, S = A.

⌅

Definition 2.6 [accumulation point] Let A ✓ X be a subset in a topological space. We

call x 2 X are an accumulation point (limit point) of A if

8U ✓ X open s.t. U 3 x, (U \ {x})
Ÿ

A , ;.
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The set of accumulation points of A is denoted as A
0

⌅

Proposition 2.12 A = A
–

A
0.

Proof. This proposition directly follows from Proposition (2.11) and the definition of

A’. ⌅
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2.6. Wednesday for MAT4002
Reviewing.

1. Interior, Closure:

A = {x | 8U 3 x open,U
Ÿ

A , ;}

2. Accumulation points

2.6.1. Remark on Closure
Definition 2.14 [Sequential Closure] Let AS be the set of limits of any convergent

sequence in A, then AS is called the sequential closure of A. ⌅

Definition 2.15 [Accumulation/Cluster Points] The set of accumulation (limit) points is

defined as

A
0 = {x | 8U 3 x open , (U \ {x})

Ÿ
A , ;}

⌅

R

1. (a) There exists some point in A but not in A
0:

A = {1,2,3, . . . ,n, . . . }

Then any point in A is not in A
0

(b) There also exists some point in A
0 but not in A:

A = {1
n
| n � 1}

Then the point 0 is in A
0 but not in A.

2. The closure A = A
–

A
0.

3. The size of the sequentical closure AS is between A and A, i.e., A ✓ AS ✓ A:

It’s clear that A ✓ AS , since the sequence {an := a} is convergent to a for
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8a 2 A.

For all a 2 AS , we have {an}! a. Then for any open U 3 a, there exists

N such that {aN ,aN+1, . . . } ✓ U
—

A , ;. Therefore, a 2 A, i.e., AS ✓ A.

Question: Is AS = A?

Proposition 2.21 Let (X , d) be a metric space, then AS = Ā.

Proof. Let a 2 A, then there exists an 2 B1/n(a)
—

A, which implies {an} ! a, i.e., a 2

AS . ⌅

R If (X ,T) is metrizable, then AS = A. The same goes for first countable topo-

logical spaces. However, AS is a proper subset of A in general:

Let A ✓ X be the set of continuous functions, where X =RR denotes the set of

all real-valued functions on R, with the topology of pointwise convergence.

Then AS = B1, the set of all functions of first Baire-Category on R; and

[AS]S = B2, the set of all functions of second Baire-Category on R. Since

B1 , B2, we have [AS]S = AS . Note that A = A. We conclude that AS cannot

equal to A, since the sequential closure operator cannot be idemotenet.

Definition 2.16 [Boundary] The boundary of AAA is defined as

@AAA = A \ A
�

⌅

Proposition 2.22 Let (X ,T) be a topological space with A, B ✓ X .

X \ A = X \ A
�, (X \ B)� = X \ B @A = A

—(X \ A)
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Proof.

X \ A
� = X \ ©≠

´
ÿ

U is open, U✓A

U
™Æ
¨

(2.2a)

=
Ÿ

U is open, U✓A

(X \U) (2.2b)

=
Ÿ

V is closed, F◆X\A
F (2.2c)

= X \ A (2.2d)

Denoting X \ A by B, we obtain:

(X \ B)� = A
� (2.3a)

= X \ (X \ A
�) (2.3b)

= X \ X \ A (2.3c)

= X \ B (2.3d)

By definition of @A,

@A = A \ A
� (2.4a)

= A

Ÿ
(X \ A

�) (2.4b)

= A

Ÿ
(X \ A) (2.4c)

⌅

2.6.2. Functions on Topological Space

Definition 2.17 [Continuous] Let f : (X ,TX)! (Y ,TY ) be a map. Then the function f is

continuous, if

U 2 TY =) f
�1(U) 2 TX

⌅
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⌅ Example 2.16 1. The identity map id : (X ,T)! (X ,T) defined as x 7! x is contin-

uous

2. The identity map id : (X ,Tdiscrete)! (X ,Tindiscrete) defined as x 7! x is continuous.

Since id�1(;) = ; and id�1(X) = X

3. The identity map id : (X ,Tindiscrete)! (X ,Tdiscrete) defined as x 7! x is not continuous.

⌅

Proposition 2.23 If f : X ! Y , and g : Y ! Z be continuous, then g � f is continuous

Proof. For given U 2 TZ , we imply

g�1(U) 2 TY =) f
�1(g�1(U)) 2 TX ,

i.e., (g � f )�1(U) 2 TX ⌅

Proposition 2.24 Suppose f : X ! Y is continuous between two topological spaces.

Then {xn}! x implies { f (xn)}! f (x).

Proof. Take open U 3 f (x), which implies f
�1(U) 3 x. Since f

�1(U) is open, we imply

there exists N such that

{xn | n � N} ✓ f
�1(U),

i.e., { f (xn) | n � N} ✓ U ⌅

We use the notion of Homeomorphism to describe the equivalence between two

topological spaces.

Definition 2.18 [Homeomorphism] A homeomorphism between spaces topological

spaces (X ,TX) and (Y ,TY ) is a bijection

f : (X ,TX)! (Y ,TY ),

such that both f and f
�1 are continuous. ⌅
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2.6.3. Subspace Topology

Definition 2.19 Let A ✓ X be a non-empty set. The subspace topology of A is defined

as:

1. TA := {U —
A | U 2 TA}

2. The coarsest topology on A such that the inclusion map

i : (A,TA)! (X ,TX), i(x) = x

is continuous.

(We say the topology T1 is coarser than T2, or T2 is finer than T1, if T1 ✓ T2

e.g., Tdiscrete is the finest topology, and Tindiscrete is coarsest topology.)

3. The (unique) topology such that for any (Y ,TY ),

f : (Y ,TY )! (A,TA)

is continuous iff i � f : (Y ,TY )! (X ,TX) (where i is the inclusion map) is continuous.

⌅

Proposition 2.25 The definition (1) and (2) in (2.19) are equivalent.

Outline. The proof is by applying

i
�1(S) = S

Ÿ
A, 8S

⌅

⌅ Example 2.17 Let all English and numerical letters be subset of R2:

P,6

The homeomorphism can be constrcuted between these two English letters. ⌅
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Proposition 2.26 The definition (2) and (3) in (2.19) are equivalent.

Proof. Necessity.

• For 8U 2 TX , consider that

(i � f )�1(U) = f
�1(i�1(U)) = f

�1(U
Ÿ

A)

since U
—

A 2 TA and f is continuous, we imply (i � f )�1(U) 2 TY

• For 8U
0 2 TA, we have U

0 =U
—

A for some U 2 TX . Therefore,

f
�1(U 0) = f

�1(U
Ÿ

A) = f
�1(i�1(U)) = (i � f )�1(U) 2 TY .

The sufficiency is left as exercise. ⌅

Proposition 2.27 1. The definition (1) in (2.19) does define a topology of A

2. Closed sets of A under subspace topology are of the form V
—

A, where V is

closed in X

Proposition 2.28 Suppose (A,TA) ✓ (X ,TX) is a subspace topology, and B ✓ A ✓ X . Then

1. B̄
A = B̄

X
—

A.

2. B
�A ◆ B

�X

Proof. By proposition (2.27), B̄
X
—

A is closed in A, and B̄
X
—

A � B, which implies

B̄
A ✓ B̄

X

Ÿ
A

Note that B̄
A � B is closed in A, which implies B̄

A = V
—

A ✓ V , where V is closed in

X . Therefore,

B̄
X ✓ V =) B̄

X

Ÿ
A ✓ V

Ÿ
A = B̄

A

Therefore, B̄
A = B̄

X ✓ V

⌅

Can we have B
�X = B

�A?
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2.6.4. Basis (Base) of a topology
Roughly speaking, a basis of a topology is a family of “generators” of the topol-

ogy.

Definition 2.20 Let (X ,T) be a topological space. A family of subsets B in X is a basis

for T if

1. B ✓ T , i.e., everything in B is open

2. Every U 2 T can be written as union of elements in B.

⌅

⌅ Example 2.18 1. B = T is a basis.

2. For X =Rn,

B = {Br (xxx) | xxx 2 Qn,r 2 Q
Ÿ

(0,1)}

Exercise: every (a, b) =–
i2I (pi, qi) for pi, qi 2 Q.

Therefore, B is countable.

⌅

Proposition 2.29 If (X ,T) has a countable basis, e.g., Rn, then (X ,T) has a second-

countable space.
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3.3. Monday for MAT4002

3.3.1. Remarks on Basis and Homeomorphism
Reviewing.

1. A ✓ AS ✓ A, where AS is sequential closure and A denotes closure.

2. Subspace topology.

3. Homeomorphism. Consider the mapping f : X ! Y with the topogical space

X ,Y shown below, with the standard topology, the question is whether f is

continuous?

Figure 3.1: Diagram for mapping f

The answer is no, since the left in (3.1) can be isomorphically mapped into (0,1);

the right can be isomorphically mapped into [0,1], and the mapping (0,1)! [0,1]

cannot be isomorphism:

Proof. Assume otherwise the mapping g : (0,1) ! [0,1] is isomorphism, and

therefore f
�1(U) is open for any open set U in the space [0,1].

Construct U = (1 � �,1] for �  1, and therfore f
�1((1 � �,1]) is open, and therfore

for the point x = f
�1(1), there exists " > 0 such that

B"(x) ✓ f
�1((1 � �,1]) =) [x � ", x) ✓ f

�1((1 � �,1)), and (x, x + "] ✓ f
�1((1 � �,1)).

which implies that there exists a, b such that [x � ", x) = f
�1((a, 1)) and (x, x + "] =

f
�1((b,1)), i.e., f

�1((a, b)\ (b,1)) admits into two values in [x � ", x) and (x, x + "],

which is a contradiction. ⌅

4. Basis of a topology B ✓ (X ,T) is a collection of open sets in the space such that

the whole space can be recovered, or equivalently
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(a) B ✓ T

(b) Every set in T can expressed as a union of sets in B

Example: Let Rn be equipped with usual topology, then

B = {Bq(x) | x 2 Qn, q 2 Q+} is a basis of Rn.

It suffices to show U ✓ Rn can be written as

U =Ux2QBqx (x)

Proposition 3.4 Let X ,Y be topological spaces, and B a basis for topology on Y . Then

f : X ! Y is continuous () f
�1(B) is open in X, 8B 2 B

Therefore checking f
�1(U) is open for all U 2 TY suffices to checking f

�1(N) is open for

all B 2 B.

Proof. The forward direction follows from the fact B ✓ TY .

To show the reverse direction, let U 2 TY , then U =
–

i2I Bi, where Bi 2 B, which

implies

f
�1(U) = f

�1

 ÿ
i2I

Bi

!
=

ÿ
i2I

f
�1(Bi)

which is open in X by our hypothesis. ⌅

Corollary 3.1 Let f : X !Y be a bijection. Suppose there is a basis BX of TX such that

{ f (B) | B 2 BX} forms a basis of TY . Then X � Y .

Proof. Suppose W 2 TY , then by our hypothesis,

W =
ÿ
i2I

f (Bi), Bi 2 BX =) f
�1(W) =

ÿ
i2I

Bi 2 TX ,

which implies f is continuous.
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Suppose U 2 TX , then

U =
ÿ
i2I

Bi =) f (U) =
ÿ
i2I

f (Bi) 2 TY =) [ f
�1]�1(U) 2 TY ,

i.e., f
�1 is continuous. ⌅

Question: how to recognise whether a family of subsets is a basis for some given topology?

Proposition 3.5 Let X be a set, B is a collection of subsets satisfying

1. X is a union of sets in B, i.e., every x 2 X lies in some Bx 2 B

2. The intersection B1 \ B2 for 8B1, B2 2 B is a union of sets in B, i.e., for each

B1, B2 2 B, and x 2 B1 \ B2, then there exists B3 2 B such that x 2 B3 ✓ B1 \ B2.

Then the collection of subsets TB , formed by taking any union of sets in B, is a topology,

and B is a basis for TB.

Proof. 1. ; 2 TB (taking nothing from B); for x 2 X , Bx 2 B, by hypothesis (1),

X =
ÿ
x2X

Bx 2 TB

2. Suppose T1,T2 2 TB . Let x 2 T1 \T2, where Ti is a union of subsets in B. Therefore,

8>>><
>>>:

x 2 B1 ✓ T1, B1 2 B

x 2 B2 ✓ T2, B2 2 B

which implies x 2 B1 \ B2, i.e., x 2 Bx ✓ B1 \ B2 for some Bx 2 B. Therefore,

ÿ
x2B1\B2

{x} ✓
ÿ

x2B1\B2

Bx ✓ B1 \ B2,

i.e., B1 \ B2 =
–

x2B1\B2 Bx , i.e., B1 \ B2 2 TB .

3. The property that TB is closed under union operations can be checked directly.

The proof is complete. ⌅
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3.3.2. Product Space
Now we discuss how to construct new topological spaces out of given ones is by taking

Cartesian products:

Definition 3.4 Let (X ,TX), (Y ,TY ) be topological spaces. Consider the family of subsets

in X ⇥Y :

BX⇥Y = {U ⇥V | U 2 TX ,V 2 Ty}

This BX⇥Y forms a basis of a topology on X ⇥Y . The induced topology from BX⇥Y is

called product topology. ⌅

For example, for X =R,Y =R, the elements in BX⇥Y are rectangles.

Proof for well-definedness in definition (3.4). We apply proposition (3.5) to check whether

BX⇥Y forms a basis:

1. For any (x, y) 2 X ⇥Y , we imply x 2 X , y 2 Y . Note that X 2 TX ,Y 2 TY , we imply

(x, y) 2 X ⇥Y 2 BX⇥Y .

2. Suppose U1 ⇥V1,U2 ⇥V2 2 BX⇥Y , then

(U1 ⇥V1)\ (U2 ⇥V2) = (U1 \U2) ⇥ (V1 \V2),

where U1 \U2 2 TX ,V1 \V2 2 TY . Therefore, (U1 ⇥V1)\ (U2 ⇥V2) 2 BX⇥Y .

⌅

R However, the product topology may not necessarily become the largest

topology in the space X ⇥Y . Consider X =R,Y =R, the open set in the space

X ⇥Y may not necessarily be rectangles. However, all elements in BX⇥Y are

rectangles.

⌅ Example 3.8 The space R ⇥ R is homeomorphic to R2, where the product topology is

defined on R ⇥ R and the standard topology is defined on R2:

Construct the function f : R ⇥ R ! R2 with (a, b)! (a, b).
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Obviously, f : R ⇥ R ! R2 is a bijection.

Take the basis of the topology on R as open intervals,

BX = {(a, b) | a < b in R}

Therefore, one can verify that the set B := {(a, b) ⇥ (c, d) | a < b,c < d} forms a basis for

the product topology, and

{ f (B) | B 2 B} = {(a, b) ⇥ (c, d) | a < b,c < d}

forms a basis of the usual topology in R2.

By Corollary (3.1), we imply R ⇥ R � R2. ⌅

We also raise an example on the homeomorphism related to product spaces:

⌅ Example 3.9 Let S
1 = {(cos x, sin x | x 2 [0,2⇡])} be a unit circle on R2.

Consider f : S
1 ⇥ (0,1)! R2 \ {000} defined as

f (cos x, sin x,r) 7! (r cos x,r sin x)

It’s clear that f is a bijection, and f is continuous. Moreover, the inverse g := f
�1 is

defined as

g(a, b) = ( ap
a2 + b2

,
bp

a2 + b2
,
p

a2 + b2)

which is continuous as well. Therefore, the f : S1 ⇥ (0,1)! R2 \ {000} is a homeomorphism.

⌅
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3.6. Wednesday for MAT4002

3.6.1. Remarks on product space

Reviewing.

• Product Topology: For topological space (X ,TX) and (Y ,Y), define the basis

BX⇥Y = {U ⇥V | U 2 TX ,V 2 TY }

and the family of union of subsets in BX⇥Y forms a product topology.

Proposition 3.9 a ring torus is homeomorphic to the Cartesian product of two circles,

say S
1 ⇥ S

1 � T .

Proof. Define a mapping f : [0,2⇡] ⇥ [0,2⇡]! T as

f (✓,�) =
✓
(R + r cos✓)cos�, (R + r cos✓)sin�, r sin✓

◆

Define i : T ! R3, we imply

i � f : [0,2⇡] ⇥ [0,2⇡]! R3 is continuous

Therefore we imply f : [0,2⇡] ⇥ [0,2⇡]! T is continuous. Together with the condition

that 8>>><
>>>:

f (0, y) = f (2⇡, y)

f (x,0) = f (x,2⇡)

we imply the function f : S
1 ⇥ S

1 ! T is continuous. We can also show it is bijective.

We can also show f
�1 is continuous. ⌅

Proposition 3.10 1. Let X ⇥Y be endowed with product topology. The projection
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mappings defined as

pX :X ⇥Y ! X , with pX(x, y) = x

pY :X ⇥Y ! Y , with pY (x, y) = y

are continuous.

2. (an equivalent definition for product topology) The product topology is the

coarest topology on X ⇥Y such that pX and pY are both continuous.

3. (an equivalent definition for product topology) Let Z be a topological space, then

the product topology is the unique topology that the red and the blue line in the

diagram commutes:

Figure 3.3: Diagram summarizing the statement (*)

namely,

the mapping F : Z ! X ⇥Y is continuous iff both PX � F : Z ! X and

PY � F : Z ! Y are continuous. (*)

Proof. 1. For any open U, we imply p
�1
X
(U) = U ⇥ Y 2 BX⇥Y ✓ TX⇥Y , i.e., p

�1
X
(U) is

open. The same goes for pY .

2. It suffices to show any topology T that meets the condition in (2) must contain

Tproduct. We imply that for 8U 2 TX ,V 2 TY ,

8>>><
>>>:

p
�1
X
(U) =U ⇥ X 2 T

p
�1
Y
(V) = X ⇥V 2 T

=) (U ⇥Y )\ (X ⇥V) = (U \ X) ⇥ (Y \V) =U ⇥V 2 T ,

which implies BX⇥Y ✓ T . Since T is closed for union operation on subsets, we
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imply Tproduct topology ✓ T .

3. (a) Firstly show that Tproduct satisfies (*).

• For the forward direction, by (1) we imply both pX � F and pY � F are

continuous, since the composition of continuous functions are continu-

ous as well.

• For the reverse direction, for 8U ⇥ TX ,V 2 TY ,

F
�1(U ⇥V) = (pX � F)�1(X)\ (pY � F)�1(Y ),

which is open due to the continuity of pX � F and pY � F.

(b) Then we show the uniqueness of Tproduct. Let T be another topology X ⇥Y

satisfying (*).

• Take Z = (X ⇥Y ,T), and consider the identity mapping F = id : Z ! Z ,

which is continuous. Therefore pX � id and pY � id are continuous, i.e.,

pX and pY are continuous. By (2) we imply Tproduct ✓ T .

• Take Z = (X ⇥ Y ,Tproduct), and consider the identity mapping F = id :

Z ! Z . Note that pX � F = pX and pY � F = pY , which is continuous by

(1). Therefore, the identity mapping F : (X ⇥Y ,Tproduct)! (X ⇥Y ,T) is

continuous, which implies

U = id�1(U) ✓ Tproduct for 8U 2 T ,

i.e., T ✓ Tproduct.

The proof is complete.

⌅

Definition 3.6 [Disjoint Union] Let X ⇥Y be two topological spaces, then the disjoint

union of X and Y is

X

fi
Y := (X ⇥ {0})[ (Y ⇥ {1})

⌅
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R

1. We define that U is open in X
›

Y if

(a) U \ (X ⇥ {0}) is open in X ⇥ {0}; and

(b) U \ (Y ⇥ {1}) is open in Y ⇥ {1}.

We also need to show the well-definedness for this definition.

2. S is open in X
›

Y iff S can be expressed as

S = (U ⇥ {0})[ (V ⇥ {1})

where U ✓ X is open and V ✓ Y is open.

3.6.2. Properties of Topological Spaces

3.6.2.1. Hausdorff Property

Definition 3.7 [First Separation Axiom] A topological space X satisfies the first sepa-

ration axiom if for any two distinct points x , y 2 X, there exists open U 3 x but not

including y. ⌅

Proposition 3.11 A topological space X has first separation property if and only if for

8x 2 X , {x} is closed in X .

Proof. Sufficiency. Suppose that x , y, then construct U := X \ {y}, which is a open set

that contains x but not includes y.

Necessity. Take any x 2 X , then for 8y , x, there exists y 2 Uy that is open and x <Uy .

Thus

{y} ✓ Uy ✓ X \ {x}

which implies ÿ
y2X\{x }

{y} ✓
ÿ

y2X\{x }
Uy ✓ X \ {x},

i.e., X \ {x} =–
y2X\{x }Uy is open in X , i.e., {x} is closed in X . ⌅
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Definition 3.8 [Second separation Axiom] A topological space satisfies the second

separation axiom (or X is Hausdorff) if for all x , y in X, there exists open sets U,V

such that

x 2 U, y 2 V , U \V = ;

⌅

⌅ Example 3.13 All metrizable topological spaces are Hausdorff.

Suppose d(x, y) = r > 0, then take Br/2(x) and Br/2(y) ⌅

⌅ Example 3.14 Note that a topological space that is first separable may not necessarily

be second separable:

Consider Tco-finite, then X is first separable but not Hausdorff:

Suppose on the contrary that for given x , y, there exists open sets U,V such that

x 2 U, y 2 V , and

U \V = ; =) X = X \ (U \V) = (X \U)[ (X \V),

implying that the union of two finite sets equals X, which is infinite, which is a contradiction.

⌅
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4.3. Monday for MAT4002
There will be a quiz next Monday. The scope is everything before CNY holiday. There

will be one question with four parts for 40 minutes.

4.3.1. Hausdorffness

Reviewing. A topological space (X ,T) is said to be Hausdorff (or satisfy the second

separtion property), if given any distinct points x, y 2 X , there exist disjoint open sets

U,V such that U 3 x and V 3 y.

Proposition 4.5 If the topological space (X ,T) is Hausdorff, then all sequences {xn}

in X has at most one limit.

Proof. Suppose on the contrary that

{xn}! a, {xn}! b, with a , b

By separation property, there exists U,V 2 T and U \V = ; such that U 3 a and V 3 b.

By tje openness of U, there exists N such that {xN , xN+1, . . . } ✓ U, since {xn}! a 2 U.

Similarly, there exists M such that {xM , xM+1, . . . } ✓ V . Take K =max{M, N} + 1, then

; ,U \V 3 xK , which is a contradiction. ⌅

Proposition 4.6 Let X ,Y be Hausdorff spaces. Then X ⇥Y is Hausdorff with product

topology.

Proof. Suppose that (x1, y1) , (x2, y2) in X ⇥Y . Then x1 , x2 or y1 , y2. w.l.o.g., assume

that x1 , x2, then there exists U,V open in X such that x1 2 U, x2 2 V with U \V = ;.

Therefore, we imply (U ⇥Y ), (V ⇥Y ) 2 TX⇥Y , and

(U ⇥Y )\ (V ⇥Y ) = (U \V)\Y = ;

with (x1, y1) 2 U ⇥Y , (x2, y2) 2 V ⇥Y , i.e., X ⇥Y is Hausdorff with product topology. ⌅
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The same argument applies if the second separation property is replaced by first

separation property.

Proposition 4.7 If f : X ! Y is an injective continuous mapping, then Y is Hausdorff

implies X is Hausdorff.

Proof. Suppose that Y satisfies the second separation property. For given a , b in X ,

we imply f (a) , f (b) in Y . Therefore, there exists U 3 f (a),V 3 f (b) with U \V = ;. It

follows that

a 2 f
�1(U), b 2 f

�1(V), f
�1(U)\ f

�1(V) = f
�1(U \V) = ;,

i.e., X is Hausdorff. ⌅

Corollary 4.1 If f : X ! Y is homeomorphic, then X is Hausdorff iff Y is Hausdorff,

i.e., Hausdorffness is a topological property (i.e., a property that is preserved under

homeomorphism).

4.3.2. Connectedness
Definition 4.4 [Connected] The topological space (X ,T) is disconnected if there are

open U,V 2 T such that

U , ;,V , ;, U \V = ;, U [V = X . (4.4)

If no such U,V 2 T exist, then X is connected. ⌅

Proposition 4.8 Let (X ,T) be topological spaces. TFAE (i.e., the followings are equiva-

lent):

1. X is connected

2. The only subset of X which are both open and closed are ; and X

3. Any continuous function f : X ! {0,1} ({0,1} is equipped with discrete topology)

is a constant function.
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Proof. (1) implies (2): Suppose that U ✓ X is both open and closed. Then U, X \ U

are both open and disjoint, and U [ (X \U) = X . By connnectedness, either U = ; or

X \U = ;. Therefore, U = ; or X .

(2) implies (3): Note that U = f
�1({0}) and V = f

�1({1}) are open disjoint sets in X

satisfying U [V = X . By the connectedness of X , either (U,V) = (X ,;) or (V ,U) = (;, X).

In either case, we imply f is a constant function.

(3) implies (2): Suppose that U ✓ X is both open and closed. Construct the mapping

f (x) =
8>>><
>>>:

0, x 2 U

1, x 2 X \U

It’s clear that f is continuous, and therefore f (x) = 0 or 1. Therefore U = ; or X .

(2) implies (1): Suppose on the contrary that there exists open U,V such that (4.4)

holds. By (4.4), we imply U = X \V is closed as well. Since U , ; and U = ; or X , we

imply U = X , which implies V = ;, which is a contradiction. ⌅

Corollary 4.2 The interval [a, b] ✓ R is connnected

Proof. Suppose on the contrary that there exists continuous function f : [a, b]! {0,1}

that takes 2 values. Construct the mapping f̃ : [a, b]! R

f̃ : [a, b] f�! {0,1} i�! R,

with f̃ = i � f .

Note that {0,1} ✓ R denotes the subspace topology, we imply the inclusion mapping

i : {0,1} ! R with s 7! s is continuous. The composition of continuous mappings is

continuous as well, i.e., f̃ is continuous.

Since the function f can take two values, there exists p,q 2 [a, b] such that f̃ (p) =

i � f (p) = 0 and f̃ (q) = i � f (q) = 1. By intermediate value theorem, there exists r 2 [a, b]

such that f̃ (r) = i � f (r) = 1/2, which implies f (r) = 1
2 , which is a contradiction. ⌅

123



Definition 4.5 [Connected subset] A non-empty subset S ✓ X is connected if S with

the subspace topology is connected

Equivalently, S ✓ X is connected if, whenever U,V are open in X such that S ✓ U [V ,

and (U \V)\ S = ;, one can imply either U \ S = ; or V \ S = ;. ⌅

Proposition 4.9 If f : X !Y is continuous mapping, and the subset A ✓ X is connected,

then f (A) is connected. In other words, the continuous image of a connected set is

connected.

Proof. Suppose that U,V ✓ Y is open such that

f (A) ✓ U [V , (U \V)\ f (A) = ;.

Therefore we imply

A ✓ f
�1(U)[ f

�1(V), ( f
�1(U)\ A)\ ( f

�1(V)\ A) = ;

By connectedness of A, either f
�1(U)\ A = ; or f

�1(V)\ A = ;. Therefore, f (A)\U = ;

or f (A)\V = ;, i.e., f (A) is connected. ⌅

Proposition 4.10 If {Ai}i2I are connnected and Ai \ Aj , ; for 8i, j 2 I, then the set
–

i2I Ai is connected.

Proof. Suppose the function f : [i2I Ai ! {0,1} is a continuous map. Then we imply

that its restriction f |Ai = f � i : Ai ! {0,1} is continuous for all i 2 I. Thus f |Ai is a

constant for all i 2 I. Due to the non-empty intersection of Ai , Aj for 8i, j 2 I, we imply

f is constant. ⌅

Proposition 4.11 If X ,Y are connnected, then X ⇥Y is connected using product topol-

ogy.

Proof. It’s clear that X ⇥ {y0} is connected in X ⇥Y for fixed y0; and {x0}⇥Y is connected

for fixed x0.
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Therefore, for fixed y0 2 Y , construct B = X ⇥ {y0} and Cx = {x} ⇥Y , which follows

that

B \Cx = {(x, y0)} , ;,8x 2 X =) B [
(ÿ
x2X

Cx

)
= X ⇥Y is connected.

⌅

Definition 4.6 [Path Connectes] Let (X ,T) be a topological space.

1. A path connecting 2 points x, y 2 X is a continuous function ⌧ : [0,1]! X with

⌧(0) = x,⌧(1) = y.

2. X is path-connected if any 2 points in X can be connected by a path.

3. The set A ✓ X is path-connected, if A sastisfies the condition using subspace

topology.

Or equivalently, A is path-connected if for any 2 points in X, there exists a continuous

t : [0,1]! X with t(x) 2 A for any x, connecting the 2 points.

⌅
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4.6. Wednesday for MAT4002
There will be a quiz on Monday.

Reviewing.

• Connectedness / Path-Connectedness

4.6.1. Remark on Connectedness
Proposition 4.14 All path connected spaces X are connected.

Proof. Fix any x 2 X , for all y 2 X , there exists a continuous mapping py : [0,1]! X

such that

py(0) = x, py(1) = y.

Consider Cy = py([0,1]), which is connected, due to proposition (4.9).

Note that {Cy}y2X is a collection of connected sets, and for any y, y0 2 X , Cy \Cy0 3

{x} is non-empty. Applying proposition (4.10), we imply X = [y2XCy is connected. ⌅

⌅ Example 4.5 1. Exercise: if A ⇢ B ⇢ A, then A is connected implies B is connected.

(Hint: U \ A = ; implies U \ A = ; for all open sets U in X.)

Proof. Suppose B is not connected, i.e., for any open U,V such that B ✓ U [V

and (U \V)\ B = ;, we imply U \ B , ; and V \ B , ;, and therefore

U \ A , ;, V \ A , ;

which implies

U \ A , ;, V \ A , ;

which contradicts to the connectedness of A. ⌅

2. The converse of proposition (4.14) may not be necessarily true. Consider the so-called

Topologist’s comb example:
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Figure 4.1: Connected space X but not path-connected

Here we construct a connected space X ✓ R2 but not path-connected shown in

Fig (4.1), i.e., the union of the interval [0,1] together with vertical line segments

from (1/n,0) to (1/n,1) and the single point (0,1).

X = ([0,1] ⇥ {0})[
ÿ
n�1

({1/n} ⇥ [0,1])[ (0,1).

(a) Firstly, X is not path-connected. We show that there is no path in X links (0,1)

to any other point, i.e., for continuous mapping p : [0,1]! X with p(0) = (0,1),

we may imply p(t) = (0,1) for any t.

Define

A = {t 2 [0,1] | p(t) = (0,1)}.

We claim that A = [0,1], i.e., suffices to show A is both open and closed in

[0,1]:

i. The set A = p
�1((0,1)) is nonempty and closed, since the pre-image of a

closed set is closed as well.
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ii. The set A is open: choose t0 2 A. By continuity of p, there exists � > 0

such that

kp(t) � (0,1)k = kp(t) � p(t0)k <
1
2

, t 2 [0,1]\ (t0 � �, t0 + �).

Since there is no point on the x-axis with the distance 1/2 to the point

(0,1), we imply p(t) is not on the x-axis when t 2 [0,1] \ (t0 � �, t0 + �).

Therefore, the x-coordinate of p(t) is either 0 or of the form 1/n.

It suffices to show the open interval I := [0,1] \ (t0 � �, t0 + �) is in

A. Define the composite function f = x � p : I ! R , where the mapping

x : R2 ! R is defined as (a, b) 7! a. Note that I is connected, we imply

f (I) is connected, and f (I) belongs to {0} [ {1/n}.

The only nonempty connected subset of {0} [ {1/n} is a single point

(left as exercise), and therefore f (I) is a single point. Since f (t0) = 0,we

imply f (I) = {0}, i.e., I ✓ A. Therefore A is open.

⌅

4.6.2. Compactness

Compact set in X is used to generalize “closed and bounded” in Rn.

Definition 4.11 Let (X ,T) be a topological space. A collection U = {Ui | i 2 I} of open

sets is an open cover of X if

X =
ÿ
i2I

Ui

A subcover of U is a subfamily

U 0 = {Uj | j 2 J}, J ✓ I

such that
–

j2J Uj = X.

If J has finitely many elements, we say U 0 is a finite subcover of X.

We say X is compact if any open cover of X has a finite subcover. ⌅
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R If A ✓ X has a subspace topology. then A is compact iff for any open collection

of open sets (in X) {Ui} such that A ✓ –
i2I Ui, there exists a fintie subcover

A ✓ –
n

k=1 Uik .

Proposition 4.15 Let X be a topological space. The followings are equivalent:

1. The space X is compact

2. If {Vi | i 2 I} is a collection of closed subsets in X such that

Ÿ
j2J

Vj , ;, for all finite J ✓ I,

then \i2IVi , ;.

Compactness is an intrisical property, i.e., we do not need to worry about which

underlying space for this definition.

⌅ Example 4.6 1. X ✓ Rn is compact iff X is closed and bounded. (Heine-Borel)

2. Let K ✓ Rn be compact, then define the set

C(K) = {all continuous mapping f : K ! R}

Note that the d1 metric associated with C(K), say k f k1 = sup
k2K f (k), is well-

defined.

Under the metric space (C(K), d1), any J ✓ C(K) is compact, if and only if J is

closed, bounded, and equi-continuous. (Aresul-Ascoli)

Therefore, we can see that the compactness is not equivalent to the closedness together

with boundedness. ⌅

Proposition 4.16 Let X be a compact space, then all closed subset A ✓ X are compact.

Proof. Let {Vi | i 2 I} be a collection of closed subsets in A such that

\j2JVj , ;, for any finite J ✓ I.

As A is closed in X , we imply Vj is closed in X .
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Due to the compactness of X and proposition (4.15), we imply

\i2IVi , ;

By the reverse direction of proposition (4.15), we imply A is compact. ⌅

R Now consider the reverse direction of proposition (4.16), i.e., are all compact

subsets K ✓ X closed in X?

In general, the converse does not hold. Note that K = {x} is compact for any

topology X . However, there are some topologies such that {x} is closed.

In order to obtain the converse of proposition (4.16), we need to obtain another

separation axiom:

Proposition 4.17 Let X be Hausdorff, K ✓ X be compact, and x 2 X \ K . Then there

exists open U,V ✓ X such that U \V = ; and

U \V = ;, K ✓ U, x 2 V .

Proof. Let k 2 K , then by Hausdorffness, there exists open Uk 3 k,Vk 3 x such that

Uk \ Vk = ;. Therefore, {Uk}k2K forms an open cover of K . By compactness of K ,

{Uki }ni=1 covers K . Constructing the set

U :=
–

n

i=1 Uki , V =
—

n

i=1 Vki

gives the desired result. ⌅

By making use of this separation axiom, we obtain the converse of proposi-

tion (4.16):

Corollary 4.3 All compact K in Hausdorff X is closed.

Proof. For 8x 2 X \ K , by proposition (4.17) there exists open V such that x 2 V ✓ X \ K ,

and therefore X \ K is open. ⌅
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5.3. Monday for MAT4002

5.3.1. Continuous Functions on Compact Space

Proposition 5.3 Let f : X ! Y be continuous function on topological spaces, with

A ✓ X compact. Then f (A) ✓ Y is compact.

Proof. Let {Ui | i 2 I} be an open cover of f (A), i.e.,

f (A) ✓
ÿ
i2I

Ui, Ui 2 TY

It follows that { f
�1(Ui) | i 2 I} is an open cover of A:

A ✓ f
�1

 ÿ
i2I

Ui

!
=

ÿ
i2I

f
�1(Ui)

By the compactness of A, there exists finite subcover of A:

A ✓
nÿ

k=1

f
�1(Uik ),

which implies the constructed finite subcover of f (A):

f (A) ✓ f ([n

k=1 f
�1(Uik ))

=

nÿ
k=1

Uik

⌅

Corollary 5.2 1. Suppose that X is compact, and the mapping f : X ! R is con-

tinuous, then f (X) is closed and bounded, i.e., there exists m, M 2 X such that

f (m)  f (x)  f (M), 8x 2 X.

2. Suppose moreover that X is connected, then

f (X) = [ f (m), f (M)].
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Theorem 5.2 The space X ,Y are compact iff X ⇥Y is compact under product topol-

ogy.

Proof. 1. Sufficiency: Given that X ⇥Y is compact, consider the projection mapping

(which is continuous): 8>>><
>>>:

PX : X ⇥Y ! X

PY : X ⇥Y ! Y

By applying proposition (5.3), PX(X ⇥Y ) = X , PY (X ⇥Y ) = Y are both compact.

2. Necessity: Suppose that {Wi}i2I is an open cover of X ⇥Y . Each open set Wi can

be written as:

Wi =
ÿ
j2Ji

Ui j ⇥Vi j , Ui j 2 TX ,Vi j 2 TY .

It follows that

X ⇥Y =
ÿ

(i,j)2K
Ui j ⇥Vi j , K = {(i, j) | i 2 I, j 2 Ji}

Therefore, it suffices to show {Ui j ⇥Vi j | (i, j) 2 K} has a finite subcover of X ⇥Y .

• Note that X ⇥ {y} ✓ –
(i,j)2K Ui j ⇥Vi j is compact for each y 2 Y , which implies

there exists finite Sy 2 K such that

X ⇥ {y} ✓
ÿ
s2Sy

Us ⇥Vs

• w.l.o.g., assume that y 2 Vs,8s 2 Sy , since we can remove the Us ⇥Vs such

that y < Vs. Define the set Vy := \s2SyVs, which is an open set containing y.

We imply {Vy}y2Y forms an open cover of Y . By the compactness of Y ,

{Vy1 , . . . ,Vym }

forms a finite subcover of Y .
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• For each ` = 1, . . . ,m,

X ⇥ {y`} ✓
ÿ

s2Sy`

Us ⇥Vs

Note that for any (x, y) 2 X ⇥Y , there exists ` 2 {1, . . . ,m} such that y 2 Vy` ,

i.e., y 2 Vs for 8s 2 Sy` . Therefore,

X ⇥Y =

mÿ
`=1

ÿ
s2Sy`

Us ⇥Vs

Now pick

I
0 = {i 2 I | (i, j) 2 [m

`=1Sy` },

we imply X ⇥Y =
–

i02I 0 Wi and I
0 is finite.

⌅

Theorem 5.3 Suppose that X is compact, Y is Hausdorff, f : X ! Y is continuous,

bijective, then f is a homeomorphism.

Proof. It suffices to show f
�1 is continuous. Therefore, it suffices to show ( f

�1)�1(V) is

closed, given that V is closed in X :

Let V ✓ X be closed. Then V is compact, which implies f (V) is compact. Since

f (V) ✓ Y is Hausdorff, we imply f (V) is compact, i.e., f (V) is closed. ⌅
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5.6. Wednesday for MAT4002

5.6.1. Remarks on Compactness

Theorem 5.5 X is compact, Y is Hausdorff, f : X ! Y is continuous and bijective.

Then X is homeomorphic to Y

Corollary 5.3 If X is compact, Y is Hausdorff, f : X !Y is injective and continous, then

f : X ! f (X) is homeomorphisc.

⌅ Example 5.7 Here we give another proof for the fact that S
1 ⇥ S

1 is homeomorphic to

donut. Construct the mapping

f : S
1 ⇥ S

1 ! R3

with (ei✓ , e
i�) 7! ((R + r cos✓)cos�, (R + r cos✓)sin�,r sin✓) (R > r > 0)

Note that:

• X = S
1 ⇥ S

1 is compact, R3 is Hausdorff;

• f is continuous and injective.

• f (S1 ⇥ S
1) is a “donut”.

Therefore, we conclude that S
1 ⇥ S

1 is homeomorphic to donut in R3. ⌅

Definition 5.6 [Sequential Compactness] A topological space X is sequentially compact

if every sequence in X has a convergent sub-sequence. ⌅

In Rn, the compactness is equivalent to sequential compactness. The same goes for

any metric space (X , d). (Check notes for MAT3006)

However, compactness and sequential compactness is different for topological

spaces in general.
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5.6.2. Quotient Spaces
Motivation. Just like product space and disjoint union, we give another way to

construct new topological spaces from some old ones. This new way of construction is

by gluing some special pieces from old topological spaces together.

Idea. Let X = [0,1] ⇥ [0,1] (just like a paper on a plane), we want to glue the leftmost

edge with the rightmost edge to form a cylinder Y1, as shown below:

If we give a half-twist to the strip before glue the ends together, we will get the

Moebius stripe Y2 shown below:

Interestingly, the first topology Y1 has two sides, while the second has only one

side.

5.6.2.1. Equivalence Relations and partitions

Definition 5.7 [Equivalence Relation] The equivalence relation on a set X is a relation

⇠ such that

1. (Reflexive): x ⇠ x,8x 2 X

2. (Symmetric): x ⇠ y implies y ⇠ x

3. (Transitive): x ⇠ y and y ⇠ z implies x ⇠ z.

⌅
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⌅ Example 5.8 1. Let X = V be a vector space, and W  V be a vector subspace.

Define vvv1 ⇠ vvv2 if vvv1 � vvv2 2 W .

(The well-definedness is left as exercise).

2. (Mobius Stripe): Let X = [0,1] ⇥ [0,1]. We define (x1, y1) ⇠ (x2, y2) if

• x1 = x2, y1 = y2; (e.g., (0.5,0.6) ⇠ (0.5,0.6)) or

• x1 = 0, x2 = 1, and y1 = 1 � y2 (e.g., (0,1/4) ⇠ (1,3/4))

• x1 = 1, x2 = 0, and y1 = 1 � y2 (e.g., (1,3/4) ⇠ (0,1/4))

⌅

Definition 5.8 [Partition] Let X be a nonempty set. A partition P = {pi | i 2 I} of X is

a collection of subsets such that

1. Pi ✓ X is non-empty

2. Pi \ Pj = ; if i , j

3.
–

i2I Pi = X

⌅

R Given a partition P = {pi | i 2 I}, we can define an equivalence relation ⇠ on

X by setting

x ⇠ y whenever x, y 2 pi, for some i 2 I

For example, if X = [0,1] ⇥ [0,1], then

X = {(x, y)}x2(0,1),y2[0,1] [ {(1, y), (0,1 � y)}y2[0,1]

gives a partition on X . This gives the same equivalence relation as in part (2)

in example (5.8).

Conversely, given an equivalence relation ⇠, we could form a corresponding partition

of X . This kind of partition is called the equivalence class:
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Definition 5.9 [Equivalence Class] Let X be a set with equivalence relation ⇠. The

equivalence class of an element x 2 X is

[x] := {y 2 X | x ⇠ y}.

⌅

Proposition 5.8 The collection of all [x] in X/⇠ gives a partition on X .

Consider the equivalence class defined in part (1) in example (5.8). The equivalence

class has the form

[vvv] = {uuu 2 V | vvv � uuu 2 W} := vvv +W .

Therefore, the equivalence class is a generalization of the coset in linear algebra.

Similarly, we define the set of generalized cosets as quotient space.

Definition 5.10 The collection of all equivalence classes is called the quotient space,

denoted as X/⇠, i.e.,

X/⇠= {[x] | x 2 X}.

⌅

⌅ Example 5.9 1. Consider part (1) in example (5.8) again. The quotient space V/⇠

reduces to the V/W in linear algebra:

V/⇠= {[vvv] | vvv 2 V} = {vvv +W | vvv 2 V} = V/W .

2. Consider part (2) in example (5.8) again. Then X/⇠ essentially forms the Mobius

band, e.g.,

[(1/2,1/2)] = {x | (1/2,1/2) ⇠ x} = {(1/2,1/2)}

[(1,3/4)] = {x | x ⇠ (1,3/4)} = {(1,3/4), (0,1/4)}

⌅
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⌅ Example 5.10 Consider X = [0,1]t [0,1], i.e.,

X = ([0,1] ⇥ {0})[ ([0,1] ⇥ {1})

Take a partition on X by

{(a,0)}0a<1 [ {(b,1)}0<b1 [ {(1,0), (0,1)}

As a result, the corresponding quotient space is plotted below:

⌅

⌅ Example 5.11 Comes from X = [0,1] ⇥ [0,1] with partition

{(a, b)}0<a<1;0<b<1 [ {(x,0), (x,1)}0x1 [ {(0, y), (1, y)}0<y<1

The corresponding quotient space is plotted below:

⌅
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Proposition 5.9 Let (X ,T) be topological space, with the equivalence relation. Define

the canonical projection map

p : X ! X/⇠

with x 7! [x]

Define a collection of subsets T̃ on X/⇠ by:

U ✓ X/⇠ is in T̃ if p
�1(U) is in T .

Then T̃ is a topology for X/⇠, called quotient topology.
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6.3. Monday for MAT4002

6.3.1. Quotient Topology
Now given a topologcal space X and an equivalence relation ⇠ on it, our goal is to

construct a topology on the space X/⇠.

Proposition 6.1 Suppose (X ,T) is a topological space, and ⇠ is an equivalene relation

on X . Define the canonical projection map:

p : X ! X/⇠

with x ! [x]
,

which assigns each point x 2 X into the equivalence class [x]. Then define a family of

subsets T̃ on X/⇠ by:

Ũ ✓ X/⇠ is in T̃ if p
�1(Ũ) is in T

Then T̃ is a topology for X/⇠, called the quotient topology, and (X/⇠, T̃ ) is called the

quotient space, and p : X ! X/⇠ is called the natural map.

Proof. 1. p
�1(X/⇠) = X 2 T and p

�1(;) = ; 2 T , which implies X/⇠2 T̃ and ; 2 T̃ .

2. Suppose that Ũ,Ṽ 2 T̃ , then we imply

p
�1(Ũ), p

�1(Ṽ) 2 T =) p
�1(Ũ \ Ṽ) 2 T ,

i.e., Ũ \ Ṽ 2 T̃ .

3. Following the similar argument in (2), and the relation

p
�1

⇣ÿ
Ũi

⌘
=

ÿ
p
�1(Ũi),

we conclude that T̃ is closed under countably union.

The proof is complete. ⌅

R
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1. The proposition (6.1) claims that Ũ is open in X/⇠ iff p
�1(Ũ) is open in

X . The general question is that, does p(U) is open in X/⇠, given that U is

open in X? This may not necessarily hold. (See example (6.4)) In general

p
�1(p(U)) is strictly larger than U, and may not be necessarily open in X ,

even when U is open.

2. By definition, we can show that p is continuous.

To fill the gap on the question shown in the remark, we consider the notion of the

open mapping:

Definition 6.3 [Open Mapping] A function f : X ! Y between two topological spaces is

an open mapping if for each open U in X, f (U) is open in Y . ⌅

R From the remark above, we can see that:

1. Not every continuous mapping is an open mapping

2. The canonical projection mapping p is not necessarily be an open map-

ping.

⌅ Example 6.4 1. The mapping p : [0,1]⇥ [0,1]! ([0,1]⇥ [0,1])/⇠ sending the square

to the Mobius band M is not an open mapping:

Consider the open ball U = B1/2((0,0)) in [0,1] ⇥ [0,1]. Note that p(U) is open in

M iff p
�1(p(U)) is open in [0,1] ⇥ [0,1]. We can calculate p

�1(p(U)) explicitly:

p
�1(p(U)) =U [ {(1, y) | 1/2  y  1},

which is not open.

⌅
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6.3.2. Properties in quotient spaces

6.3.2.1. Closedness on X/⇠
Proposition 6.2 A subset Ṽ is closed in the quotient space X/⇠ iff p

1(Ṽ) is closed in X ,

where p : X ! X/⇠ denotes the canonical projection mapping.

Proof. It follows from the fact that

p
�1 �

(X/⇠) \ Ṽ
�
= X \ p

�1(Ṽ)

⌅

6.3.2.2. Isomorphism on X/⇠
The quotient space can be used to study other type of spaces:

⌅ Example 6.5 Consider X = [0,1]. We define x1 ⇠ x2 if:

x1 = 0, x2 = 1, or x1 = 1, x2 = 0

In other words, the partition on X is given by:

X = {0,1} [ (
ÿ

x2(0,1)
{x})

The quotient space seems “glue” the endpoints of the interval [0,1] together, shown in

the figure below:

It is intuitive that the constructed quotient space should be homeomorphic to a circle

S
1. We will give a formal proof on this fact. ⌅

Proposition 6.3 Let X and Z be topological spaces, and ⇠ an equivalence relation on X .
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Let g : X/⇠! Z be a function, and p : X ! X/⇠ is a projection mapping The mapping g

is continuous if and only if g � p : X ! Z is continuous.

Proof. 1. Necessity. Suppose that g is continuous. It’s clear that p is continuos, i.e,

g � p : X ! Z is continuous.

2. Sufficiency. Suppose that g � p : X ! Z is continuous. Given any open U in Z , we

imply (g � p)�1(U) = p
�1g�1(U) is open in X . By definition of the quotient topology,

we imply g�1(U) is open in X/⇠. Therefore, g is continuous.

⌅

R This useful lemma can be generalized into the case for generlized canonical

projection mapping, called quotient mapping.

Definition 6.4 [Quotient mapping] A map p : X ! Y between topological

spaces is a quotient mapping if

1. p is surjective; and

2. p is continuous;

3. For any U ✓ Y such that p
�1(U) is open in X, we imply U is open in Y .

⌅

The canonical projection map is clearly a quotient map. Actually, a stronger

version of proposition (6.3) follows:

Proposition 6.4 Suppose that p : X !Y is a quotient map and that g : Y ! Z is

any mapping to another space Z . Then g is continuous iff g � p is continuous.

Proof. The proof follows similarly as in proposition (6.3). ⌅

Now we give a formal proof of the conclusion in the example (6.5):

Proof. Define the mapping

f : [0,1]! S
1

with t 7! (cos2⇡t, sin2⇡t).
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Since f (0) = f (1), the function f induces a well-defined function

g : [0,1]/⇠! S
1

with [t] 7! f (t)

such that f = g � p, where p denotes the canonical projection mapping. Note that f is

continuous. By proposition (6.3), we imply g is continuous. Furthermore,

1. Since [0,1] is compact and p is continuous, we imply p([0,1]) = [0,1]/⇠ is compact

2. S
1 is Hausdorff

3. g is a bijection

By applying theorem(5.3), we conclude that g is a homeomorphism, i.e., [0,1]/⇠ and S
1

are homeomorphic.

⌅

The argument in the proof can be generalized into the proposition below:

Proposition 6.5 Let f : X !Y be a surjective continuous mapping between topologcial

spaces. Let ⇠ be the equivalence relation on X defined by the partition { f
�1(y) | y 2 Y }

(i.e., f (x) = (x 0) iff x ⇠ x
0). If X is compact and Y is Hausdorff, then X/⇠ and Y are

homeomorphic.

R The proposition (6.5) is a pattern of argument we should use several times.

In order to show X/⇠ and Y are homeomorphic, we should think up a

surjective continuous mapping f : X !Y “with respect to the identifications”,

i.e., f (x1) = f (x2) whenever x1 ⇠ x2. Therefore f will induce a well-defined

function g : X/⇠! Y such that f = g � f . Then checking the conditions in

theorem(5.3) leads to the desired results.

Torus. We now study the torus in more detail.

1. Consider X = [0,1] ⇥ [0,1] and define (s1, t1) ⇠ (s2, t2) if one of the following holds:

• s1 = s2 and t1 = t2;

• {s1, s2} = {0,1}, t1 = t2;
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• {t1, t2} = {0,1} and s1 = s2;

• {s1, s2} = {0,1}, {t1, t2} = {0,1}

The corresponding quotient space ([0,1] ⇥ [0,1])/⇠ is hoemomorhpic to the 2-

dimension torus T2.

Proof. Define the mapping f : [0,1] ⇥ [0,1]! T2 as (t1, t2) 7! (e2⇡it1 , e
2⇡it2).

(a) f is surjective, which also implies T2 = f ([0,1] ⇥ [0,1]) is compact.

(b) T2 is Hausdorff

(c) It’s clear that (s1, t1) ⇠ (s2, t2) implies f (s1, t1) = f (s2, t2). Conversely, suppose

e
2⇡is1 = e

2⇡is2 , e
2⇡it1 = e

2⇡it2

By the familiar property of e
ix , we imply either t1 = t2 or {t1, t2} = {0,1}; and

either s1 = s2 or {s1, s2} = {0,1}

By applying proposition (6.5), we conclude that ([0,1]⇥ [0,1])/⇠ is homeomorphic

to T2. ⌅

2. Consider the closed disk D2 = {(x, y) 2 R2 | x
2+ y2  1}, and defube (x1, y1)⇠ (x2, y2)

if one of the following holds:

• x1 = x2 and y1 = y2;

• (x1, y1) and (x2, y2) are in the boundary circle S1

The corresponding quotient space D2/⇠ is hoemomorhpic to the 2-dimension

sphere S2 = {(x, y, z) | x
2 + y2 + z

2 = 1}.

Proof. Define the mapping

f : D2 ! S2

with (0,0) 7! (0,0,1)

(x, y) 7!
✓

xp
x2+y2

sin(⇡
p

x2 + y2), yp
x2+y2

sin(⇡
p

x2 + y2), cos(⇡
p

x2 + y2)
◆

It’s easy to check the conditions in proposition (6.5), and we conclude that D2/⇠

is hoemomorhpic to S2 ⌅
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7.3. Monday for MAT4002

7.3.1. Quotient Map

Definition 7.6 [Quotient Map] A mapping q : X ! Y between topological spaces is a

quotient map if

1. q is surjective

2. For any U ✓ Y , U is open iff q
�1(U) is open.

⌅

R

1. The canonical projection mapping p : X ! X/⇠ is a quotient mapping

2. We say f is an open mapping if U is open in X implies f (U) is open

in Y . Note that a continuous open mapping satisfies condition (2) in

definition (7.6).

In proposition (6.5) we show the homeomorphism between X/⇠ and Y given the

compactness of X and Hausdorffness of Y . Now we show the homeomorphism by

replacing these conditions with the quotient mapping q:

Proposition 7.9 Suppose q : X ! Y is a quotient map, and that ⇠ is an equivalence re-

lation on X given by the partition {q
�1(y) | y 2 Y }. Then X/⇠ and Y are homeomorphic.

Proof. Construct the mapping

h : X/⇠! Y

with h([x]) = q(x)

Note that:

1. The mapping h is well-defined and injective.

2. Surjective is easy to shown.

3. The quotient mapping q := h � p, by definition, is continuous. By applying propo-

sition (6.4), h is continuous.
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It suffices to show h
�1 is continuous:

• For any open Ũ ✓ X/⇠, it suffices to show h(Ũ) is open in Y .

Note that

q
�1(h(Ũ)) = p

�1
h
�1(h(Ũ)) = p

�1(Ũ),

which is open by the definition of quotient topology (check proposition (6.1)).

Therefore, h(Ũ) is open by (2) in definition (7.6).

⌅

⌅ Example 7.4 The R/Z is homeomorphic to the unit circle S
1:

Define the mapping

q : R ! S
1

x 7! e
2⇡ix

It’s clear that

1. q is a continuous open mapping (why?)

2. q is surjective

Therefore, R/⇠� S
1, provided that x ⇠ y iff q(x) = q(y), i.e., x � y 2 Z. Therefore,

R/Z � S
1

⌅

7.3.2. Simplicial Complex

Combinatorics is the slums of topology. — J. H. C. Whitehead

The idea is to build some new spaces from some “fundamental” objects. The combina-

torialists often study topology by the combinatorics of these fundamental objects. First

we define what are the “fundamental” objects:
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Definition 7.7 [n-simplex] The standard n-simplex is the set

�n =

(
(x1, . . . , xn+1) 2 Rn+1

�����xi � 0,8i and
n+1’
i=1

xi = 1

)

Figure 7.1: Simplices on R2 are the triangles, so you may consider simplexes as the
“triangles” in general spaces

1. The non-negative integer n is the dimension of this simplex

2. Its vertices, denoted as V(�n), are those points (x1, . . . , xn+1) in �n such that xi = 1

for some i.

3. For each given non-empty A ✓ {1, . . . ,n + 1}, its face is defined as

{(x1, . . . , xn+1) 2 �n | xi = 0, 8i <A}

In particular, �n is a face of itself

4. The inside of �n is

inside(�n) := {(x1, . . . , xn+1) 2 �n | xi > 0,8i}

In particular, the inside of �0 is �0.

⌅

Definition 7.8 [Face Inclusion] A face inclusion of �m into �n (m < n) is a function

�m ! �n which comes from the restriction of an injective linear map f : Rm+1 ! Rn+1

that maps vertices in �m into vertices in �n. ⌅
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For example, the linear transformation f : R2 ! R3 defined below is a face inclusion:

f (1,0) = (0,1,0), f (0,1) = (0,0,1).

R Any injection mapping from {1, . . . ,m+1}! {1, . . . ,n+1} gives a face inclusion

�m ! �n, and vice versa.

Motivation. Now we build new spaces by making use of simplices. This new space

is called the abstract complex. If a simplex is a part of the complex, so are all its faces.

Definition 7.9 [Abstract Simplicial Complex] An (abstract) simplicial complex is a pair

K = (V ,⌃), where V is a set of vertices and ⌃ is a collection of non-empty finite subsets of

V (simplices) such that

1. For any vvv 2 V , the 1-element set {vvv} is in ⌃

2. If � is an element of ⌃, then so is any non-empty subset of �.

⌅

For example, if V = {1,2,3,4}, then

⌃ = {{1}, {2}, {3}, {4}, {1,3,4}, {2,4}, {1,3}, {3,4}, {1,4}}

We can associate to an abstract simplicial complex K a topological space |K |, which

is called its geometric realization:

Definition 7.10 [Topological Realization] The topological realization of K = (V ,⌃) is

a topological space |K | (or denoted as |(V ,⌃)|), where

1. For each � 2 ⌃ with |� | = n + 1, take a copy of n-simplex and denote it as ��

2. Whenever � ⇢ ⌧ 2 ⌃, identify �� with a face of �⌧ through face inclusion.

⌅
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R Or equivalently, |K | is a quotient space of the disjoint union

fi
�2⌃

�

by the equivalence relation which identifies a point y 2 � with its image

under the face inclusion �! ⌧, for any � ⇢ ⌧.

⌅ Example 7.5 Take

As a result,

⌅
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⌅ Example 7.6 Take V = {1,2,3,4} and

⌃ = {all subsets of V except V}

As shown in the figure below, |(V ,⌃)| = �3:

⌅

Definition 7.11 [Triangulation] A triangulation of a topological space X is a simplicial

complex K = (V ,⌃) together with a choice of homeomorphism |K | ! X. ⌅

⌅ Example 7.7 The triangulation of S
1 ⇥ S

1 can be realized by using nine vertices given

below:

Figure 7.2: The quotient space |K | := X/⇠

(Try to identify X) ⌅
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7.5. Wednesday for MAT4002

7.5.1. Remarks on Triangulation

Consider the simplical complex K = (V ,⌃) with

V = {1,2,3,4, . . . ,9}, ⌃ =

8>>>>>>><
>>>>>>>:

9 subsets with 1 element

27 subsets with 2 elements

18 subsets with 3 elements

We start to build the topological realization of K with 9 000-simplicies, 27 111-simplicies,

and 18 222-simplicies. The identification of them is as follows:

Figure 7.3: Step 1: Identify 3 columns separately, i.e., identify {1,7,4,1,2,8,5,2},
{2,8,5,2,3,9,6,3}, and {3,9,6,3,1,7,4,1}.

Figure 7.4: Step 2: “gluing” these three prisms in the figure above together.

Question: why K is homeomorphic to the torus?
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⌅ Example 7.10 Consider the simplicial complex (V ,⌃) described below:

The |(V ,⌃)| is homeomorphism to the quotient space S
1 plotted below

⌅

Furthermore, can we build a triangulation of the tours using fewer simplices? The

answer is no. Consider the figure below: at the bottom edge of this square, there are

two 1-simplicies lablled {1,2}, which cannot happen in a tours.
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Interesting question: does the triangulation of the Fig. (7.1a) below leads to S
2?

Answer: No. Since the 2-simplex �{2,3,4} appears twice in the Fig. (7.1a), the tri-

angluation of this figure means that we need to stick the top triangle and the right

triangle together, which contradicts to the structure of the quotient space S
2 shown in

Fig. (7.1b).

The simplicial complex gives us another way to study X , i.e., it suffices to study

(V ,⌃) such that |(V ,⌃)| � X . The question is that can we distinguish X = S
1 ⇥ S

1 and

Y = S
2? In other words, can we distinguish the difference of corresponding topological

realizations?

Theorem 7.2 — Euler’s Formula. Suppose that |(V1,⌃1)| � |(V2,⌃2)|, then

1’
i=1

(�1)i (number of subsets in ⌃1 with (i + 1)-element)

=

1’
i=1

(�1)i (number of subsets in ⌃2 with (i + 1)-element)

From previous examples we can see that X(S2) = 5 � 9 + 6 = 2 and X(S1 ⇥ S
1) =

9 � 27 + 18 = 0, which implies

S
2 � S

1 ⇥ S
1.

7.5.2. Simplicial Subcomplex
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Definition 7.13 [Simplicial Subcomplex] A subcomplex of a simplicial complex K = (V ,⌃)

is a simplicial complex K
0 = (V 0,⌃0) such that

V
0 ✓ V , ⌃0 ✓ ⌃

⌅

Proposition 7.13 Suppose K
0 is subcomplex of K , then |K 0 | is closed in |K |.

Proof. Suppose that D is the disjoint union of all the simplicial complex forming |K |.

(note that the number of component in D is |⌃ |)

Consider the canonical projection mapping D ! |K |. Observe that p
�1(|K 0 |) precisely

equals to
›

�02⌃0�
0, which is closed in D. By definition of quotient topology, |K 0 | is

also closed. ⌅

Definition 7.14 [Subcomplex spanned by vertices] Let K = (V ,⌃) be a simplicial complex

and V
0 ✓ V . Then the subcomplex spanned by V

0 is (V 0,⌃0) such that

• V
0 denotes the vertex set.

• the simplices ⌃0 is given by

{� 2 ⌃ | � ✓ V
0}

⌅

Definition 7.15 [Link and Star] Let (V ,⌃) = K be simplicial complex

• The link of vvv 2 V , denoted as lk(vvv) is the sub-complex with

– vertex set

{www 2 V \ {vvv} | {vvv,www} 2 ⌃}

– simplicies

{� 2 ⌃ | vvv < � and � [ {vvv} 2 ⌃}
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• The star of vvv (denoted as st(vvv)) is

ÿ
{inside(�) | � 2 ⌃,vvv 2 �}

⌅

Proposition 7.14 st(vvv) is open and vvv 2 st(vvv).

Proof. Omitted. ⌅

In fact, |K | \ st(vvv) is the simplicial subcomplex spanned by V .

7.5.3. Some properties of simplicial complex

Proposition 7.15 Suppose that K = (V ,⌃), where V is finite. Then |K | is compact.

Proof. The mapping p : D ! |K | is a canonical projection mapping, which is continuous;

and D (the finite disjoint union of ��’s) is compact.

Therefore, p(D) = |K | is compact. ⌅

Proposition 7.16 For any simplicial complex K = (V ,⌃), where V is finite, there is a

continuous injection

f : |K | ! Rn for some n

Proof. Let K
0 = (V ,⌃0), where ⌃0 = power set of V . Then

|K 0 | = � |V |�1 ✓ R |V |

Consider the inclusion

i : |K | ! |K 0 |

which comes from the following:

1. Consider the D :=
›

�2⌃ �� and D
0 =

›
�02⌃0��0 in (V ,⌃) and (V ,⌃0)

2. Construct the mapping ĩ : D ,! D
0 p

0
�! |K |.
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3. The mapping ĩ descends to i : D/⇠! |K 0 | (try to write down the detailed mapping),

which is continuous and injective.

Therefore, |K | ,! |K 0 |, i.e., |K | ,! Rn. The proof is complete.

⌅
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8.5. Wednesday for MAT4002
Reviewing. We can construct a continuous injection from |K | to |K 0 |, where K = (V ,⌃)

is a simplicial complex, and K
0 = (V 0,⌃0) is its subcomplex:

Let D⌃ :=
›

�2⌃� and D⌃0 :=
›

�02⌃0�
0, then |K 0 | = D⌃0/⇠⌃0 and |K | = D⌃/⇠⌃, which

follows that

f : D⌃0 ! D⌃
P�! D⌃/⇠⌃, P denotes the canonical projection mapping

The whole mapping f descends to a continuous mapping

f̃ : D⌃0/⇠⌃0! D⌃/⇠⌃

The f̃ is injective since

x ⇠⌃0 y () i(x) ⇠⌃ i(y), 8x, y 2 D⌃, (8.14)

where i denotes the inclusion mapping.

Another way is to consider the inclusion i : |K 0 | ! |K |, which is continuous and

injective as well. Note that i(|K 0 |) is closed in |K |.

Proposition 8.7 For each K = (V ,⌃), and finite V , there is a continuous injection

g : |K | ,! Rn for some n.

Proof. Consider K
p := (V ,⌃p), where ⌃p is the power set of V . Therefore, |Kp | = � |V |�1 ✓

R |V |, and K is a simplicial subcomplex of K
p, which follows that

l : |K 0 | i�! |Kp | i�! R |V |

The whole mapping l is an inclusion mapping from |K 0 | to R |V |, which is continuous

and injective. The proof is complete. ⌅

Proposition 8.8 — Hausdorff. If K = (V ,⌃) with fintie V , then |K | is Hausdorff.

Proof. Let g : |K | l�! Rn. Consider the bijective g : |K | ! g(|K |), which is continuous.
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Sicne |K | is compact, and g(|K |) ✓ Rn is Hausdorff, we imply that |K | and g(|K |) are

homeomorphic, i.e., |K | is Hausdorff. ⌅

Definition 8.14 [Edge Path] An edge path of K = (V ,⌃) is a sequence of vertices

(v1, . . . ,vn),vi 2 V such that {vi,vi+1} 2 ⌃,8i. ⌅

Proposition 8.9 — Connectedness. Let K = (V ,⌃) be a simplicial complex. TFAE:

1. |K | is connected

2. |K | is path-connected

3. Any 2 vertices in (V ,⌃) can be joined by an edge path, i.e., for 8u,v 2 V , there

exists v1, . . . ,vk 2 V such that (u,v1, . . . ,vk ,v) is an edge path.

Sketch of Proof (to be revised). 1. (3) implies (2): For every x, y 2 |K |,

8>>><
>>>:

x 2 ��1 for some �1 2 ⌃.

y 2 ��2 for some �2 2 ⌃.

Take a path joining x to a vertex v1 2 �1 and a path joining y to a vertex v2 2 �2.

By (3), we have a path joninig v1 and v2.

2. (1) implies (3): Suppose on the contrary that there is a vertex v not satisfying (3).

Take V
0 as the set of vertexs that can be joined with v; and V

00 as the set of vertexs

that cannot be joinied with v.

Then V
0,V 00 , ;. Consider K

0, K 00 be simplicial subcomplexes of K , spanned by V
0

and V
00. Then |K 0 |, |K 00 | are disjoint, closed in |K |.

|K | = |K 0 | [ |K 00 |. If there exists x 2 |K | \ (|K 0 | [ |K 00 |), then for any � 2 ⌃ such that

x 2 �� , we imply �� * |K 0 | or |K 00 |.

Therefore, � consists of vertices in both V
0 and V

00. Then there is v0,v00 2 � joining

V
0 and V

00.

Therefore, there is no such x and hence |K | = |K 0 | [ |K 00 | is a disjoint union of two

closed sets, i.e., not connected.

⌅
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8.5.1. Homotopy
Yoneda’s “philosophy”. To understand an object X (in our focus, X denotes topo-

logical space), we should understand functions

f : A ! X , or g : X ! B

One special example is to let B =R.

There are many type of continuous mappings from X to Y . We will group all these

mappings into equivalence classes.

Definition 8.15 [Homotopy] A Homotopy between two continuous maps f ,g : X ! Y

is a continuous map

H : X ⇥ [0,1]! Y

such that

H(x,0) = f (x), H(x,1) = g(x)

If such H exists, we say f and g are homotopic, denoted as f ' g. ⌅

⌅ Example 8.9 Let Y ✓ R2 be a convex subset. Consider two continuous maps f : X !Y

and g : X ! Y . They are always homotopic since we can define the homotopy

H(x, t) = tg(x) + (1 � t) f (x)

⌅

Proposition 8.10 Homotopy is an equivalent relation.

Proof. 1. Let f : X ! Y be any continuous map. Then f ' f : we can define a homo-

topy H(x, t) = f (x),80  t  1.

2. Suppose f ' g, i.e., H is a homotopy between f and g, then g ' f : Define the

mapping H
0(x, t) = H(x,1 � t), then

H
0(x,0) = g(x), H

0(x,1) = f (x)
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3. Let f ,g, h : X ! Y be three continuous maps. If f and g are homotopic and g and

h are homotopic, then f and h are homotopic:

Let H : X ⇥ [0,1]! Y be a continuous map such that

H(x,0) = f (x), H(x,1) = g(x);

K : X ⇥ [0,1]! Y be a continuous map such that

K(x,0) = g(x), K(x,1) = h(x).

Define a function J : X ⇥ [0,1]! Y by

J(x, t) =
8>>><
>>>:

H(x,2t), 0  t  1/2

K(x,2t � 1), 1/2  t  1

• J is continuous, since for all closed V ✓ Y ,

J
�1(V) = (J�1(V)\ (X ⇥ [0,1/2]))[ (J�1(V)\ (X ⇥ [1/2,1])) = H

�1(V)[ K
�1(V),

and the closedness of H
�1(V) and K

�1(V) implies the closedness of J
�1(V)

• Moreover, J has the property that J(x,0) = H(x,0) = f (x), while J(x,1) =

K(x,1) = h(x).

⌅

R There are only one equivalence class in example (8.9). Actually, for given

space X and Y , if any two continuous mapping are homotopic, then we imply

there is only one equivalence class.
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9.3. Monday for MAT4002
Reviewing.

1. Homotopy: we denote the homotopic function pair as f ' g.

2. If Y ✓ Rn is convex, then the set of continuous functions f : X ! Y form a single

equivalence class, i.e., {continuous functions f : X ! Y }/⇠ has only one element

9.3.1. Remarks on Homotopy
Proposition 9.4 Consider four continous mappings

W
f�! X , X

g�! Y , X
h�! Y , Y

k�! Z .

If g ' h, then

g � f ' h � f , k � g ' k � h

Proof. Suppose there exists the homotopy H : g ' h, then k � H : X ⇥ I ! Z gives the

momotopy between k � g and k � h.

Simiarly, H � ( f ⇥ idI ) : W ⇥ I ! Y gives the homotopy g � f ' h � f . ⌅

Definition 9.4 [Homotopy Equivalence] Two topological spaces X and Y are homotopy

equivalent if there are continuous maps f : X ! Y , and g : Y ! X such that

g � f ' idX!X

f � g ' idY!Y ,

which is denoted as X ' Y . ⌅

R

1. If X � Y are homeomorphic, then they are homotopic equivalent.

2. The homotopy equivalence X 'Y gives a bijection between {� : continuous W !

X}/⇠ and {� : continuous W ! Y }/⇠, for any given topological space W .
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Proof. Since X 'Y , we can find f : X !Y and g : Y ! X such that f � g '

idY and g � f ' idX . We construct a mapping

� : {� : continuous W ! X}/⇠! {� : continuous W ! Y }/⇠

with [�] 7! [ f � �]

� is well-defined since �1 ⇠ �2 implies f � �1 ⇠ f � �2

Also, we can construct a mapping

� : {� : continuous W ! Y }/⇠! {� : continuous W ! X}/⇠

with [ ] 7! [g � �]

Similarly, � is well-defined.

Also, we can check that ↵ � � = id and � � ↵ = id. For example,

↵ � �[ ] = [ f � g �  ] = [ ],

where the last equality is because that f � g ' idY . ⌅

3. The homotopy equivalence X 'Y forms an equivalence relation between

topological spaces

Compared with homeomorphism, some properties are lost when consider the

homotopy equivalence.

Definition 9.5 [Contractible] The topological space X is contractible if it is homotopy

equivalent to any point {ccc}.

R In other words, there exists continuous mappings f ,g such that

{ccc} f�! X
g�! {ccc}, g � f ' id{ccc }

X
g�! {ccc} f�! X , f � g ' idX

Note that g � f ' id{ccc } follows naturally; and since X � X , we can find f ,g
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such that f � g = cy for some y 2 X , where cy : X ! X is a constant function

cy(x) = y,8x 2 X . Therefore, to check X is contractible, it suffices to check

cy ' idX ,8y 2 X .

Therefore, X is contractible if its identity map idX is homotopic to any

constant map cy ,8y 2 X .

⌅

Proposition 9.5 The definition for contractible can be simplified further:

1. X is contractible if it is homotopy equivalent to some point {c}

2. X is contractible if the identity map idX is homotopic to some constant map

cy(x) = y.

Proof. The only thing is to show that cy ' cy0,8y, y0 2 X . By hw 3, X is path-connected,

and therefore there exists continous p(t) such that

p(0) = y, p(1) = y0

Therefore, we construct the homotopy between cy and cy0 as follows:

H(x, t) = p(t).

⌅

⌅ Example 9.1 1. X =R2 is contractible:

It suffices to show that the mapping f (xxx) = xxx,8xxx 2 R2 is homotopic to the constant

function g(x) = (0,0),8x 2 R2, i.e., g = c(0,0).

Consider the continuous mapping H(xxx, t) = t f (xxx), with

H(xxx,0) = c(0,0), H(xxx,1) = idX

Therefore, c(0,0) ' idX . Since c(0,0) ' cyyy ,8yyy 2 R2, we imply cyyy ' idX for any yyy 2 R2.

Therefore, X is contractible.
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More generally, any convex X ✓ Rn is contractible.

⌅

R S
1 is not contractible, and we will see it in 3 weeks’ time. In particular, we

are not able to construct the continuous mapping

H : S
1 ⇥ [0,1]! S

1

such that

H(e2⇡ix ,0) = e
2⇡ix , H(e2⇡ix ,1) = e

2⇡i(0) = 1

How about the mapping H(e2⇡ix , t) = e
2⇡ixt? Unfortunately, it is not well-

defined, since

H(e2⇡i(1), t) = e
2⇡it = H(e2⇡i(0), t) = 1

and the equality is not true for t , 0,1.

Definition 9.6 [Homotopy Retract] Let A ✓ X and i : A ,! X be an inclusion. We say A

is a homotopy retract of X if there exists continuous mapping r : X ! A such that

r � i :A ,! X
r�! A = idA

i � r :X
r�! A ,! X ' idX

In particualr, A ' X. ⌅

⌅ Example 9.2 The 1-sphere S
1 is a homotopy retract of Mobius band M.

Let M = [0,1]2/⇠ and S
1 = [0,1]/⇠. Define the inclusion i and r as:

i : S
1 ,! M

with [x] 7! [(x, 1
2 )]

265



r : M ! S
1

with [(x, y)] 7! [x]

As a result,

r � i = id
S1 , i � r([(x, y)]) = [(x,1/2)]

It suffices to show i � r ' idM , where idM ([(x, y)]) = [(x, y)].

Construct the continous mapping H : M ⇥ I ! M with

H([(x, y)], t) := [(x, (1 � t)y + t/2)]

To show the well-definedness of H, we need to check

H([(0, y)], t) = H([(1,1 � y)], t), 8y 2 [0,1]

It’s clear that H gives a homotopy between i � r and idM , i.e., i � r ' idM ⌅

⌅ Example 9.3 The n � 1-sphere S
n�1 is a homotopy retract of Rn \ {000}:

We have the inclusion i : S
n�1 ! Rn \ {0} and

r : Rn \ {0}! Sn�1

with x 7! x

kx k

Therefore, r � i = id
Sn�1 and i � r(x) = x

kx k .

It suffices to show that i � r ' idRn\{0}. Consider the homotopy H(x, t) = t xxx + (1 �

t)xxx/kxxxk such that

H(xxx,0) = i � r(xxx), H(xxx,1) = xxx = id(xxx)

To show the well-definedness of H, we need to check H(x, t) 2 Rn \ {000} for all xxx 2 Rn \ {000}

and t 2 [0,1]. ⌅

Definition 9.7 [Homotopic Relative] Let A ✓ X be topological spaces. We say f ,g : X !Y
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are homotopic relative to A if there eixsts H : X ⇥ I ! Y such that

8>>><
>>>:

H(x,0) = f (x)

H(x,1) = g(x)
and H(a, t) = f (a) = g(a),8a 2 A

⌅
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9.6. Wednesday for MAT4002

9.6.1. Simplicial Approximation Theorem

Aim: understand homotopy between simplicial complexes f ,g : |K | ! |L |

Definition 9.12 [Simplicial Map] A simplicial map between K1 = (V1,⌃1) and K2 =

(V2,⌃2) is a mapping f : K1 ! K2 such that

1. It maps vertexes to vertexes

2. It maps simplicies to simplicies, i.e.,

f (�1) 2 ⌃2, 8�1 2 ⌃1,

⌅

⌅ Example 9.4 For instance, consider the simplicial complexes defined as follows:

In particular, {1,2,3,4} < ⌃1 and {1,2,3} 2 ⌃2.

In this case, we can define the simplicial map as:

f (1) = 1, f (2) = 2, f (3) = 3, f (4) = 3

In particular, f ({1,2,4}) = {1,2,3} 2 ⌃2. ⌅

Now we want to define the simplicial map between the topological realizations.

There are several observations:

Key Observations.
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1. We have seen that each |K | ✓ Rm for some m. In particular, m = #V � 1.

2. Each point x 2 |K | lies uniquely on an inside of some �� ,, where � 2 ⌃.

3. Suppose that the vertices of K1 are V1 = {u1, . . . ,un} ✓ Rm. Then every xxx 2 K1 can

be uniquely written as

xxx =

k’
i=1

↵iU�i

with ↵i > 0,
Õ
↵i = 1 and � = {U�1 , . . . ,U�k } is the unqiue simplex where x 2

inside(��).

4. Our simplicial map f maps V1 to V2 = {w1, . . . ,wp} ✓ Rm, so for each i, we have

f (uuui) = www j for some j 2 {1, . . . , p}.

Definition 9.13 [Mapping induced from Simplicial Mapping] The simplicial map f : K1 !

K2 induces a mapping | f | : |K1 | ! |K2 | between the topological realizations such that

1. It maps vertexes to vertexes, i.e., | f |(v1) = f (v1),8v1 2 V(K1).

2. it is affine, i.e.,

| f |
 

k’
i=1

↵ivi

!
=

k’
i=1

↵i | f |(vi)

⌅

R | f | : |K1 | ! |K2 | is continuous.

Motivation. Suppose we are given a continuous map |g | : |K | ! |L |, we want to

approximate |g | by | f |, such that f : K ! L is a simplicial map. In this case, f is an

281



easier object to study compared with |g |.

We hope to find a mapping f such that | f | ' |g |. However, we cannot achieve this

goal unless we subdivide K into smaller pieces:

Definition 9.14 [Subdivision] Let K be a simplicial complex. A simplicial complex K
0 is

called a subdivision of K if

1. Each simplex of K
0 is contained in a simplex of K

2. Each simplex of K equals the union of finitely many simplices of K
0

As a result, we can form an homeomorphism h : |K 0 | ! |K | such that for each �0 2 ⌃K0,

there exists � 2 ⌃K satisfying

f (��0) 2 ��

⌅

⌅ Example 9.5 Consider the mapping |g | : |K | ! |L | given in the figure below:

Here we denote |g |(a) by A and similarly for the other vertices. It’s clear that we can

not form a homeomorphism from |K | to |L |. One remedy is to subdivide K into smaller

pieces as follows:

In this case, it is clear that | f | : |K 0 | ! |L | is a homeomorphism. ⌅
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⌅ Example 9.6 [Barycentric Subdivision] One typical subdivision is the Barycentric

Subdivision:

Figure 9.3: Right: the subdivision of K

⌅

R Suppose we have a matric on |K |. By subdivision, we can consider |K 0 | such

that for any �0 2 ⌃K0, any two points in ��0 has a smaller distance.

The following result gives a criterion for the existence of a simplicial approximation

for a mapping between topological realizations. For this we recall the notion of star.

For a given simplicial complex K , define the star at a vertex v by

star(v) =
ÿ
v2�

��.

Proposition 9.11 Let f : |K | ! |L | be a continuous mapping. Suppose that for each

v 2 VK , there exists g(v) 2 VL such that

f (stK (v)) ✓ stL(g(v)),

then the mapping g : VK ! VK gives |g | ' f .

In particular, g is called the simplicial approximation to f .
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⌅ Example 9.7 1. First, we give an example of mapping f such that the assumption

in proposition (9.11) is satisfied and therefore an simplicial approximation exists:

We could define the simplicial approximation g with

g(1) = b,g(2) = e,g(3) = e,g(4) = d,g(5) = d or c

2. In the example below, the hypothesis of proposition (9.11) is not satisfied, so we

cannot apply this proposition to construct a simplicial map.

⌅

Theorem 9.4 — Simplicial Approximation. Let K , L be simplicial complexes with VK

finite, and f : |K |! |L | be continuous. Then there eixsts a subdivision |K 0 | of |K | and

a simplicial map g such that |g | ' f .
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10.3. Monday for MAT4002
Proposition 10.6 — Simplicial Approximation Proposition. Let K and L be two simplifical

complexes, and f : |K | ! |L | be a continuous mapping. If there exists a simplicial

mapping g : K ! L such that f (stK (vvv)) ✓ stL(g(vvv)),8vvv 2 V(K), then

|g | ' f

Recall the definition

stK (vvv) =
ÿ

{inside(�) : � is a simplex of |K | and x 2 �}

Proof. • We first show a statement: Suppose that � = {v0, . . . ,vn} 2 ⌃(K), and x 2

inside(�) ✓ |K |. If f (x) 2 |L | lies in the inside of the (unique) simplex ⌧ 2 ⌃L , (i.e.,

f (x) can uniquely be expressed as
Õ

ui 2⌧ �iui, such that �i > 0,8i and
Õ

i �i = 1)

then g(v0), . . . ,g(vn) are vertices of ⌧.

By definition of inside(�), x =
Õ

n

i=0↵ivi with ↵i > 0 and
Õ

n

i=1↵i = 1. Therefore,

x 2 stK (vi) for i = 1, . . . ,n, where

stK (vi) :=
8>><
>>:

avi +
m’
j=1

bjwj | a > 0, bj > 0,a +
m’
j=1

bj = 1, {vi,w1, . . . ,wm} 2 ⌃K
9>>=
>>;

.

Therefore, f (x) 2 int(stK (vi)) ✓ stL(g(vi)), which follows that

f (x) = ag(vi) +
m’
j=1

bju j , where a > 0, bj > 0,a +
m’
j=1

bj = 1, {g(vi),u1, . . . ,um} 2 ⌃L

Comparing the above formula with our hypothesis on f (x), g(vi) is a vertex of

the simplex ⌧, i = 1, . . . ,n. Moreover, {g(v0), . . . ,g(vn)} is a subset of ⌧, which is a

face of ⌧, and therefore {g(v0), . . . ,g(vn)} 2 ⌃L .

• Therefore, the mapping g : K ! L maps simplicies to simplicies, which is a

simplicial mapping. We can construct a homotopy between f and |g | as follows:

Consider any x 2 |K |, and let ⌧ 2 ⌃L be such that f (x) 2 inside(⌧). We write
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x =
Õ

n

i=0 �ivi for some {v0, . . . ,vn} 2 ⌃K and �i > 0,
Õ

n

i=1 �i = 1. Applying our claim,

|g |(x) =
n’
i=0

�ig(vi),

where g(v0), . . . ,g(vn) are all vertices of ⌧.

We can directly construct a homotopy between f and |g |. Before that, we need

some reformulations. Since f (x) 2 inside(⌧), we let f (x) =Õ
m

i=0 µi⌧i . Since |g |(x) =
Õ

n

i=0 �ig(vi) 2 inside(⌧), we rewrite |g |(x) = Õ
m

i=0 �
0
i
⌧i. (by adding some �0

i
:= 0 if

necessary) We define the map

H : |K | ⇥ I ! |L |

with (x, t) 7! Õ
m

i=0 t�0
i
+ (1 � t)µi

which follows that f ' |g |.

⌅

Theorem 10.2 — Simplicial Approximation Theorem. Let K ,L be simplicial complexes

with VK finite, and f : |K | ! |L | be continuous. Then there exists a subdivison |K 0 | of

|K | together with a simplicial map g such that |g | ' f .

Here the way for constructing subdivison |K 0 | is as follows. There exists a constant

� > 0. As long as the coarseness of K
0 is less than �, our constructed subdivision

satisfies the condition.

Proof. The sets {stL(w) | w 2V(L)} forms an open cover of |L |, which implies { f
�1(stL(w))}

forms an open cover of |K |. By compactness, there exists a finite subcover of |K |, de-

noted as

|K | ✓
nÿ
i=1

f
�1(stL(wi))

There exists a small number � > 0 such that for any x, y 2 |K | with d(x, y) < �,

x, y 2 f
�1(stL(wi)) for some i. Then we construct a simplicial subdivision |K 0 | of |K |

with coarseness less than �, i.e., 8x, y 2 stK0(v), d(x, y) < �.

Therefore, stK0(v) ✓ f
�1(stL(wi)) for any v 2V(K ; ) and some wi 2V(L), i.e., f (stK0(v)) ✓
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stL(wi).

Setting g(v) = wi and applying proposition (10.6) gives the desired result. ⌅

10.3.1. Group Presentations
Group is a highlight of our course, which interwises topology and algebra. I assume

that most students have learnt abstract algebra course MAT3004, and encourage those

without this knowledge to read the notes for group posted on blackboard.
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10.6. Wednesday for MAT4002

10.6.1. Reviewing On Groups

⌅ Example 10.4 Let D2n be the regular polygon P with 2n sides in R2, centered at the

origin. It’s clear that D2n is invariant with 2n rotations, or with 2 reflections. Let a denote

the rotation of D2n clockwise by degree ⇡/n, and b denote the reflection over lines through

the origin.

As a result, {e,a,a2, . . . ,an�1} forms a group; and {e, b} forms a group.

Therefore, all elements of Dg can be obtained by a
i
b
j ,0  i  3,0  j  1.

Any finite operations of rotation (the rotation degree is a multiple of ⇡/n) and reflection

can be represented as a
i
b
j .

Geometrically, we can check that ba = a
n�1

b. ⌅

Definition 10.7 [Product Group] Let G, H be two groups. The product group (G ⇥ H,⇤)

is defined as
G ⇥ H = {(g, h) | g 2 G, h 2 H}

with (g1, h1) ⇤ (g2, h2) = (g1g2, h1h2)

⌅

For example, (R ⇥ R,+) = {(x, y) | x, y 2 R} coincides with the usual R2, where

(x, y) ⇤ (x 0, y0) = (x + x
0, y + y0)

Definition 10.8 A map between two groups � : G ! H is a homomorphism if

�(g1 ⇤ g2) = �(g1) ⇤ �(g2)

In other words, a homomorphism is a map preserving multiplications of groups. ⌅

R Follow the similar idea as in MAT3040 knowledge, if � : G ! H is a homo-

morphism, then �(eG) = eH .
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⌅ Example 10.5 Let G = (R,+,0), and H = {H2,⇤, I2}, with H2 of the form

H2 =

8>>><
>>>:
©≠≠
´
1 x

0 1

™ÆÆ
¨

�������x 2 R

9>>>=
>>>;

Define a mapping

� : G ! H

with x 7!
©≠≠
´
1 x

0 1

™ÆÆ
¨

Then � is a homorphism:

�(x ⇤R y) = �(x + y)

=
©≠≠
´
1 x + y

0 1

™ÆÆ
¨

=
©≠≠
´
1 x

0 1

™ÆÆ
¨
©≠≠
´
1 y

0 1

™ÆÆ
¨

= �(x) ⇤H2 �(y)

⌅

Definition 10.9 [Isomorphism] A homomorphism � : G ! H is an isomorphism if � is

bijective. The isomorphism between G and H is denoted as G � H. ⌅

Actually, a group can be represented as a Cayley Table:

G =

� g1 g2 · · · gn

g1 g1 � g1 g1 � g2 · · · g1 � gn
g2 g2 � g1 g2 � g2 · · · g2 � gn
...

... . . . ...
...

gn gn � g1 gn � g2 · · · gn � gn

, H =

� h1 h2 · · · hn

h1 h1 � h1 h1 � h2 · · · h1 � hn

h2 h2 � h1 h2 � h2 · · · h2 � hn

...
... . . . ...

...

hn hn � h1 hn � h2 · · · hn � hn

The groups G � H if and only if we can find a bijective � : G ! H such that, the Cayley

310



Table of (H,�) can be generated from the Cayley Table of (G,�) by replacing each entry

of G with its image under �.

10.6.2. Free Groups

Definition 10.10 • Let S be a (finite) set, which is considered as an “alphabet”.

• Define another set S
�1 := {x

�1 2 x 2 S}. We insist that S \ S
�1 = ;.

• A word in S is a finite sequence w = w1 · · ·wm, where m 2 N+ [ {0}, and each

wi =2 [S
�1. In particular, when m = 0, we view w as the empty sequence, denoted

as ;.

• The concatenation of two words x1 · · · xm and y1 · · · yn is the word x1 · · · xmy1 · · · yn

• Two words w,w0 are equivalent, denoted as w ⇠ w0, if there are words w1, . . . ,wn

and w = w1,w0 = wn such that

wi = · · · y1xx
�1y2 · · · , wi+1 = · · · y1y2 · · ·

or

wi = · · · y1y2 · · · , wi+1 = · · · y1xx
�1y2 · · ·

for some x 2 S [ S
�1.

⌅

⌅ Example 10.6 For example, S = {a, b} and S
�1 = {a

�1
b
�1} and

w = aabab
�1

b
�1

a
�1

abaabb
�1

a

w0 = aabab
�1

b
�1

a
�1

abaaa

Here w and w0 differs by bb
�1. Therefore, w ⇠ w0, and w is said to be a elementary

expansion of w0. ⌅
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R We insist that (s�1)�1 = s,8s
�1 2 S

�1, since otherwise for x = s
�1 2 S

�1, we

cannot define (s�1)�1.

Moreover, for

w = aabab
�1

b
�1

a
�1

abaabb
�1

a

w00 = aabab
�1

b
�1

baabb
�1

a,

w and w00 differs by a
�1

a, i.e., a
�1(a�1)�1, and therefore w ⇠ w00.

Definition 10.11 [Free Group] The free group F(S) is defined to be the equivalence

class of words, i.e.,

[w] := {w0 is a word in S | w ⇠ w0} 2 F(S)

⌅

R F(S) is indeed a group:

• [w] ⇤ [w0] = [ww0] (concatenation) check w1 ⇠ w2,u1 ⇠ u2 implies w1u1 ⇠

w2u2

• Identity element: e = [;]

• Inverse element: [x1 · · · xn]�1 = [x�1
n

· · · x�1
1 ]

⌅ Example 10.7 Let S = {a} and S
�1 = {a

�1}. Any word w has the form

w = a · · ·aa
�1 · · ·a�1

a · · ·aa
�1 · · ·a�1 · · ·

In shorthand, we denote w as w = · · ·ap(a�1)qa
r (a�1)s · · · , and

[w] = [· · ·ap(a�1)qa
r (a�1)s · · · ] = [· · ·ap�1(a�1)q�1

a
r (a�1)s · · · ]

= [· · ·ap�1(a�1)q�2
a
r�1(a�1)s · · · ],
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e.g., we can always eliminate the adjacent terms a and a
�1 up to equivalence class.

Therefore, F(S) = {· · · , [a�2], [a�1], [;], [a], [a2], · · · }.

It’s clear that F(S) � Z, where the isomorphism � : Z ! F(S) is �(n) = [an]. ⌅

⌅ Example 10.8 Let S = {a, b} and S
�1 = {a

�1, b
�1}. In this case, [ab] , [ba], and

[ab
�1

a
2
b

2
a
�2

b] cannot be reduced further.

Since S is not an abelian group in such case, we imply F(S) �Z ⇥ Z. ⌅

10.6.3. Relations on Free Groups

Definition 10.12 [Group With Relations] Let S be a set. A group with relations is

written as

G = hS | R(S)i

where

• R(S) consists of elements in F(S)

• Every element in G can be written as the form [w] 2 F(S), and we insist that

[w] = [w0] in G if

– w and w0 differ by some xx
�1, x 2 S [ S

�1, or

– w and w0 differ by some element z 2 R(S), or its inverse.

⌅

⌅ Example 10.9 Let G = ha, b | a
2, b

2, abab
�1

a
�1

b
�1i, we want to enumerate all possible

elements in G. Obseve that

[b�1] = [b�1
b

2] = [b], similarly [a�1] = [a]

[bab] = [abab
�1

a
�1

b
�1

bab] = [abab
�1

b] = [aba]

As a result,
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• [a�n] = [an] and [b�n] = [bn]

• [a2n+1] = [a], [b2n+1] = [b], [a2n] = [;], [b2n] = [;]

• For another type of element of G, it must be of the form [·abababab · · · ].

Each aba can be changed into bab, and finally it will be reduced into the form [ab].

Therefore, the elements in G are

[;], [a], [b], [ab], [ba], [aba]

In fact, G � S3. ⌅
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11.3. Monday for MAT4002

Reviewing. Consider the group with presentation hS | R(S)i.

1. The elements in S are generators that have studied in abstract algebra

2. The “relations” of this group are given by the equalities on hte right-hand side,

e.g., the dihedral group is defined as

ha, b | a
n = e, b

2 = e, bab = a
�1i

Sometimes we also simplify the equality ⇥ = e as ⇥, e.g., the dihedral group can

be re-written as

ha, b | a
n, b

2, bab = a
�1i

⌅ Example 11.4 Consider

G =< a, b | a
2, b

2,abab
�1

a
�1

b
�1 >:=< a, b | a

2, b
2,aba = bab >= {e,a, b,ab, ba,aba}

It’s isomorphic to S
3, and the shape of S

3 is illustrated in Fig.(11.1)

Figure 11.1: Illustration of group S
3

More precisely, the isomorphism is given by:

� : S3 ! G

with X | 7! a, | X 7! b

⌅
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⌅ Example 11.5 Consider G2 =< a, b | ab = ba > and any word, which can be expressed

as · · ·as
b
t
a
u

b
v · · ·

• If s 2 N, we write a
s := a · · ·a|{z}

s times

• If s 2 �N, we write a
s := (a�1) · · · (a�1)|          {z          }

�s times

• For the word with the form a · · ·b · · ·ba · · ·a, we can always push a into the leftmost

using the relation ab = ba

• For the word with the form a · · ·ab · · ·ba
�1, we can always push a

�1 into the leftmost

using the relation ba
�1 = a

�1
b.

Therefore, all elements in G2 are of the form a
p

b
q, p, q 2 Z, and we have the relation

(ap1 b
q1)(ap2 b

q2) = a
p1+p2 b

q1+q2 .

Therefore, G2 � Z ⇥ Z, where the isomorphism is given by:

� : Z ⇥ Z ! G2

with (p, q) 7! a
p

b
q

⌅

⌅ Example 11.6

G3 = ha | a
5i = {1,a,a2, . . . ,a4}

It’s clear that G3 � Z/5Z, where the isomorphism is given by:

� : Z/5Z ! G3

with m + 5Z 7! a
m

⌅
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11.3.1. Cayley Graph for finitely presented groups
Graphs have strong connection with groups. Here we introduce a way of building

graphs using groups, and the graphs are known as Cayley graphs. They describe many

properties of the group in a topological way.

Definition 11.5 [Oriented Graph] An oriented graph T is specified by

1. A countable or finite set V , known as vertices

2. A countable or finite set E , known as edges

3. A function � : E ! V ⇥V given by

�(e) = (`(e),⌧(e))

where `(e) denotes the initial vertex and ⌧(e) denotes the terminal vertex.

⌅

For example, let

• V = {a, b,c}

• E = {e1, e2, e3, e4}

• �(e1) = (a,a),�(e2) = (b,c),�(e3) = (a,c),�(e4) = (b,c)

Figure 11.2: Illustration of example oriented graph

The resulted graph is plotted in Fig.(11.2)
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Definition 11.6 [Cayley graph] Let G = hS | R(S)i with |S | < 1. The Cayley graph

associated to G is an oriented graph with

1. The vertex set G

2. The edge set E := G ⇥ S

3. The function ` : E ! V ⇥V is given by:

` : G ⇥ S ! G ⇥ G

with (g, s) 7! (g,g · s)

In particular, we link two elements in G if they differ by a generator rightside. ⌅

⌅ Example 11.7 1. The Cayley graph for G = hai (� Z) is shown in Fig.(11.3):

Figure 11.3: Illustration of Cayley Graph hai

2. The Cayley graph for G = ha | a
3i is shown in Fig.(11.4):

Figure 11.4: Illustration of Cayley Graph ha | a
3i

3. The Cayley graph for G = ha, b | a
2, b

2,aba = babi is shown in Fig.(11.12):
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Figure 11.5: Illustration of Cayley Graph ha, b | a
2, b

2,aba = babi

4. The Cayley graph for G = ha, b | ab = bai is shown in Fig.(11.6):

Figure 11.6: Illustration of Cayley Graph ha, b | ab = bai

5. The Cayley graph for G = ha, bi is shown in Fig.(11.7):

Figure 11.7: Illustration of Cayley Graph ha, b | ab = bai

⌅

R There could be different presentations hS1 | R(S1)i � hS2 | R(S2)i of the same

group.

11.3.2. Fundamental Group
Motivation. The fundamental group connects topology and algebra together, by

labelling a group to each topological space, which is known as fundamental group.

329



Why do we need algebra in topology. Consider the S
2 (2-shpere) and S

1 ⇥ S
1

(torus):

Figure 11.8: Any loop in the sphere can be contracted into a point

Figure 11.9: Some loops in the torus cannot be contracted into a point

As can be seen from Fig.(11.8) and Fig.(11.9), any "loop" on a sphere can be

contracted to a point, while some "loop" on a torus cannot. We need the algebra to

describe this phenomena formally.

Definition 11.7 [loop] Let X be a topological space. A loop on X is a constant map

` : [0,1]! X such that `(0) = `(1).

We say ` is based at b 2 X if `(0) = `(1) = b. ⌅

Definition 11.8 [composite loop] Suppose that uuu,vvv are loops on X based at b 2 X. The

composite loop u · v is given by

u · v =
8>>><
>>>:

u(2t), if 0  t  1/2

v(2t � 1), if 1/2  t  1

⌅
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Definition 11.9 [fundamental group] The homotopy class of loops relative to {0,1}

based at b 2 X forms a group. It is called the fundamental group of X based at b,

denoted as ⇡1(X , b).

More precisely, let

[`] = {m | m is a loop based at b that is homotopic to `, relative to {0,1}},

and ⇡1(X , b) = {[`] | ` are loops based at b}. The operation in ⇡1(X , b) is defined as:

[`] ⇤ [`0] := [` · `0], 8[`], [`0] 2 ⇡1(X , b).

⌅

R Two paths `1,`2 : [0,1] ! X are homotopic relative to {0,1} if we can find

H : [0,1] ⇥ [0,1]! X such that

H(t,0) = `1(t), H(t,1) = `2(t)

and

H(0, s) = `1(0) = `2(0), 80  s  1, H(1, s) = `1(1) = `2(1), 80  s  1

Counter example for homotopy but not relative to {0,1}:

Figure 11.10: homotopy not relative to {0,1}
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11.6. Wednesday for MAT4002

11.6.1. The fundamental group
Revewing. One example for Homotopy relative to {0,1} is illustrated in Fig.(11.4)

Figure 11.11: Example of homotopy relative to {0,1}

It’s essential to study homotopy relative to {0,1}. For example, given a torus with

a loop `1(t) and a base point b. We want to distinguish `1(t) and `2(t) as shown in

Fig.(11.12):

Figure 11.12: Two loops on a torus

Obviously there should be something different between `1(t) and `2(t). “Relative

to{0,1} is essential”, sicne if we get rid of this condition, all loops are homotopic to the

constant map cb(t) = b. See the graphic illustration in Fig.(??):

Figure 11.13: homotopy between any loop and constant map

In this case, ` ' cb for any loop `, there is only one trivial element {[cb]} in ⇡1(X , b).
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That’s the reason why we define ⇡1(X , b) as the collection of homotopy classes

relative to {0,1} based at b in X .

Proposition 11.13 Let [·] denote the homotopy class of loops relative to {0,1} based at

b, and define the operation

[`] ⇤ [`0] = [` · `0]

Then (⇡1(X , b),⇤) forms a group, where

⇡1(X , b) := {[`] | ` : [0,1]! X denotes loops based at b}

Proof. 1. Well-definedness: Suppose that u ⇠ u
0 and v ⇠ v0, it suffices to show u · v '

u
0 · v0. Consider the given homotopies H : u ' u

0, K : v ' v0. Construct a new

homotopy L : I ⇥ I ! X by

L(t, s) =
8>>><
>>>:

H(2t, s), 0  t  1/2

K(2t � 1, s), 1/2  t  1

The diagram below explains the ideas for constructing L. The plane denote the

set I ⇥ I, and the labels characterize the images of each point of I ⇥ I under L.

Therefore, u · v ' u
0 · v0.
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2. Associate: (u · v) · w ' u · (v · w)

Note that (u · v) · w and u · (v · w) are essentially different loops. Although they

go with the same path, they are with different speeds. Generally speaking, the

loop (u · v) · w travels u,v using 1/4 seconds, and w in 1/2 seconds; but the loop

u · (v · w) travels u in 1/2 seconds, and then v,w in 1/4 seconds.

We want to construct a homotopy that describes the loop changes from u · (v · w)

to (u · v) · w. A graphic illustration is given below:

An explicit homotopy H : I ⇥ I ! X is given below:

H(t, s) =

8>>>>>>><
>>>>>>>:

u(4t/(2 � s)), 0  t  1/2 � 1/4s

v(4t � 2 + s), 1/2 � 1/4s  t  3/4 � 1/4s

w(4t � 3 + s/(1 + s)), 3/4 � 1/4s  t  1

Therefore,

[u] ⇤ ([v] ⇤ [w]) = ([u] ⇤ [v]) ⇤ [w]

3. Intuitively, the identity should be the constant map, i.e., let cb : I ! X by cb(t) =

b,8t, and let ` = [cb], it suffices to show

[cb] ⇤ [`] = [`] ⇤ [cb] = [`]() [cb · `] = [` · cb] = [`]

Or equivalently,

cb · ` ' `, ` · cb ' `
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The graphic homotopy is shown below. (You should have been understood this

diagram)

4. Inverse: the inverse of [u], where u is a loop, should be [u0], where u
0 is the

reverse of the traveling of u. Therefore, for all u : I ! X (loop based at b), define

u
�1 : I ! X by u

�1(t) = u(1 � t). Note that

[u] ⇤ [u�1] = [u · u
�1], e = [cb]

It suffices to show u · u
�1 ' cb and u

�1 · u ' cb:

The homotopy below gives u · u
�1 ' cb, and the u

�1 · u ' cb follows similarly.

H(t, s) =
8>>><
>>>:

u(2t(1 � s)), 0  t  1/2

u((2 � 2t)(1 � s)), 1/2  t  1

The graphic illustration is given below:

⌅
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R Note that the figure below does not define a homotopy from u · u
�1 to cb!

The reason is that for the upper part, as s ! 1, the time for traveling u and

u
�1 becomes very small, i.e., a particle has to pass u and u

�1 in infinitely small

time, which is not well-defined.

⌅ Example 11.11 The reason why ⇡1(R2, b) = {e} is trivial:

• For any u : I ! R2 with u(0) = u(1) = b, consider the homotopy

H(t, s) = (1 � s)u(t) + sb.

Therefore, u ' cb for any loop u based at b. Check the diagram below for graphic

illustration of this homotopy.

More generally, if X ' {x} is contractible, then ⇡1(X , b) = {e}. The same argument

cannot work for (R2{0}, bbb), since the mapping H : R2 \ {0} ⇥ I ! R2 \ {0} with
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H(ttt, s) = (1 � s)u(ttt) + sbbb is not well-defined. In particular, the value H(s, t) may hit

the origin 000.

However, ⇡1(S1,1) is non-trivial. We cannot deform the loop in S
1 into a constant loop.

We will see that ⇡1(S1,1) � Z. ⌅

Proposition 11.14 If b, b
0 are path-connected in X , then ⇡1(X , b) � ⇡1(X , b

0).

Proof. Let w be a path from b to b
0, and define

w# : ⇡1(X , b)! ⇡1(X , b
0)

with [`] 7! [w�1`w]

1. Well-definedness: Check that ` ' `0 implies w�1`w ' w�1`0w. See the figure below

for graphic illustration.

2. w# is a homomorphism:

w#([`1]) · w#([`2]) =[w�1 · `1w] · [w�1 · `2w] (11.4a)

=[w�1 · `1`2w] (11.4b)

=w#([`1`2]) (11.4c)

where (11.4b) is because that w · w�1 = cb.

3. And w# is also injective. If loops `1, `2 are such that w#(`1) = w#(`2), then

[w�1`1w] = [w�1`2w],
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which follows that

[`1] = [w][w�1`1w][w�1] = [w][w�1`2w][w�1] = [`2] (11.5)

4. Finally, w# is surjective, because for any u 2 ⇡1(X , b
0), let v = wuw�1, then v is based

at b, so [v] 2 ⇡1(X , b), and w#(v) = [u]. Therefore w# is surjective.

In conclusion, w# is a group isomorphism between ⇡1(X , b) and ⇡1(X , b
0). ⌅

R In (11.5) we extended the meaning of [`] to allow ` to be a path, and the

equivalence class is defined by the relation “⇠”: `1 ⇠ `2 iff they are homotopic

relative to {0,1}. The multiplication rules are defined similarly.
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12.3. Monday for MAT4002
Proposition 12.3 If b, b

0 are path connected in X , then

⇡1(X , b) � ⇡1(X , b
0)

R Last lecture we have given the isomorphism

W# : ⇡1(X , b)! ⇡1(X , b
0)

with [`] 7! [w�1 · ` · w]

where w denotes a path from b to b
0. The inverse of W# is given by:

W
�1
# : ⇡1(X , b

0)! ⇡1(X , b)

with [m] 7! [w · m · w�1]

Notation. For path connected space X , we will just write ⇡1(X) instead of ⇡1(X , x).

Proposition 12.4 Let (X , x) and (Y , y) be spaces with basepoints x and y, and f : X !Y

be a continuous map with f (x) = y. Then every loop ` : I ! X based at x gives a loop

f � ` : I ! Y based at y, i.e., the continous map f induces a homomorphism of groups

f⇤ : ⇡1(⇡, x)! ⇡1(Y , y)

[`] 7! [ f � `] := f⇤([`])

Moreover,

1. (idX!X)⇤ = id⇡1(X,x)!⇡1(X,x)

2. (g � f )⇤ = g⇤ � f⇤

3. If f ' f
0 relative to x 2 X , then f⇤ = ( f

0)⇤

Proof. • Well-definedness: Suppose that ` ' `0, then f � ` ' f � `0 by propositon (9.4).

Therefore, [ f � `] = [ f � `0].
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• Homomorphism: It’s clear that

f � (` � `0) = ( f � `) � ( f � `0)

Therefore, f⇤[``0] = ( f⇤[`]) ⇤ ( f⇤[`0])

The other three statements are obvious.

⌅

Proposition 12.5 Let X ,Y be path-connected such that X 'Y (i.e., there exists f : X !Y

and g : Y ! X such that g � f ' idX , f � g ' idY ). Then ⇡1(X) � ⇡1(Y ).

In particular, if X ,Y are path-connected with X � Y , then ⇡1(X) � ⇡1(Y )

Proof. Consider the mapping

⇡1(X , x0)
f⇤�! ⇡1(Y , y0)

g⇤�! ⇡1(X , x1)

It suffices to show that f⇤ and g⇤ are bijective. (The homomorphism follows from

proposition (12.4))

• Wrong proof: g � f ' idX implies (g � f )⇤ = (idX)⇤ implies g⇤ � f⇤ = id⇡1(X,x0).

Reason: note that (g � f ) ' idX is not relative to x0.

Consider the homotopy H : g � f ' idX , where H(x0, s) is not necessarily a constant

for s 2 I. It follows that H(x0,0) = x1 and H(x0,1) = x0, i.e., w(s) := H(x0, s) defines a path

from x1 to x0.

For any loop ` : I ! X based at x0, consider the homotopy

K = H � (` ⇥ idI ) : I ⇥ I ! X

where K(t, s) = H((`(t), s))

K(t,0) = H(`(t),0) = g � f (`(t))

K(t,1) = H(`(t),1) = `(t)

K(0, s) = w(s) = K(1, s)

The graphic plot of K is given in the figure below:
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The homotopy between ` and g � f � ` motivates us to construct a homotopy

between ` and w�1 � g � f � ` � w relative to {0,1}:

Therefore,

[`] = [w�1g f `w] =W#([g f `]) = (W# � g⇤ � f⇤)[`]

which follows that W# � g⇤ � f⇤ = id⇡1(X,x0). Therfore, f⇤ is injective, g⇤ is surjective.

The similar argument gives

W# � f⇤ � g⇤ = id⇡1(Y ,y0)

Therefore, f⇤ is surjective, g⇤ is injective. The bijectivity is shown.

⌅
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Definition 12.1 [Simply-Connected] A space X is simply-connected if X is path con-

nected, and X has trivial fundamental group, i.e., ⇡1(X) = {e} for some point e 2 X.

⌅

⌅ Example 12.4 If X is contractible, then X is path-connected. By proposition (12.5),

since X ' {e}, we imply

⇡1(X) � ⇡1({e}) = {e}.

Therefore, all contractible spaces (e.g., Rn) are simply-connected.

However, not all simply-connected spaces are contractible, e.g., ⇡1(S2) � {e}, but S
2

is not homotopy equivalent to a point. ⌅

12.3.1. Some basic results on ⇡1(X , b)
We will study ⇡1(X , b) for some simplicial complexes.

Definition 12.2 [Edge Loop] Let K = (V ,⌃) be a simplicial complex.

1. An edge path (v0, . . . ,vn) is such that

(a) ai 2 V(K)

(b) For each i, {ai�1,ai} spans a simplex of K

2. An edge loop is an edge path with an = a0.

3. Let ↵ = (v0, . . . ,vn), � = (w0, . . . ,wm) be two edge paths with vn = w0, then we define

↵ � � = (v0, . . . ,vn,w1, . . . ,wm)

⌅

Definition 12.3 [Elementary Contraction/Expansion] Let ↵, � be two edge paths.

1. An elementary contraction of ↵ is a new edge path obtained by performing one of

the followings on ↵:
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• Replacing · · ·ai�1ai · · · by · · ·ai�1 · · · provided that ai�1 = ai

• Replacing · · ·ai�1aiai+1 · · · by · · ·ai�1 · · · provided that ai�1 = ai+1

• Replacing · · ·ai�1aiai+1 · · · by · · ·ai�1ai+1 · · · provided that {ai�1, ai , ai+1} spans

a 2-simplex of K.

2. An elementary expansion is the reverse of the elementary contraction.

3. Two edge paths ↵, � are equivalent if ↵ and � differs by a finite sequence of

elementary contractions or expansions.

⌅
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12.6. Wednesday for MAT4002
Reviewing.

• Edge loop based at b 2 V :

↵ = (b,v1, · · · ,vn, b)

• Equivalence class of edge loops:

[↵] = {↵0 | ↵0 ⇠ ↵,↵0 is the edge loop based at b}

Note that ↵0 ⇠ ↵ if they differ from finitely many elementary contractions or

expansions.

For instance, let K in the figure below denote a triangle:

Figure 12.1: Triangle K

Then the canonical form of any equivalence form [↵] can be expressed as:

[↵] = [bcabc · · ·ab],

where a, b,c 2 {1,2,3} are distinct.

12.6.1. Groups & Simplicial Complices

Proposition 12.7 The E(K , b) = {[↵] | ↵ is edge loop based at b} is a group, with the

operation

[↵] ⇤ [�] = [↵ · �]
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Proof. 1. Well-definedness of ⇤:

↵ ⇠ ↵0, � ⇠ �0 =) ↵ · � ⇠ ↵0 · �0

2. Associativity is clear.

3. The identity is e := [b]: for any edge loop [↵] = [bv1 · · ·b],

[↵] ⇤ e = [bv1 · · ·vnb] ⇤ [b]

= [bv1 · · ·vnbb]

= [bv1 · · ·vnb] = [↵].

Also, e ⇤ [↵] = [↵].

4. The inverse of any edge loop [bv1 · · ·vnb] is [bvn · · ·v1b]:

[bv1 · · ·vnb]�1 ⇤ [bv1 · · ·vnb] = [bvn · · ·v1bbv1 · · ·vnb]

= [bvn · · ·v1bv1 · · ·vnb]

= [bvn · · ·v2v1v2 · · ·vnb]

= · · ·

= [b]

Similarly, [bv1 · · ·vnb] ⇤ [bv1 · · ·vnb]�1 = [b].

⌅

We will see that for K defined in Fig.(12.1), E(K ,1) � Z, in the next class.

Theorem 12.5 E(K , b) � ⇡1(|K |, b).

This is the most difficult theorem that we have faced so far. Let’s recall the simplicial

approximation proposition first:
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R

Proposition 12.8 — Simplicial Approximation Proposition. Suppose that f :

|K | ! |L | be such that for all v 2 V(K), there exists g(v) 2 V(L) satisfying

f (stK (v)) ✓ stL(g(v)).

As a result,

1. the mapping

g : K ! L

with v 7! g(v)

is a simplicial map, i.e., for all �K 2 ⌃K ,g(�K ) 2 ⌃L
2. Moreover, |g | ' f .

Furthermore, if A ✓ K is a simplicial subcomplex such that f (|A|) ✓ |B|, where

B ✓ L is a simplicial subcomplex, then we can choose g such that g |A: A ! B

and the homotopy |g | ' f sends |A| to |B|.

⌅ Example 12.8 Consider the simplicial complex K and L shown in the figure below:

Let A1 denote the subcomplex with V(A1) = {0},⌃A1 = {{0}}, and A2 denote the

subcomplex wit V(A2) = {1,2} and ⌃A2 = {{1,2}, {1}, {2}}. Therefore,

f (|A1 |) ✓ |�{b,c,d} |, f (|A2 |) ✓ |�{a,b,d} |,
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There exists simplicial mapping g with

g(0) = b, g(1) = b, g(2) = d, g(3) = e, g(4) = c, g(5) = c

⌅

Proof. 1. For each edge loop ↵ = (v0, . . . ,vn) based at b, consider the simplicial

complex

Together with the simplicial map

g↵ : I(n) ! K

with g↵(i) = vi

Note that it is well-defined since {i, i + 1} 2 ⌃I(n) , and {vi,vi+1} 2 ⌃K .

Now construct the mapping

✓ : {edge loop based at b}! ⇡1(K , b)

with ↵ 7! [|g↵ |]

where |g↵ | : |I(n) |(� [0,1])! |K |

|g↵ |(i/n) = vi

For example,

↵ = (bdeabcb), =) |g↵ |(0) = b, |g↵ |(1/6) = d, |g↵ |(2/6) = e, · · · , |g↵ |(1) = b,

i.e., |g↵ | is a loop based at b.

Therefore, [|g↵ |] 2 ⇡1(|K |, b).
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2. Now, suppose ↵ ⇠ ↵0 be two edge loops differ by an elemenary contraction, e.g.,

↵0 = (bdebcb) ⇠ ↵ = (bdeabcb).

As a result, |g↵0 | ' |g↵ | relative to {0,1}, i.e., [|g↵ |] = [|g↵0 |].

Therefore, we have a well-defined map:

✓̃ : {edge loops based at b}/⇠! ⇡1(|K |, b)

with [↵] 7! [|g↵ |]

Therefore, ✓̃ : E(K , b)! ⇡1(|K |, b) is the desired map.

3. ✓̃ is a homomorphism: it suffices to show that

✓̃([↵] ⇤ [�]) = ✓̃([↵])✓̃([�]),

which suffices to show [|g↵ ·� |] = [|g↵ | |g� |], i.e., |g↵ ·� | ' |g↵ | |g� |. Note that |g↵ ·� |

and |g↵ | |g� | are the same path with different “speed”, i.e., homotopy.

4. The mapping ✓̃ is surjective: Let ` : [0,1]! |K | be a loop based at b. It suffices to

find an edge loop ↵ such that [|g↵ |] = [`], i.e., |g↵ | ' `.

(a) Applying the simplicial approximation theorem, there exist large n and

g : I(n) ! K such that |g | ' `. Here we can choose g : I(n) ! K to be such that

g({0}) = {b}, g({n}) = {b}, and |g | ' ` relative to {0,1}.

(b) Take ↵ = (g(0),g(1), . . . ,g(n)) so that g(0) = b = g(n), with g↵ = g. Therefore,

[|g↵ |] = [`], and hence ✓̃ is surjective.

⌅
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13.3. Monday for MAT4002

13.3.1. Isomorphsim between Edge Loop Group

and the Fundamental Group

Recall that

⇡1(X , b) := {[`] | ` : [0,1]! X denotes the loops based at b}

and

E(K , b) = {[↵] | ↵ is an edge loop in K based at b}

Now we show that the mapping defined below is injective:

✓ : E(K , b)! ⇡1(|K |, b)

with [↵] 7! [|g↵ |]

• Let ↵ = (v0, . . . ,vn) be an edge loop based at b such that ✓([↵]) = e, i.e., |g↵ | ' cb. It

suffices to show that [↵] is the identity element of E(K , b).

• Choose a homotopy H : |g↵ | ' cb such that H : I ⇥ I ! |K |. The graphic illustration

for H is shown in Fig. (13.8).

Figure 13.1: Graphic illustration for H : I ⇥ I ! |K |
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Now apply the simplicial approximation theorem, there exists a subdivision of

I ⇥ I, denoted as (I ⇥ I)(r) (for sufficiently large r), shown in the Fig. (13.9)

Figure 13.2: Graphic illustration for (I ⇥ I)(r). In particular, divide I ⇥ I into r
2 congruent

squares, and then further divide each of these squares along the diagonal to form
(I ⇥ I)(r).

such that |(I ⇥ I)(r) | = I ⇥ I, and there exists the simplicial map

G : (I ⇥ I)(r) ! K

such that |G | ' H.

Without loss of generality, assume r is a sufficiently large multiple of n.

The graphic illustration of |G | is shown in Fig. (13.3):

Figure 13.3: Graphic illustration for the mapping |G |.

In particular, |G | maps {0,1} ⇥ I into {b}; I ⇥ {1} into {b}; (i/n,0) into {vi}, i =
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0, . . . ,n, and [i/n, (i + 1)/n] into |(vi,vi+1)|, i = 0, . . . ,n � 1.

• Consider the simplicial subcomplex of (I ⇥ I)(r) shown in Fig. (13.4)

Figure 13.4: Graphic illustration for the simplicial subcomplex V1,V2,V3.

For instance, V1 has (r + 1) 0-simplicies and r 1-simplies. It follows that

H(|V1 |) = H(|V2 |) = H(|V3 |) = {b}.

By proposition (10.6), we can pick G be such that

G(V1) = G(V2) = G(V3) = {b}.

Consider W1 as the simplicial subcomplex of (I ⇥ I)(r) given by the green line

shown in Fig. (13.3), which follows that

H(|W1 |) = {v0,v1} =) G(W1) = {v0,v1}

Similarly,

H(|Wi |) = {vi�1,vi} =) G(Wi) = {vi�1,vi},81  i  n.

As a result, |G |(|V1 |) = � := (bv0 · · ·v0v1 · · ·v1 · · ·vn · · ·vnb), and clearly,

� ⇠ (bv0v1v2 · · ·vn�1vnb)

⇠ (bv1v2 · · ·vn�1b) = ↵
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• Now it suffices to show � ' e. This is true by the sequence of elementary contrac-

tions and expansions as shown in the Fig. (13.5).

Figure 13.5: A sequence of elementary contractions and expansions to show that
� ⇠ (b · · ·b) = (b).

R The definition of E(K , b) only involves n-simplicials for n  2.

Proposition 13.4 For any simplicial complex K , consider the simplicial subcomplex

Skeln(K) = (Vk ,⌃n
K
), where ⌃n

K
consists of � 2 ⌃K with |� |  n + 1 (this is the n-skeleton

of K). Then

⇡1(|K |, b) � ⇡1(|Skel2(K)|, b)

Proof. Since E(K , b) only involves n-simplicials for n  2, we imply E(K , b) � E(Skel2(K), b).

Moreover, ⇡1(|K |, b) � E(K , b) and ⇡1(|Skel2(K)|, b) � E(Skel2(K), b).

The proof is complete. ⌅

Corollary 13.2 For n � 2, ⇡1(Sn) is a trivial fundamental group.

Proof. Consider the simplicial complex K with

V = {1,2, . . . ,n + 2}, ⌃ = {all proper subsets of V}
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It’s clear that |K | � S
n, and Skel2(K) has

• V : {1, . . . ,n + 2}

• ⌃2 : all subsets of V with less or equal to 3 elements.

For any edge loop a in ⇡1(|skel2(K)|), we have

a = (bv0v1v2 · · ·vn)

⇠ (bv1v2 · · ·vn�2vn�1b)

⇠ · · ·

⇠ (b)

Therefore, all edge loops ↵ in ⇡1(|skel2(K)|) satisfies [↵] = [(b)] = e., i.e.,

⇡1(|skel2(K)|) � {e},

which implies ⇡1(|K |) � ⇡1(|skel2(K)|) � {e}. Since |K | � S
n, we imply

⇡1(Sn) � ⇡1(|K |) � {e}.

⌅

R The Corollary (13.2) does not hold for S
1 since the constructed ⌃2 for S

1 does

not contain {1,2,3}.

Theorem 13.4 ⇡1(S1) � Z.

Proof. Construct the triangle K shown in Fig. (13.6), and it’s clear that |K | � S
1.
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Figure 13.6: Triangle K such that |K | � S
1

It suffices to show E(K , 1) � Z. Define the orientation of |K | as shown in Fig. (13.7).

Figure 13.7: Orientation of |K |

Any edge loop ↵ based at 1 is equivalent to the canonical form

↵ ⇠ (1bc1bc · · ·1bc1), where bc = 32 or 23.

We construct the isomorphism between E(K , b) and Z directly:

� : E(K , b)! Z

with [↵] 7! winding number of ↵

where the winding number of ↵ is the number of times it traverses (2,3) in the forwards

direction minus the number of times it traverses (3,2) in the backwards direction.

The difficult part is to show the well-definedness of �, which can be done by using

canonical form of ↵. ⌅
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13.6. Wednesday for MAT4002

13.6.1. Applications on the isomorphism of funda-

mental group

Theorem 13.6

⇡1(S1) � (Z,+)

Proof. Define the orientation of |K | as shown in Fig. (13.10).

Figure 13.10: Orientation of |K |

Following the proof during last lecture, we construct

� : E(K ,1)! (Z,+)

with [↵] 7! winding number of ↵

where the winding number of ↵ is the

number of 23 appearing in ↵ � number of 32 appearing in ↵.

Note that

1. The winding number is invariant under elementary contraction and elementary

expansion.
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2. In particular,

winding number for (1 23 · · ·123|     {z     }
23 shows for m times

1) = m

winding number for (1 32 · · ·132|     {z     }
32 shows for n times

1) = �n

3. For any given ↵, it is equivalent to a unique (123123 · · ·1231) or (132 · · ·1321), since

otherwise ↵ will have different winding numbers.

Therefore, (1) and (3) shows the well-definedness of �. In particular, (1) shows that as

↵ ⇠ ↵0, we have �([↵]) = �([↵0]); (2) shows that the winding number of ↵ is an unique

integer.

• Homomorphism: For given any two edge loops ↵, � based at 1, suppose that

[↵] = [(1bc1bc · · ·1bc1)] and [�] = [(1pq1pq · · ·1pq1)], then

�([↵] · [�]) = �([↵ · �]) = [(1bc1bc · · ·1bc11pq1pq · · ·1pq1)]

Discuss the case for the sign of �([↵]) and �([�]) separately gives the desired

result.

• Surjectivity: for a given m 2 Z, construct ↵ such that �([↵]) = m is easy.

• Injectivity: suppose that �([↵]) = 0, then by definition of �, [↵] = [(1)] = e, which

is the trivial element in E(K ,1).

Therefore, � is an isomorphism. ⌅

R Actually, we can show that the loop based at 1 given by:

` I ! S
1

with t 7! e
2⇡it

is a generator for ⇡1(S1,1):
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• �([`]) = 1, where � : ⇡1(S1,1) � Z.

• The loop

`m : I ! S
1

m 2 Z

with `m(t) = e
2⇡imt

gives �([`m]) = m

Corollary 13.4 [Fundamental Theorem of Algebra] All non-constant polynomials in C

has at least one root in C

Proof. • Suppose on the contrary that

p(x) = anx
n + · · · + a1x + a0 an , 0

has no roots, then p is a mapping from C to C \ {0}. It’s clear that C \ {0} ' {z 2

C | |z | = 1}, and therefore

⇡1(C \ {0}) = ⇡1(S1) � Z.

• The induced homomorphism p
⇤ of p is given by:

p⇤ : ⇡1(C)! ⇡1(C \ {0})

with {e} 7! Z

Note that ⇡1(C) is trival as C is contractible. Also, p⇤(e) = 0.

• Consider the inclusion from Cr = {z 2 C | |z | = r} to C:

i : Cr ! C

with z 7! z

It satisfies the diagram given below:
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As a result, the induced homomorphism i
⇤ of i satisfies the diagram

Or equivalently,

Therefore, p⇤ � i⇤ is a zero map since p⇤(e)= 0, i.e., (p |Cr )⇤ is a zero homomorphism.

• Then it’s natural to study p |Cr : Cr ! C \ {0}. Construct

8>>><
>>>:

q(z) = k · z
n, k :=

p(r)
rn

is a constant

p(z) = anz
n + · · · + a1z + a0

Therefore, p(r) = q(r), and p|Cr , q |Cr : Cr ! C \ {0}.
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– We claim that p|Cr ' q |Cr for large r . First construct the mapping

H : Cr ⇥ [0,1]! C

with H(z, t) = tp(z) + (1 � t)q(z)

and H(z,0) = q(z), H(z,1) = p(z)

If we want to show H is the homotopy between p|Cr and q |Cr , it suffices to

show that H is well-defined, i.e., H : Cr ⇥ [0,1]! C \ {0}.

Suppose on the contrary that there exists (z, t) such that

(1 � t)p(z) + tq(z) = 0, |z | = r , t 2 [0,1]

Or equivalently,

(1 � t)(anz
n + · · · + a1z + a0) + t · kz

n = 0.

Substituting k with p(r)/r
n gives

anz
n + · · · + a1z + a0 = t

✓
an�1z

n�1 + · · · + a0 � an�1
z
n

r
� · · · � a1

z
n

rn�1 � a0
z
n

rn

◆

The LHS has leading order n, while the RHS has leading order less or equal

to n � 1. As r = |z | !1, t !1. Therefore, the equality does not hold in the

range t 2 [0,1] when r is sufficiently large.

For this choice of r = |z |,

H : Cr ⇥ [0,1]! C \ {0}

gives the homotopy p|Cr ' q |Cr .

• Therefore, we imply (p|Cr )⇤ = (q |Cr )⇤. Now we check the mapping (q |Cr )⇤ : Z ! Z.

In particular, we check the value of (q |Cr )⇤(1), where 1 is the generator in ⇡1(Cr ).
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Here we construct the loop

` : I ! Cr

with `(t) = re
2⇡it

and therefore [`] = 1. It follows that

(q |Cr )⇤(1) = (q |Cr )⇤([`]) = [q |Cr (`)] = q(re
2⇡it ) = k · r

n · e
2⇡int , 0.

Therefore, (q |Cr )⇤ is not a zero homomorphism, i.e., (q |Cr )⇤ : Z � ⇡1(Cr )! ⇡1(C{0}) �

Z is the map 1 7! n, which gives a contradiction.

⌅
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14.3. Monday for MAT4002

14.3.1. Fundamental group of a Graph

Definition 14.3 [Graph] A graph T = (V , E) is defined by the following components:

• V is a finite or countable set, called vertex set;

• E is a finite or countable set, called edge set;

• A function � : E ! V ⇥V with �(e) = (`(e),⌧(e)), where `(e),⌧(e) is known as the

endpoints of e.

⌅

⌅ Example 14.2 1. Let V = {1}, E = {e1,e2,e3}, and define �(ei) = (1,1), i = 1,2,3.

The graph (V , E) is represented below:

2. Let V = {e1, e2, e3} and E = {e1, . . . , e6}, and define

�(e1) = (1,1), �(e2) = (1,2), �(e3) = (1,2),

�(e4) = (2,3), �(e5) = (2,3), �(e6) = (3,3).

The graph (V , E) is represented below (We do not care the direction of edges for

this graph):

⌅
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Definition 14.4 [Realizatin of a Graph] For a given graph �= (V , E), construct a realization

by

{|V | ⇥ {zero simplies}
fi

|E | ⇥ {1-simplies}}/⇠

where the equivalence class is induced from the function �. We still call this realization of

the graph as �. ⌅

R In general, graphs are not simplicial complexes. But we can “sub-divide”

each edge of � into three parts such that there exists simplicial complex K

with |K | � �. For instance,

where |K | is a simplicial complex.

Definition 14.5 • Subgraph �0 ✓ �: �0 = (V 0, E
0) with V

0 ✓ V and E
0 ✓ E , and

� |V 0 : E
0 ! V

0 ⇥V
0

• Edge path: A continous function p : [0,1]! � such that there exists n 2 N satisfying

p |[i/n,i+1/n]:


i

n
,
i + 1

n

�
! T

is a path along an edge of �, or a constant function on a vertex of �, for 0  i  n� 1.

R Under the homeomorphism � � |K |, each edge path is homotopic to

|g↵ | for some edge path ↵ in the simplicial complex K . For instance,
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• An Edge loop is an edge path p such that p(0) = p(1) = b 2 V .

• Embedded Edge Loop: An injective edge loop, i.e., p : [0,1]! � such that

for x < V , p
�1(x) = ; or a single point.

• Tree: a connected graph T that contains no embedded edge loop p : [0,1]! T .

For instance, as shown in the figure, T1 contains no edge loop, in particular, the

edge loop (a, b,a) is not embedded; T2 contains embedded edge loop (a, b,c, d,a).

• Maximal Tree of a connected graph �:

– A subgraph T of � such that T is a tree.

– By adding an edge e 2 E(�) \ E(T) into T , the new graph is no longer a tree.

For instance, T ✓ � shown in the figure below is a maximal tree.

⌅

428



Theorem 14.5 Let � be a connected graph, and T is a subgraph of � such that T is a

tree. Then T is a maximal tree if and only if V(T) = V(�).

Moreover, there always exists a maximal tree for all �.

Proof Outline for second part. Construct an ordering of {v1, . . . ,vi} ✓ V(�), such that for

each integer i � 2, there is an edge connecting vi+1 with some vertex in {v1, . . . ,vi}.

Then construct T1 ✓ T2 ✓ · · · , where Ti is a tree containing vertices {v1, . . . ,vi}. As a

result, T = [i2NTi is a maximal tree. ⌅

Theorem 14.6 Let � be a connected graph. Then ⇡(�) is isomorphic to the free

group generated by #{E(�) \ E(T)} elements, for any maximal tree of �.

⌅ Example 14.3 1. The graph T ✓ �1 shown in the figure below is a maximal tree.

Therefore, ⇡1(�1) � ha, b,c, di since #{E(�1) \ E(T)} = 4.

2. The graph T ✓ �2 shown in the figure below is a maximal tree.

Therefore, ⇡1(�2) � ha, b,c, di since #{E(�2) \ E(T)} = 4.

3. Note that �1 ' �2. The reason for such homotopy equivalence is in the link

https://www.math3ma.com/blog/clever-homotopy-equivalences

⌅
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15.3. Monday for MAT4002
Theorem 15.4 Let � be a connected graph. Then ⇡(�) is isomorphic to the free

group generated by #{E(�) \ E(T)} elements, for any maximal tree of �.

Now we give a proof for this theorem on one special case of �:

Proof. • Fix an orientation for each e 2 E(�) \ E(T):

• Now let K be a simplicial complex with |K | � �:

As a result, E(K , b) � ⇡1(�)

• Now we construct the group homomorphism

� : h↵, �,�,�i ! E(K , b)

with �(↵) = [ba
0
a
00

b]

�(�) = [bee
0
f
00

b
0
b
00

b]

�(�) = [bee
0
f
00

f
0
f dc

0
c
00

f
00

e
0
eb]

�(�) = [bee
0
f
00

f
0
f dd

00
d
0
df f

0
f
00

e
0
eb]
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• We can show the group homomorphism � is bijective. In particular, the inverse

of � is given by:

 : E(K , b)! h↵, �,�,�i

where for any [`] := [bv1 · · ·vn] 2 E(K , b), the mapping  [`] is constructed by

(a) Remove all other letters appearing in ` except b,a0,a00, b
0, b

00,c0,c00, d
0, d

00

(b) Assign

↵, ↵�1, �, ��1, �, ��1, �, ��1

for each appearance of

a
0
a
00, a

00
a
0, b

0
b
00, b

00
b
0, c

0
c
00, c

00
c
0, d

0
d
00, d

00
d
0,

respectively.

⌅

15.3.1. The Selfert-Van Kampen Theorem

Theorem 15.5 Let K = K1 [K2 be the union of two path-connected open sets, where

K1 \K2 is also path-connected. Take b 2 K1 \K2, and suppose the group presentations

for ⇡1(K1, b),⇡1(K2, b) are

⇡1(K1, b) � hX1 | R1i, ⇡1(K2, b) � hX2 | R2i.

Let the inclusions be

i1 : K1 \ K2 ,�! K1, i2 : K1 \ K2 ,�! K2,

then a presentation of ⇡1(K , b) is given by:

⇡1(K , b) � hX1 [ X2 | R1 [ R2 [ {(i1)⇤(g) = (i2)⇤(g) : 8g 2 ⇡1(K1 \ K2, b)}i.
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(Here (i1)⇤ : ⇡1(K1 \ K2, b) ,�! ⇡1(K1, b) and (i2)⇤ : ⇡1(K1 \ K2, b) ,�! ⇡1(K2, b).)

⌅ Example 15.4 1. Let K = S
1 ^ S

1 given by

(a) Then construct b as the intersection between two circles, and construct K1, K2

as shown below:

We can see that K1 \ K2 is contractible:

(b) As we have shown before, ⇡1(S1) � Z, which follows that

⇡1(K1, b) � h↵i, ⇡1(K2, b) � h�i

Also, ⇡1(K1 \ K2, b) � ⇡1({b}, b) � {e}.

(c) It’s easy to compute (i1)⇤ and (i2)⇤:

(i1)⇤ : ⇡1(K1 \ K2)! ⇡1(K1)

with e 7! e

,
(i2)⇤ : ⇡1(K1 \ K2)! ⇡1(K2)

with e 7! e

,
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(d) Therefore, by Seifert-Van Kampen Theorem,

⇡1(K , b) � h↵, � | e = ei � h↵, �i

2. By induction,

⇡1(^n
S

1, b) � ha1, . . . ,ani

For instance, the figure illustration for ^4
S

1 and the basepoint b is given below:

3. (a) Construct S
2 = K1 [ K2, which is shown below:

Therefore, we see that K1 \ K2 ' S
1:
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(b) It’s clear that K1 and K2 are contractible, and therefore

⇡1(K1) � h� | �i, ⇡1(K2) � h� | �i

and ⇡1(K1 \ K2) � ⇡1(S1) � h↵i.

(c) Then we compute (i1)⇤ and (i2)⇤. In particular, the mapping (i1)⇤ is defined as

(i1)⇤ : ⇡1(K1 \ K2)! ⇡1(K1)

with [↵] 7! [i1(↵)]

where ↵ is any loop based at b. Since K1 is contractible, we imply ↵ in K1 is

homotopic to cb, i.e.,

(i1)⇤([↵]) = [i1(↵)] = e,8↵ 2 ⇡1(K1 \ K2).

Similarly, (i2)⇤([↵]) = e.

(d) By Seifert-Van Kampen Theorem, we conclude that

⇡1(S2) � h�,� | �,�, e = ei � {e}

4. Homework: Use the same trick to check that ⇡1(Sn) = {e} for all n � 2. Hint: for S
3,

construct

K1 = {(x1, . . . , x4) 2 S
3 | x4 > �1/2}

and

K1 = {(x1, . . . , x4) 2 S
3 | x4 < 1/2}

5. (a) Consider the quotient space K � T2, and we construct K = K1 [ K2 as follows:
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Therefore, we can see that K1 is contractible, and K2 is homotopy equivalent

to S
1 ^ S

1:

Figure 15.2: Illustration for K2 ' S
1 ^ S

1

and K1 \ K2 is homotopic equivalent to the circle:

(b) It follows that

⇡1(K1) � {e}, ⇡1(K2) � h↵, �i,

and ⇡1(K1 \ K2) � h�i.

(c) Then we compute (i1)⇤ and (i2)⇤. In particular, (i1)⇤ is trivial:

(i1)⇤ : ⇡1(K1 \ K2)! ⇡1(K1)

with [↵] 7! e

Then compute (i2)⇤. In particular, for any loop �, we draw the graph for i2(�):
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Therefore,

(i2)⇤[�] = [i2(�)] = [↵�↵�1��1]

(d) By Seifert-Van Kampen Theorem, we conclude that

⇡1(K) � h↵, � | �,↵�↵�1��1 = ei � h↵, � |,↵� = �↵i � Z ⇥ Z

6. Exerise: The Klein bottle K shown in graph below satisfies ⇡1(K) = ha, b | aba
�1

bi.

7. Consider the quotient space K =RP
2. We construct K = K2 [ K2, which is shown

below:

(a) It’s clear that K1 is contractible. In hw3, question 1, we can see that K2 ' S
1.

Moreover, similar as in (5), K1 \ K2 ' S
1.
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(b) Therefore, ⇡1(K1) = {e} and ⇡1(K2) = h↵i, ⇡1(K1 \ K2) = h�i.

(c) It’s easy to see that (i1)⇤([�]) = e for any loop �. For any loop �, we draw the

graph for i2(�):

Therefore, (i2)⇤([�]) = [i2(�)] = [↵2].

(d) By Seifert-Van Kampen Theorem, we conclude that

⇡1(K) � h↵ | ↵2 = ei � Z/2Z � {0,1} mod (2)

8. Let K =R2 \ {2 points ↵, �}. As have shown in hw3, K ' S
1 ^ S

1, which implies

⇡1(K) � ⇡1(S1 ^ S
1) � h↵, �i.

We can compute the fundamental group for K directly. Construct K = K1 [ K2 as

follows:

(a) It’s clear that K1 � R2 \ {one point} ' S
1 and similarly K2 ' S

1. Moreover,

K1 \ K2 is contractible

(b) Therefore,

⇡1(K1) � h↵i, ⇡1(K2) � h�i, ⇡1(K1 \ K2) � {e}
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(c) Therefore, (i1)⇤ and (i2)⇤ is trivial since ⇡1(K1 \ K2) � {e}.

(d) By Seifert-Van Kampen Theorem, we conclude that

⇡1(K) � h↵, � | e = ei � h↵, �i

⌅
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