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Preface

This book is intended for the foundation course MAT2040, which is the first course

on the linear algebra. It aims to cover basic linear algebra knowledge and its simple

applications. This book was first written in 2017, and it is reviewed and revised in

2018. We have corrected several mistakes shown in the previous book and modified

some proofs a little bit to give readers better insights of linear algebra. During the

modification, we also refer to many reading materials, which are also recommended

for you:

• ENGG 5781 Course Notes by Prof. Wing-Kin (Ken) Ma, CUHK, Hongkong, China,

http://www.ee.cuhk.edu.hk/⇠wkma/engg5781

• Roger A. Horn and Charles R. Johnson, Matrix Analysis (Second Edition), Cam-

bridge University Press, 2012.

• S. Boyd and L. Vandenberghe, Introduction to Applied Linear Algebra (Vectors,

Matrices, and Least Squares), Cambridge University Press, 2018.

The whole book can cover a semester course in a 14week, each section in which

corresponds to a 2-hour lecture. If you read the whole book, and work some mini-

exercises, you will learn a lot. We hope you will get the insights on linear algebra and

apply them in your own subject.

CUHK(SZ)

October 27, 2018
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Notations and Conventions

R
n n-dimensional real space

C
n n-dimensional complex space

R
m⇥n set of all m⇥ n real-valued matrices

C
m⇥n set of all m⇥ n complex-valued matrices

xi ith entry of column vector xxx

aij (i, j)th entry of matrix AAA

aaai ith column of matrix AAA

aaaT
i ith row of matrix AAA

S
n set of all n⇥ n real symmetric matrices, i.e., AAA 2R

n⇥n and aij = aji

for all i, j
H

n set of all n⇥ n complex Hermitian matrices, i.e., AAA 2 C
n⇥n and

āij = aji for all i, j

AAAT transpose of AAA, i.e, BBB = AAAT means bji = aij for all i, j

AAAH Hermitian transpose of AAA, i.e, BBB = AAAH means bji = āij for all i, j

trace(AAA) sum of diagonal entries of square matrix AAA

111 A vector with all 1 entries

000 either a vector of all zeros, or a matrix of all zeros

eeei a unit vector with the nonzero element at the ith entry

C(AAA) the column space of AAA

R(AAA) the row space of AAA

N (AAA) the null space of AAA

Proj
M
(AAA) the projection of AAA onto the set M

xv





Chapter 1

Week1

1.1. Tuesday

1.1.1. Introduction

1.1.1.1. Why do you learn Linear Algebra?

Important: LA + Calculus + Probability. Every SSE student should learn Linear

Algebra, Calculus, and Probability to build strong fundation.

Practical: Computation. Linear Algebra is more widely used than Calculus since

we could use this powerful tool to do discrete computation. (As we know, we can

use calculus to deal with something continuous. But how do we do integration when

facing lots of discrete data? But linear algebra can help us deal with these data.)

Visualize. Conncect between Geometry and Algebra.

Let’s take an easy example:

⌅ Example 1.1 Let v and w donate two vectors as below:

v =

2

64
1

2

3

75 , w =

2

64
3

4

3

75 .

Then we can donate these two vectors in the graph:

�

�

��

-

v

w

v + w

⌘
⌘

⌘
⌘⌘3

�

�

�✓

H
H
Hj

6v

w
v� w

1



And we can also add two vectors to get v + w. Additionally, we can change the

coefficients in front of v and w to get v� w.

In two dimension space, we can visualize the vector in the coordinate. Then let’s watch

the three dimension space.There are four vectors u,v,w and b. We can also denote it in

coordinate.

Here we raise a question: Can we denote vector b as a linear combination with the

three vectors u, v, and w? That is to say,

Is there exists coefficients x1, x2, x3 such that

x1

0

BBBB@

1

1

1

1

CCCCA
+ x2

0

BBBB@

1

2

3

1

CCCCA
+ x3

0

BBBB@

1

3

4

1

CCCCA
=

0

BBBB@

2

5

7

1

CCCCA
?

Then we only need to solve the system of equations

8
>>>>><

>>>>>:

x1 + x2 + x3 = 2

x1 + 2x2 + 3x3 = 5

x1 + 3x2 + 4x3 = 7

=)

0

BBBB@

x1

x2

x3

1

CCCCA
=

0

BBBB@

0

1

1

1

CCCCA

⌅

Abstract: Broad Applications. Don’t worry, broad doesn’t mean boring. Instead,

it means Linear Algebra can applied to lots of applications.

For example, if we denote a sequence of infinite numbers as a tuple that contains

infinite numbers, and we denote this tuple as a vector, then we could build an infinite

banach space. Moreover, Given a function f : R!R, we can describle a set of functions

as a tuple, then we could build a function space. These abstract knowledge may be

not covered in this course. We will learn it in future courses.

1.1.1.2. What is Linear Algebra?

The central problem in math is to solve equations. And equations can be seperated

into two parts, nonlinear and linear ones.

2



Let’s look an example of Nonlinear equations below:

8
><

>:

3x1x2 + 5x2
1 + 6x2 = 9

x1x2
2 + 5x1 + 7x2

2 = 10

Well, it is a little bit complicated. We don’t find a efficient algorithm to solve these

equations. But in algebraic geometry course we will solve some nonlinear equations.

What you need to know about in this course is the linear equations and the

methodology to solve it.

Definition 1.1 [Linear Equations] A linear equation in n unknowns is the equation of the

form

a1x1 + a2x2 + · · ·+ anxn = b,

where a1, a2, . . . , an,b are real numbers and x1, x2, . . . , xn are variables ⌅

Definition 1.2 [Linear System of Equations] Linear system of m equations in n unknowns

is the system of the form

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a23xn = b2

. . .

am1x1 + am2x2 + · · ·+ am3xn = bm, (1.1)

where aij and the bi are all real numbers. We refer to (??)as m⇥ n linear systems. ⌅

1.1.2. Gaussian Elimination

Here we mainly focus on n⇥ n system of equations.

3



⌅ Example 1.2 Let’s recall how to solve a 2⇥ 2 system equatons as below:

1x1 + 2x2 = 5 (1.2)

4x1 + 5x2 = 14. (1.3)

We can simplify the equation system above into the form (Augmented matrix):

2

64
1 2 5

4 5 14

3

75

Secondly, by adding (�4)⇥ (1.2) into (1.3), we obtain:

1x1 + 2x2 = 5 (1.4)

0x1 + (�3)x2 = �6 (1.5)

Thirdly, by multiplying �(1/3) of (1.5), we obtain:

1x1 + 2x2 = 5 (1.6)

1x2 = 2 (1.7)

Fourthly, by adding (�2)⇥ (1.7) into (1.6), we obtain:

1x1 + 0x2 = 1 (1.8)

1x2 = 2 (1.9)

Here we get the solution (x1 = 1, x2 = 2), and we could write the above process with

augmented matrix form:

2

64
1 2 5

4 5 14

3

75 =)

2

64
1 2 5

0 �3 �6

3

75 =)

2

64
1 2 5

0 1 2

3

75 =)

2

64
1 0 1

0 1 2

3

75 .

⌅
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The method shown above is called Gaussian Elimination. Here we give a strict

definition for Augmented matrix:

Definition 1.3 [Augmented matrix] For the system of equations

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

. . .

am1x1 + am2x2 + · · ·+ amnxn = bm, (1.10)

the corresponding augmented matrix is given by

2

66666664

a11 a12 . . . a1n b1

a21 a22 . . . a2n b2
...

...
. . .

...
...

am1 am2 · · · amn bn

3

77777775

.

⌅

We give the definition for a new term pivot:

Definition 1.4 [pivot] Returning to the example, we find after third step the matrix is

given by 2

64
1 2 5

0 1 2

3

75 .

We find that the second row will be used to eliminate the element in the second column

of the first row. Here we refer to the second row as the pivot row. The first nonzero entry

in the pivotal row is called the pivot. For the example case, the element in the second

column of the second row is the pivot. ⌅

5



1.1.2.1. How to visualize the system of equation?

Here we try to visualize the system of equation

8
><

>:

1x1 + 2x2 = 5

4x1 + 5x2 = 14
:

Row Picture. Focusing on the row of the system of equation, we can denote each

equation as a line on the coordinate axis. And the solution denote the coordinate.

0 0.5 1 1.5 2 2.5 3
0.5

1

1.5

2

2.5

x1

x 2

x1 + 2x2 = 5
4x1 + 5x2 = 14

Column Picture. Focusing on the column of the system of equation, we can denote2

64
1

4

3

75 and

2

64
2

5

3

75 as vectors in coordinate axis. Could the linear combinations of these two

vectors form the vector

2

64
5

14

3

75? If we denote x1 and x2 as coefficients, it suffices to solve

the equation x1

2

64
1

4

3

75+ x2

2

64
2

5

3

75 =

2

64
5

14

3

75.

1.1.2.2. The solutions of the Linear System of Equations

The solution to linear system equation could only be unique, infinite, or empty. Let’s

talk about it case by case in graphic way:

Case 1: unique solution. If two lines intersect at one point, then there is unique

solution.

6



0 0.5 1 1.5 2 2.5 3
�2

�1

0

1

2

x1

x 2

x1 + x2 = 2
x1 � x2 = 2

Case2: no solution. If two lines are parallel, then there is no solution.

0 0.5 1 1.5 2 2.5 3
�2

�1

0

1

2

x1

x 2

x1 + x2 = 2
x1 + x2 = 1

Case 3: infinite number of solutions. If both equations represent the same line,

then there are infinite number of solutions.
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0 0.5 1 1.5 2 2.5 3
�1

�0.5

0

0.5

1

1.5

2

x1

x 2

x1 + x2 = 2
�x1 � x2 = �2

1.1.2.3. How to solve 3⇥ 3 Systems?

⌅ Example 1.3

Let’s recall how to solve a 3⇥ 3 system equations as below:

8
>>>>><

>>>>>:

2x1 + x2 + x3 = 5

4x1 + (�6)x2 = �2

�2x2 + 7x2 + 2x3 = 9

We can simplify the equation system above into the Augmented matrix form:

8
>>>>><

>>>>>:

2x1 + x2 + x3 = 5

4x1 + (�6)x2 = �2

�2x2 + 7x2 + 2x3 = 9

=)

2

66664

2 1 1 5

4 �6 0 �2

�2 7 2 9

3

77775

Add (�2)⇥ row 1 to row 2
==============)

Add row 1 to row 3

2

66664

2 1 1 5

0 �8 �2 �12

0 8 3 14

3

77775

8



Add row 2 to row 3
==========)

2

66664

2 1 1 5

0 �8 �2 �12

0 0 1 2

3

77775

This augmented matrix is the strictly triangular system, and it’s trial to get the final

solution:

=)

0

BBBB@

x1

x2

x3

1

CCCCA
=

0

BBBB@

1

1

2

1

CCCCA

⌅

Here we give the definition for strictly triangular system:

Definition 1.5 [strictly triangular system] For the augmented matrix

2

66666664

a11 a12 . . . a1n b1

a21 a22 . . . a2n b2
...

...
. . .

...
...

am1 am2 · · · amn bn

3

77777775

,

if in the kth row, the first (k� 1)th column entries are all zero and the kth column entries

is nonzero, we say the augmented matrix(or corresponding system equation) is of strictly

triangular form. This kind of matrix(or corresponding system equation) is called strictly

triangular system. (k = 1, ...,m). ⌅

1.1.2.4. How to solve n⇥ n System?

We try to reduce an n ⇥ n System to strictly triangular form. Let’s take a special

example:

9



⌅ Example 1.4 Given an n⇥ n System of the form:

2

66666664

a11 a12 . . . a1n b1

a21 a22 . . . a2n b2
...

...
. . .

...
...

an1 an2 · · · ann bn

3

77777775

(1.11)

Assuming the diagonal entries are always nonzero during our operation. Add row 1 that

multiplied by a constant to other n� 1 row to ensure the first entry of other n� 1 rows

are all zero:

=)

2

66666664

a11 a12 . . . a1n b1

0 ⇥ . . . ⇥ ⇥

...
...

. . .
...

...

0 ⇥ · · · ⇥ ⇥

3

77777775

(1.12)

Then we proceed this way n� 1times to obtain:

2

666666666664

⇥ ⇥ ⇥ ⇥ ⇥ ⇥

⇥ ⇥ ⇥ ⇥ ⇥

⇥ ⇥ ⇥
...

0 ⇥ ⇥
...

⇥ ⇥

3

777777777775

(1.13)

This matrix is the Row-echelon form. And we do the back substitution again to

obtain: 2

666666666664

⇥ ⇥

⇥ 0 ⇥

⇥
...

0 ⇥
...

⇥ ⇥

3

777777777775

(1.14)

This matrix is the Reduced Row-Echelon Form. Finally by multiplying every row by a

10



nonzero constant to ensure its diagnoal entries are all 1:

2

666666666664

1 ⇥

1 0 ⇥

. . .
...

0 1
...

1 ⇥

3

777777777775

(1.15)

⌅

Then let’s analysis the complexity of solving such a n⇥ n system.

1.1.3. Complexity Analysis

1.1.3.1. Step1: Reduction from matrix (1.11) to matrix (1.12)

Proposition 1.1 The time complexity for Augmented matrix reduction using back-

substitution algorithm is O(n3).

Proof. The estimation for the time complexity requires us to estimate how many steps

of multiplication we need. (The time for addition is so small that can be ignored).

• Reducing matrix (1.11) to matrix (1.12) we need to do n(n� 1)times multiplica-

tions.

This is because for each row (except first row) we have known the first entry is

zero, while the remaining (n� 1) entries in each row should be computed by

multiplying first row’s entries and then add it to the row.

• Then it suffices to deal with the inner (n� 1)⇥ (n� 1) matrix, which requires

the (n� 1)⇥ (n� 2) times multiplication.

• The back substitution for matrix (1.11) requires n times reduction.

11



Hence the total multiplication times for back substitution for matrix (1.11) is

n

Â
i=1

i(i� 1) =
n

Â
i=1

(i2
� i)

=
n

Â
i=1

i2
�

n

Â
i=1

i

=
n(n + 1)(2n + 1)

6
�

n(n + 1)
2

=
n3 � 2n

3
⇠

n3

3
= O(n3)

⌅

But we can always develop more advanced algorithm that have smaller time

complexity.

1.1.3.2. Step2: Reduction from triangular system to diagonal

system

In order to reducing matrix (1.13) to matrix (1.14) we need to do back-substitution again.

The matrix (1.14) is diagonal system. Obviously, for this process the total multiplication

times is given by

1 + 2 + · · ·+ n� 1 =
n(n� 1)

2
⇠O(n2)

1.1.3.3. Step3: Get final solution

In the final step, we want to reduce matrix (1.14) to matrix (1.15), the only thing we

need to do is to do one multiplication for each row to let the diagonal entries be 1.

Hence the total multiplication times for this process is given by

1 + 1 + · · ·+ 1| {z }
totally n terms

= O(n)

1.1.4. Brief Summary

The reduction of n⇥ n matrix requires three kinds of Row operations:

12



• Addition and Multiplication.

Add to a row by a constant multiple of another row.

• Multiplication

Multiply a row by a nonzero constant.

• Interchange

Interchange two rows

1. agds

•

13



1.2. Thursday

1.2.1. Row-Echelon Form

1.2.1.1. Gaussian Elimination does’t always work

Let’s discuss an example to introduce the concept for row-echelon form.

⌅ Example 1.5 We apply Gaussian Elimination to try to transfrom a Augmented matrix:

• In step one we choose the first row as pivot row (the first nonzero entry is the pivot):

0

BBBBBBBBBB@

1 1 1 1 1 1

�1 �1 0 0 1 �1

�2 �2 0 0 3 1

0 0 1 1 3 �1

1 1 2 2 4 1

1

CCCCCCCCCCA

Add (�1)⇥ row 1 to row 5
=========================)
Add 1⇥ row 1 to row 2; Add 2⇥ row 1 to row 3

2

66666666664

1 1 1 1 1 1

0 0 1 1 2 0

0 0 2 2 5 3

0 0 1 1 3 �1

0 0 1 1 3 0

3

77777777775

• Then we choose second row as pivot row to continue elimination:

Add (�1)⇥ row 2 to row 5
=============================)
Add (�2)⇥ row 2 to row 3; Add (�1)⇥ row 2 to row 4

2

66666666664

1 1 1 1 1 1

0 0 1 1 2 0

0 0 0 0 1 3

0 0 0 0 1 �1

0 0 0 0 1 0

3

77777777775

14



• Next, we choose the third row as pivot row to continue elimination:

Add (�1)⇥ row 3 to row 1; Add (�1)⇥ row 3 to row 4
=============================)

Add (�1)⇥ row 3 to row 5

2

66666666664

1 1 1 1 0 �2

0 0 1 1 2 0

0 0 0 0 1 3

0 0 0 0 0 �4

0 0 0 0 0 �3

3

77777777775

(1.16)

Note that the matrix (1.16) is said to be the Row Echlon form.

• Finally, we set second row as pivot row then set third row as pivot row to do

elimination:

Add (�1)⇥ row 2 to row 1
===========================)
Add 2⇥ row 3 to row 1; Add (�2)⇥ row 3 to row 2

2

66666666664

1 1 0 0 0 4

0 0 1 1 0 �6

0 0 0 0 1 3

0 0 0 0 0 �4

0 0 0 0 0 �3

3

77777777775

(1.17)

The matrix (1.17) is said to be the Reduced Row Echelon form. Or equivalently, it

is said to be the singular matrix. (Don’t worry, we will introduce these concepts in future.)

You may find there exist many solutions to this system of equation, which means

Gaussian Elimination doesn’t always derive unique solution. ⌅

Definition 1.6 [Row Echelon Form] A matrix is said to be in row echelon form if

• (i) The first nonzero entry in each nonzero row is 1.

• (ii) If row k does not consist entirely of zeros, the number of leading zero entries in

row k + 1 is greater than the number of leading zero entries in row k.

• (iii) If there are rows whose entries are all zero, they are below the rows having

nonzero entries.

15



⌅

Definition 1.7 [Reduced Row Echelon Form]

A matrix is said to be in Reduced row echelon form if

• (i) The matrix is in row echelon form.

• (ii) The first nonzero entry in each row is the only nonzero entry in its column.

⌅

For example, the matrix

0

B@
1 0

0 1

1

CA is also of Row Echelon Form! Moreover, it is of Reduced

Row Echelon Form.

1.2.2. Matrix Multiplication

1.2.2.1. Matrix Multiplied by Vector

Here we introduce the definition for inner product of vector:

Definition 1.8 [inner product] Given two vectors x = (x1, x2, . . . , xn) and y= (y1,y2, . . . ,yn),

the inner product between x and y is given by

hx,yi = x1y1 + x2y2 + · · ·+ xnyn

The notation of inner product can also be written as xTy or x · y. ⌅

R Pro. Tom Luo highly recommends you to write inner procuct as hx,yi. For

myself, I also try to avoid using notation x · y to avoid misunderstanding.

Let’s study an example for matrix multiplied by a vector:

16



⌅ Example 1.6 For the system of equations

8
>>>>><

>>>>>:

2x1 + x2 + x3 = 5

4x1 � 6x2 = �2

�2x2 + 7x2 + 2x3 = 9

, we define

xxx =

0

BBBB@

x1

x2

x3

1

CCCCA
, AAA =

0

BBBB@

2 1 1

4 �6 0

�2 7 2

1

CCCCA
=

0

BBBB@

aT
1

aT
2

aT
3

1

CCCCA
, bbb =

0

BBBB@

5

�2

9

1

CCCCA
.

Here xxx and a1, a2, a3 are all vectors. More specifically,

a1 =

0

BBBB@

2

1

1

1

CCCCA
, a2 =

0

BBBB@

4

�6

0

1

CCCCA
, a3 =

0

BBBB@

�2

7

2

1

CCCCA
.

Then we multiply matrix AAA with vector xxx:

AAAxxx =

0

BBBB@

2x1 + x2 + x3

4x1 � 6x2

�2x1 + 7x2 + 2x3

1

CCCCA
=

0

BBBB@

ha1, xxxi

ha2, xxxi

ha3, xxxi

1

CCCCA
=

0

BBBB@

b1

b2

b3

1

CCCCA

Hence we finally write the system equation as:

AAAxxx = bbb Compact Matrix Form

Also, if we regard xxx as a scalar, we can also write:

bbb = AAAxxx =

0

BBBB@

aT
1

aT
2

aT
3

1

CCCCA
xxx =

0

BBBB@

aT
1 xxx

aT
2 xxx

aT
3 xxx

1

CCCCA

⌅
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1.2.2.2. Matrix Multiply Matrix

R Note that an m⇥ n matrix AAA can be written as


aij

�
, where aij denotes the

entry of ith row, jth column of AAA.

Notice that matrix AAA and BBB can do multiplication operator if and only if the # for

column of AAA equal to the # for row of BBB. Moreover, for m⇥ n matrix AAA and n⇥ k

matrix BBB, we can do multiplication as follows:

AAABBB = AAA
✓

b1 b2 . . . bk

◆
=

✓
AAAb1 AAAb2 . . . AAAbk

◆

The result is a m⇥ k matrix. Thus for matrix multiplication, it suffices to calculate

matrix multiplied by vectors.

⌅ Example 1.7 We want to calculate the result for m⇥ n matrix AAA multiply n⇥ k matrix

BBB, which is written as

AAABBB = CCC =

✓
AAAb1 AAAb2 . . . AAAbk

◆

Hence the ith row, jth column of CCC is given by

cij =
n

Â
l=1

ailblj = hai,bji

You should understand this result, this means the ith row, jth column entry of CCC is given

by the ith row of AAA multiplying the jth column of BBB. ⌅

R Time Complexity Analysis

• To Calculate the single entry of CCC, you need to do n times multiplication.

• There exists n2 entries in CCC

• Hence it takes n⇥ n2⇠O(n3) operations to compute CCC. (Moreover, using

more advanced algorithm, the time complexity could be reduced.

18



1.2.3. Special Matrices

Here we introduce several special matrices:

Definition 1.9 [Identity Matrix] The n⇥ n identity matrix is the matrix III = [mij], where

mij =

8
><

>:

1, if i = j;

0, if i 6= j.

⌅

Proposition 1.2 Identity Matrix has the following properties:

IIIBBB = BBB, AAAIII = AAA,

where AAA and BBB coud be any size-suitable matrix.

Definition 1.10 [Elementary Matrix of type III] An elementary matrix EEEij of type III is a

matrix such that

• its diagonal entries are all 1

• the ith row j th column is a scalar

• the remaining entries are all zero.

⌅

For example, the matrix AAA =

0

BBBB@

2 1 1

4 �6 0

�2 7 2

1

CCCCA
is elementary matrix of type III.t

R If AAA is a matrix, then postmultiplying with EEEij has the same effect of perform-

ing row operation on AAA.

19



For example, given an elementary matrix of type III and a matrix AAA:

EEE21 =

0

BBBB@

1 0 0

�2 1 0

0 0 1

1

CCCCA
, A =

0

BBBB@

2 1 1

4 �6 0

�2 7 2

1

CCCCA

Then the effect of EEEAAA has the same effect of adding (�2)⇥ row 1 to row 2:

EEE21A =

0

BBBB@

2 1 1

0 �8 �2

�2 7 2

1

CCCCA

Moreover, if we define EEE =

0

BBBB@

1 0 0

0 1 0

1 0 1

1

CCCCA
, then continuing postmultiplying EEE31

is just like doing Gaussian Elimination:

EEE31EEE21A =

0

BBBB@

2 1 1

0 �8 �2

0 8 3

1

CCCCA

20



1.3. Friday

1.3.1. Matrix Multiplication

1.3.1.1. How to compute matrix multiplication quickly?

Given m⇥ n matrix AAA and n⇥ k matrix BBB, then the result of AAABBB should be a m⇥ k

matrix.

Let’s show a specific example:

⌅ Example 1.8 Given 4⇥ 3 matrix AAA and 3⇥ 2 matrix BBB, then the result of AAABBB should

be a 4⇥ 2 matrix:

AAABBB =

2

66666664

1 2 3

4 5 6

7 8 9

10 11 12

3

77777775

2

66664

1 1

1 0

1 0

3

77775
=

2

66666664

⇥ ⇥

⇥ ⇥

⇥ ⇥

⇥ ⇥

3

77777775

4⇥2

.

• The (i, j)th entry of the result should be the inner product between the ith row of

AAA and the jth column of BBB.

SInce the result has 4⇥ 2 entries, we have to process such progress 4⇥ 2 times to

obtain the final result.

• But we can try a more effecient method. We can calculate the entire row of the

result more easily.

– For example, note that

2

66666664

1 2 3

4 5 6

7 8 9

10 11 12

3

77777775

2

66664

1 1

1 0

1 0

3

77775
=

2

66666664

6 1

⇥ ⇥

⇥ ⇥

⇥ ⇥

3

77777775

.

The first row of the result is the linear combination of the row of matrix
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BBB, and the coefficients are entries of the first row of matrix AAA:


1
�
⇥


1 1

�
+


2
�
⇥


1 1

�
+


3
�
⇥


1 1

�
=


6 1

�
.

– On the other hand, we can also calculate the entire column of the result quickly:

2

66666664

1 2 3

4 5 6

7 8 9

10 11 12

3

77777775

2

66664

1 1

1 0

1 0

3

77775
=

2

66666664

6 ⇥

15 ⇥

24 ⇥

33 ⇥

3

77777775

.

The first column of the result is the linear combination of the column

of matrix AAA, and the coefficients are entries of the first column of

matrix BBB:

2

66666664

1

4

7

10

3

77777775


1
�
+

2

66666664

2

5

8

11

3

77777775


1
�
+

2

66666664

3

6

9

12

3

77777775


1
�
=

2

66666664

6

15

24

33

3

77777775

.

You can do the remaining calculation by yourself, and the final result is given by:

AAABBB =

2

66666664

1 2 3

4 5 6

7 8 9

10 11 12

3

77777775

4⇥3

⇥

2

66664

1 1

1 0

1 0

3

77775

3⇥2

=

2

66666664

6 1

15 4

24 7

33 10

3

77777775

4⇥2

.

⌅

1.3.2. Elementary Matrix
So let’s review the concept for elementary matrix by an example:

R In this course you can think there is only one type of elementary matrix. This

may contradict what you see in the textbook.
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Definition 1.11 [Elementary Matrix] An elementary matrix EEEij is a matrix that its diagonal

entries are all 1 and the (i, j)th column is a scalar, and the remaining entries are all zero. ⌅

For example, the matrix AAA =

0

BBBB@

1 0 0

0 1 0

4 0 1

1

CCCCA
is elementary matrix.

⌅ Example 1.9 Given vector bbb=


b1 b2 b3

�T
and elementary matrix EEE31 =

2

66664

1 0 0

0 1 0

�l31 0 1

3

77775
,

the effct of postmultiplying EEE31 for bbb has the same effect of doing row operation:

EEE31bbb =

2

66664

b1

b2

b3 � l31b1

3

77775

Let’s do more practice. Given matrix EEE21 =

2

66664

1 0 0

�l21 1 0

0 0 1

3

77775
, we can calculate the result

of EEE21 ⇥ (EEE31bbb) and EEE21EEE31:

EEE21 ⇥ (EEE31bbb) =

2

66664

1 0 0

�l21 1 0

0 0 1

3

77775
⇥

2

66664

b1

b2

b3 � l31b1

3

77775
=

2

66664

b1

b2 � l21b1

b3 � l31b1

3

77775

EEE21EEE31 =

2

66664

1 0 0

�l21 1 0

0 0 1

3

77775

2

66664

1 0 0

0 1 0

�l31 0 1

3

77775
=

2

66664

1 0 0

�l21 1 0

�l31 0 1

3

77775
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Additionally, we can use matrix multiplication to derive the result of (EEE21EEE31)⇥ bbb:

(EEE21EEE31)⇥ bbb =

2

66664

1 0 0

�l21 1 0

�l31 0 1

3

77775

2

66664

b1

b2

b3

3

77775
=

2

66664

b1

b2 � l21b1

b3 � l31b1

3

77775

Amazingly, we find that the result of EEE21⇥ (EEE31bbb) is actually the same as (EEE21EEE31)⇥ bbb,

which is one of the properties of matrix. ⌅

1.3.3. Properties of Matrix
Operations on matrix has the following properties:

1. AAA(BBB + CCC) = AAABBB + AAACCC.

2. AAABBB 6= BBBAAA, i.e., AAABBB doesn’t necessarily equal to BBBAAA.

R In some special cases, AAABBB may equal to BBBAAA. For example, for elementary

matrix, we have EEE21EEE31 = EEE31EEE21, this means the order of row operation

can be changed sometimes.

However, for most cases the equality is not satisfied. given row vector

aaa =


a1 a2 a3

�
and column vector bbb =

0

BBBB@

b1

b2

b3

1

CCCCA
, the result of aaabbb and bbbaaa

is given by:

aaabbb =
✓

a1 a2 a3

◆

0

BBBB@

b1

b2

b3

1

CCCCA
= a1b1 + a2b2 + a3b3

bbbaaa =

0

BBBB@

b1

b2

b3

1

CCCCA

✓
a1 a2 a3

◆
=

0

BBBB@

b1a1 b1a2 b1a3

b2a1 b2a2 b2a3

b3a1 b3a2 b3a3

1

CCCCA
.

3. Block Multiplication. We use an example to show the process of block multipli-

caion:
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⌅ Example 1.10 Given two matrices AAA and BBB, we want to compute CCC := AAA⇥ BBB,

which can be done by block multiplication. We can partition AAA and BBB with

appropriate sizes. For example,

AAA =

2

66664

4 0 4

6 6 8

�9 5 �8

3

77775
=

2

64
AAA1 AAA2

AAA3 AAA4

3

75 , BBB =

2

66664

8 �3 �7

3 �7 �4

4 �4 1

3

77775
=

2

64
BBB1 BBB2

BBB3 BBB4

3

75 .

Then AAA and BBB could be considered as 2⇥ 2 block matrices. As a result, CCC have

2⇥ 2 blocks:

AAABBB =

2

64
AAA1 AAA2

AAA3 AAA4

3

75

2

64
BBB1 BBB2

BBB3 BBB4

3

75 =

2

64
AAA111BBB111 + AAA222BBB333 AAA111BBB222 + AAA222BBB444

AAA333BBB111 + AAA444BBB333 AAA333BBB222 + AAA444BBB444

3

75 =

2

64
CCC1 CCC2

CCC3 CCC4

3

75

As a result, there is an effective way to calculate CCC1, that is the block multiplication

method shown below:

CCC1 = AAA111BBB111 + AAA222BBB333 =

2

64
4 0

6 6

3

75

2

64
8 �3

3 �7

3

75+

2

64
4

�8

3

75


4 �4
�
=

2

64
48 �28

34 �28

3

75 .

You can do the remaining calculation to get result of AAABBB:

AAABBB = CCC =

2

66664

48 �28 �24

34 �28 �74

�89 24 35

3

77775
.

⌅

There are also two useful ways to compute AAABBB:

• If BBB has k columns, we can partition BBB into k blocks to compute AAABBB:

AAABBB = AAA⇥


B1 B2 . . . Bk

�
=


AAAB1 AAAB2 . . . AAABk

�
.
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• If AAA has m rows, we can partition AAA into m blocks to compute AAABBB:

AAABBB =

2

66666664

AAA1

AAA2

. . .

AAAm

3

77777775

⇥ BBB =

2

66666664

AAA1BBB

AAA2BBB

. . .

AAAmBBB

3

77777775

1.3.4. Permutation Matrix

Note that there also exists one kind of matrix PPP such that postmultiplying PPP for

arbitararily matrix AAA has the same effect of interchanging two rows of AAA.

For example, if PPP =

2

64
0 1

1 0

3

75 and AAA =

2

64
1 2

3 4

3

75, then by postmultiplying PPP for AAA we

obtain:

PPPAAA =

2

64
0 1

1 0

3

75

2

64
1 2

3 4

3

75 =

2

64
3 4

1 2

3

75 .

This progress has the same effect of interchanging the first row and the second row

of AAA.

This kind of matrix is called permutaion matrix:

Definition 1.12 [Permutation Matrix] PPP is a permutation matrix if postmultiplying PPP

for matrix AAA has the same effect of interchanging rows of matrix AAA. ⌅

Definition 1.13 [Row Exchange Matrix] PPP is a row exchange matrix if postmultiplying

PPP for matrix AAA has the same effect of interchanging only two rows of matrix AAA.

We use the notation PPPij to denote a matrix that has the effect of exchanging row i

and row j of AAA. ⌅

The way to obtain PPPij is simple. After an identity matrix’s ith and jth row being

exchanged, we could obtain the row exchange matrix PPPij.

Let’s raise some examples to show what is row exchange matrix:
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⌅ Example 1.11 PPP23 has the effect of exchanging 2th row and 3th row of arbitarary

matrix. It is converted from an identity matrix:

III =

2

66664

1 0 0

0 1 0

0 0 1

3

77775
Interchange row 2 and 3
=============)

2

66664

1 0 0

0 0 1

0 1 0

3

77775
= PPP23.

III =

2

66666664

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

3

77777775

Interchange row 2 and 3
=============)

2

66666664

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

3

77777775

= PPP23.

Postmultiplying by PPP23 exchanges row 2 and row 3 of any matrix:

2

66664

1 0 0

0 0 1

0 1 0

3

77775

2

66664

6 7

15 4

24 3

3

77775
=

2

66664

6 7

24 3

15 4

3

77775
and

2

66666664

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

3

77777775

2

66666664

6

24

15

4

3

77777775

=

2

66666664

6

15

24

4

3

77777775

⌅

R You may be confused about the concept between permutation matrix and row

exchange matrix. The row exchange matrix is a special case of permutation

matrix, but permutation matrix could exchange several rows. For example,

row 1,2,3,4 could be changed into row 4,3,2,1.

Before talking about the properties of permutation matrix, let’s introduce the definition

for nonsingular and inverse matrix:

Definition 1.14 [Nonsigular matrix] Let AAA be an n⇥ n matrix, the following statements

are equivalent:

1. AAA is nonsingular or invertible.

2. There exists a matrix BBB such that AAABBB = BBBAAA = III. And the matrix BBB is said to be
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the inverse of AAA, and we can write BBB = AAA�1.

3. After multiplying finite numbers of elementary matrix, AAA can be converted to

identity matrix III.

4. The system of equations AAAxxx = bbb has a unique solution.

If matrix AAA is not nonsingular, this matrix is called singular. ⌅

We are interested in the inverse of permutation matrix.

Proposition 1.3 1. For a permutation matrix PPP, it can always be decomposed into

finite multiplications of row exchange matrices PPPij:

PPP = PPPi1 j1 PPPi2 j2 . . . PPPin jn

2. The inverse of a row exchange matrix is actually equal to itself:

PPPijPPPij = III() PPP�1
ij = PPPij

3. For a permutation matrix written as PPP = PPPi1 j1 PPPi2 j2 . . . PPPin jn , its inverse matrix is

given by:

PPP�1 = PPP�1
in jn PPP�1

in�1 jn�1
. . . PPP�1

i1 j1 = PPPin jn PPPin�1 jn�1 . . . PPPi1 j1

4. For a n⇥ n permutation matrix PPP and a n⇥ n matrix AAA given by:

PPP =

2

66666664

1 0 0 0

0
... PPP(n�1)⇥(n�1)

0

3

77777775

AAA =

2

66666664

a11 a12 . . . a1n

0
... AAA(n�1)⇥(n�1)

0

3

77777775

the multiplication result PPPAAA has the form:

PPPAAA =

2

66666664

a11 a12 . . . a1n

0
... PPP(n�1)⇥(n�1)AAA(n�1)⇥(n�1)

0

3

77777775
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Proofoutline. • For proposition 2, it is because that if we exchange two rows of any

matrix AAA, and then we exchange the same rows again, the effect is cancelled out!

• For proposition 3, it is because that we just need to do the reverse order of our

process in order to obtain the inverse matrix.

⌅

1.3.5. LU decomposition

After learning matrix multiplication, we should be familiar some basic results of matrix

multiplication:

1. Product of upper triangular matries is also an upper triangular matrix.

2

66666666664

⇥ ⇥ ⇥ ⇥ ⇥

⇥ ⇥ ⇥ ⇥

⇥ ⇥ ⇥

0 ⇥ ⇥

⇥

3

77777777775

2

66666666664

⇥ ⇥ ⇥ ⇥ ⇥

⇥ ⇥ ⇥ ⇥

⇥ ⇥ ⇥

0 ⇥ ⇥

⇥

3

77777777775

=

2

66666666664

⇥ ⇥ ⇥ ⇥ ⇥

⇥ ⇥ ⇥ ⇥

⇥ ⇥ ⇥

0 ⇥ ⇥

⇥

3

77777777775

.

2. Product of diagonal matrices is also a diagonal matrix.

2

666666666664

d1

d2 0
. . .

0
. . .

dn

3

777777777775

2

666666666664

e1

e2 0
. . .

0
. . .

en

3

777777777775

=

2

666666666664

d1e1

d2e2 0
. . .

0
. . .

dnen

3

777777777775

.

Just like permutation matrix, there are also some intersting properties of elementary

matrix:

Proposition 1.4

The inverse of an elementary matrix is also an elementary matrix.
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⌅ Example 1.12 EEE21 =

2

66664

1 0 0

�2 1 0

0 0 1

3

77775
is an elementary matrix, the result of postmultiplying

EEE21 for identity matrix is given by:

EEE21 III =

2

66664

1 0 0

�2 1 0

0 0 1

3

77775

which has the same effect of adding (�2)⇥ row 1 to row 2 of III. How to get the identity

matrix again? We just need to add 2⇥ row 1 to row 2 of III, which could be viewed as

postmultiply another elementary matrix for III:

EEE21(EEE21 III) = EEE21EEE21 = EEE21

2

66664

1 0 0

�2 1 0

0 0 1

3

77775
=

2

66664

1 0 0

2 1 0

0 0 1

3

77775

2

66664

1 0 0

�2 1 0

0 0 1

3

77775
=

2

66664

1 0 0

0 1 0

0 0 1

3

77775
= III.

Hence, EEE21 is the inverse matrix of EEE21, which is also an elementary matrix. ⌅

The elementary matrix EEEij(i < j) is a lower triangular matrix; and EEEij(i > j) is an

upper triangular matrix. Let’s look at an example:

⌅ Example 1.13 Let’s try Gaussian Elimination for a matrix that is nonsingular. Here we

use elementary matrix to describle row operation above the arrow (without row exchange):

AAA=

2

66664

2 1 1

4 �6 0

�2 7 2

3

77775
EEE21==)

2

66664

2 1 1

0 �8 �2

�2 7 2

3

77775
EEE31==)

2

66664

2 1 1

0 �8 �2

0 8 3

3

77775
EEE32==)

2

66664

2 1 1

0 �8 �2

0 0 1

3

77775
=UUU
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In this process we have

EEE21 =

2

66664

1 0 0

�2 1 0

0 0 1

3

77775
, EEE31 =

2

66664

1 0 0

0 1 0

1 0 1

3

77775
, EEE32 =

2

66664

1 0 0

0 1 0

0 1 1

3

77775
.

Finally we convert AAA into an upper triangular matrix UUU. Let’s do the reverse of this process

to find some interesting results:

EEE32EEE31EEE21AAA = UUU

=) EEE�1
32 EEE32EEE31EEE21AAA = EEE�1

32 UUU =) EEE31EEE21 AAA = EEE�1
32 UUU

· · · =) AAA = EEE�1
21 EEE�1

31 EEE�1
32 UUU := LLLUUU,

where LLL = EEE�1
21 EEE�1

31 EEE�1
32 , which is lower triangular matrix.

Hence, we successfully decompose matrix AAA into the multiplication of a lower triangular

matrix LLL and a upper triangular matrix UUU. ⌅

Actually, any nonsingular matrix without row exchanges, i.e., does not require the row

exchange during the Gaussian Elimination, could be decomposed as the multiplication

of a lower triangular matrix with a upper triangular matrix UUU, which is called LU

decomposition.

1.3.5.1. One Square System = Two Triangular Systems

When considering the nonsingular case without row exchanges, recall what we have

done before this lecture:

we are working on AAA and bbb in one equation AAAxxx = bbb.

To somplify computation, we aim to deal with AAA and bbb in separate equations. The LU

decomposition can help us do that:

1. Decomposition: By Gaussian elimination on matrix AAA, we can decompose AAA

into matrix multiplications: AAA = LLLUUU.

2. Solve: forward elimination on bbb using LLL, then back substitution for xxx using UUU.
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R

The detail of Solve process.

(a) First, we apply forward elimination on bbb. In other words, we are

actually solving LLLyyy = bbb for yyy.

(b) After getting yyy, we then do back substitution for xxx. In other words,

we are actually solving UUUxxx = yyy for xxx.

One square system = Two triangular systems. During this pro-

cess, the original system AAAxxx = bbb is converted into two triangular sys-

tems:

Forward and Backward Solve LLLyyy = bbb and then solve UUUxxx = yyy.

There is nothing new about those steps. This is exactly what we have done all

the time. We are really solving the triangular system LLLyyy = bbb as elimination went

forward. Then we use back substitution to produce xxx. An example shows what

we actually did:

⌅ Example 1.14 Forward elimination on AAAxxx = bbb will result in equation UUUxxx = yyy:

AAAxxx = bbb()

8
><

>:

u + 2v = 5

4u + 9v = 21
forward elimination implies

8
><

>:

u + 2v = 5

v = 1
()UUUxxx = yyy.

We could express such process into matrix form:

LU Decomposition. : We could decompose AAA into product of LLL and UUU:

LLL =

2

64
1 0

4 1

3

75 , UUU =

2

64
1 2

0 1

3

75
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LLLyyy = bbb. In this system of equation, in oder to solve yyy, we only need to multiply

the inverse of LLL both sides:

2

64
1 0

4 1

3

75⇥ yyy =

2

64
5

21

3

75 =) yyy = LLL�1

2

64
5

21

3

75 =

2

64
1 0

�4 1

3

75

2

64
5

21

3

75 =

2

64
5

1

3

75 .

UUUxxx = yyy. In this system of equation, in oder to solve xxx, we only need to multiply

the inverse of UUU both sides:

2

64
1 2

0 1

3

75⇥ xxx =

2

64
5

1

3

75 =) xxx = UUU�1

2

64
5

1

3

75 =

2

64
1 �2

0 1

3

75

2

64
5

1

3

75 =

2

64
3

1

3

75 .

Both Forward and Back substitution has O(n2) time complexity. ⌅

1.3.6. LDU decomposition

The aim of LDU decomposition is to let the diagonal entries of UUU and LLL to be one.

Suppose we have decomposed AAA into LLLUUU, where the upper triangular matrix UUU is

given by: 2

66666666664

d1 ⇥ ⇥ ⇥ ⇥

d2 ⇥ ⇥ ⇥

d3 ⇥ ⇥

0 d4 ⇥

d5

3

77777777775

If we want to set its diagonal entries of UUU to be all one, we just need to multiply a

matrix DDD�1 that is given by:

DDD�1 :=

2

66666666664

d�1
1

d�1
2 0

d�1
3

0 d�1
4

d�1
5

3

77777777775

=) DDD�1UUU =

2

66666666664

1 ⇥ ⇥ ⇥ ⇥

1 ⇥ ⇥ ⇥

1 ⇥ ⇥

0 1 ⇥

1

3

77777777775

.
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We can convert LU decomposition into LDU decomposition by simply adding the

multiplying factor DDDDDD�1:

AAA = LLLUUU = LLLDDDDDD�1UUU = LLLDDD(DDD�1UUU) = LLLDDDÛUU,

where ÛUU = DDD�1UUU is also an upper triangular matix.

Here DDD is the inverse matrix of DDD�1:

DDD =

2

66666666664

d1

d2 0
d3

0 d4

d5

3

77777777775

Note that the diagonal entries of DDD are all pivots values of UUU.

Similarly, we can also proceed this step again to let diagonal entries of LLL to be

one.

Definition 1.15 [LDU Decomposition] In conclusion, we decompose matrix AAA into the

form:

AAA = LLLDDDUUU

where: LLL is lower triangular matrix with unit entries in diagonal

DDD is diagonal matrix

UUU is upper triangular matrix with unit entries in diagonal

This decomposition is called LDU decomposition. ⌅

Here is a property of LDU decomposition, the proof of which is omitted.

Proposition 1.5 LDU decomposition is unique to any matrix. Let LLL, LLL1 denote a

lower triangular matrix, DDD, DDD1 diagonal, and UUU,UUU1 upper triangular.

If AAA = LLLDDDUUU, and also, AAA = LLL1DDD1UUU1, then we have LLL = LLL1, DDD = DDD1,UUU = UUU1.
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1.3.7. LU Decomposition with row exchanges
How can we handle row exchange in our LLLUUU decomposition?

Assume we are going to do Gaussian Elimination with matrix AAA with row exchange.

• At first We can postmultiply some elementary matrices EEE to get EEEEEEEEEAAA.

• Sometimes we need to multiply by PPPij to do row exchange to continue Gaussian

Elimination.

• So we may end our elimination with something like PPPEEEEEEEEEEEEPPPEEEEEEEEEPPPEEEEEEEEEEEEAAA.

• If we can get all the elementary matrix LLL together, we could convert them into

one single LLL that has the same effect as before.

• The key problem is that how can we get all the row exchange matrix PPP out from

the elementary matrices?

Theorem 1.1 If AAA is nonsingular, then there exists a permutation matrix PPP such that

PPPAAA = LLLUUU.

The proof is omitted.

R For the nonsingular matrix AAA without row exchange, we can always decom-

pose it as AAA = LLLUUU; but for the row exchange case, we have to postmultiply a

specific permutation matrix to obtain such LU decomposition.
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1.4. Assignment One

1. Consider the system

ax + 2y + 3z = b1

ax + ay + 4z = b2

ax + ay + az = b3

For what three values of a will the elimination fail to give the pivots? (Pivots means

the first nonzero entry on rows.)

2. It is impossible for a system of linear equations to have exactly two solutions?

Explain your answers. And you may consider the following questions as intuitions

to derive your final solution.

(a) In R
3 if (x,y,z) and (X,Y, Z) are two solutions, what is another one?

(b) In R
3 if 25 planes meet at two points, where else do they meet?

(c) Extend the argument to R
n.

3. In the following system

x + 4y� 2z = 1

x + 7y� 6z = 6

3y + qz = t

(a) Which number q makes this system singular? Moreover, if this system is

singular, which right-hand side t gives infinitely many solutions?

(b) Find the solution that has z = 1.

4. By trial and error, find examples of 2⇥ 2 matrices such that:

(a) AAA2 = �III, where AAA has real entries.
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(b) BBB2 = 000, where BBB 6= 000.

(c) CCCDDD = �DDDCCC, where CCCD 6= 000.

(d) EEEFFF = 000, and no entries of EEE or FFF are zero.

5. For real matrices AAA, BBB,CCC in finite field, prove the associativity product rule:

(AAABBB)CCC = AAA(BBBCCC).

6. Matrices can be cut into blocks (which are smaller matrices). Here is a 4 by 6

matrix broken into blocks of size 2 by 2, in this example each block is just III:

4 by 6 matrix

2 by 2 blocks
AAA =

2

66666664

1 0 1 0 1 0

0 1 0 1 0 1

1 0 1 0 1 0

0 1 0 1 0 1

3

77777775

=

2

64
III III III

III III III

3

75 .

We give the definition for block multiplication:

Definition 1.16 [Block Multiplication] If the cuts between columns of AAA match

the cuts between rows of BBB, then block multiplication of AAABBB is allowed:


AAA11 AAA12 AAA21 AAA22

�
2

64
BBB11 · · ·

BBB21 · · ·

3

75 =

2

64
AAA11BBB11 + AAA12BBB21 · · ·

AAA21BBB11 + AAA22BBB21 · · ·

3

75 .

⌅

If we have AAA, BBB such that

AAABBB =

2

66664

⇥ ⇥ ⇥

⇥ ⇥ ⇥

⇥ ⇥ ⇥

3

77775

2

66664

⇥ ⇥ ⇥

⇥ ⇥ ⇥

⇥ ⇥ ⇥

3

77775
,

replace ⇥ by numbers to verify the block multiplication succeeds.
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7.

4 0 4

6 6 8

�9 5 �8

AAA =

2

66666664

a a a a

a b b b

a b c c

a b c d

3

77777775

.

Seperate AAA into LLL and UUU. Moreover, Find four conditions on a,b, c,d to let AAA have

four pivots.
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Chapter 2

Week2

2.1. Tuesday

2.1.1. Review

2.1.1.1. Solving a system of linear Equations

Gaussian Elimination. For the system of equations AAAxxx = bbb, it has three cases for its

solutions:

AAAxxx = bbb

8
>>>>><

>>>>>:

unique solution

no solution

infinitely many solutions

We claim that

if for this system of equation it has infinitely many solutions, then its

columns(or rows) could be linearly combined to zero nontrivially.

Let’s raise an example to explain this statement. Let’s use an augmented matrix to

represent AAAxxx = bbb (Assume AAA is a 3⇥ 3 matrix):

AAAxxx = bbb()

2

66664

a11 a12 a13 b1

a21 a22 a23 b2

a31 a32 a33 b3

3

77775

When focusing on the columns, we may have the question: in which case does its

columns could be linearly combined to zero? That means we need to choose the
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coefficients c1, c2, c3 such that

c1

0

BBBB@

a11

a21

a31

1

CCCCA
+ c2

0

BBBB@

a12

a22

a32

1

CCCCA
+ c3

0

BBBB@

a13

a23

a33

1

CCCCA
= 0

• It’s obvious that when c1 = c2 = c3 = 0 we can linearly combine the columns. So

c1 = c2 = c3 = 0 is the trival solution.

• But is there any nontrival solution? We claim that if this system of equation has

infinitely many solutions, we could linearly combine the columns nontrivally. We

will prove this statement in the end of this lecutre.

If we focus on the rows, we may have the similar question and conclusion.

Matrix to describe Gaussian Elimination.

1. Firstly let’s consider the nonsingular matrix AAA without row exchange case. We

find that postmultiplying elementary matrix has the same effect as doing gaussian

elimination. If we finally convert AAA into upper triangular matrix UUU, we can write

this process in matrix notation:

EEEn . . . EEE1AAA = UUU =) AAA = (EEEn . . . EEE1)
�1UUU =) AAA = EEE�1

1 . . . EEE�1
n UUU

(a) If we define LLL := EEE�1
1 . . . EEE�1

n , which is a lower triangular matrix, then we

finally decompose AAA into the product of two triangular matrix:

AAA = LLLUUU

(b) We can fuirther decompose AAA into product of three matrices to make the

diagonal entries of UUU and LLL to be one:

AAA = LLLDDDUUU
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Recall that the LDU decomposition is unique for any matrix.

2. If we have to do row exchange, the process for converting AAA into UUU may be like

the form:

EEE · · ·EEEPPPEEE · · ·EEEPPPEEE · · ·EEEAAA = UUU,

but we can always do row exchange first to combine all elementary matrix

together, which means we can convert this process into:

EEE · · ·EEEPPPAAA = UUU =) PPPAAA = LLLUUU

Also, we can do LDU decomposition to get PPPAAA = LLLDDDUUU.

2.1.2. Special matrix multiplication case

Firstly let’s introduce a new type of vector named unit vector:

Definition 2.1 [unit vector] An ith unit vector is given by:

ei =

2

6666666666666666664

0

0
...

1

0
...

0

3

7777777777777777775

Only in ith row its entry is 1, other entries of ei are all 0. ⌅

Then let’s discuss some interesting matrix multiplication cases:

1. (a) Given m⇥ n matrix AAA =


aij

�

m⇥n
, the product AAAei is given by:

AAAei =


a:i

�
,
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where


a:i

�
denotes the ith column of AAA. (It is from the MATLAB or Julia

language.)

(b) Also, given a row vector eT
j :=


0 0 . . . 1 . . . 0

�
, the product eT

j AAA is

given by:

eT
j AAA =


aj:

�
,

where


aj:

�
denotes the jth row of AAA.

2. Secondly, we want to compute the product 111T AAA111, where 111 denotes a column

vector that all entries of 111 are 1 and 111T denotes the corresponding row vector.

Let’s first compute AAA⇥ 111, where AAA 2R
m⇥n and 111 2R

n:

AAA⇥ 111 =

0

BBBBBBB@

Ân
j=1 a1j

Ân
j=1 a2j

...

Ân
j=1 amj

1

CCCCCCCA

It follows that

111T AAA111 = 111T(AAA111) = 111T

0

BBBBBBB@

Ân
j=1 a1j

Ân
j=1 a2j

...

Ân
j=1 amj

1

CCCCCCCA

= h111, AAA111i =
m

Â
i=1

n

Â
j=1

aij,

3. For vectors x 2R
m, y 2R

n, we can compute xT AAAy:

xT AAAy = xT

0

BBBBBBB@

Ân
j=1 a1jyj

Ân
j=1 a2jyj

...

Ân
j=1 amjyj

1

CCCCCCCA

=
m

Â
i=1

xi(
n

Â
i=1

aijyj) = Â
i,j

aijxiyj
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4. For vectors x 2R
n, y 2R

n, you should distinguish xTy and xyT:

xTy = hx,yi =
n

Â
i=1

xiyi

xyT =

2

66666664

x1y1 x1y2 . . . x1yn

x2y1 x2y2 . . . x2yn
...

...

xny1 xny2 . . . xnyn

3

77777775

=


xiyj

�

n⇥n

5. For vectors x 2R
m, y 2R

n, we can compute xTAAAy by using block matrix:

Firstly, We partition AAA into four parts:

AAA =

2

64
AAA11 AAA12

AAA21 AAA22

3

75

(m1+m2)⇥(n1+n2)

.

Then we partition vector x and y respectively:

x =

0

B@
x1

x2

1

CA

m1+m2

, y =

0

B@
y1

y2

1

CA

n1+n2

,

where x1 has m1 rows, x2 has m2 rows, y1 has n1 rows, y2 has n2 rows.

Then we can compute xT AAAy:

xT AAAy =


xT

1 xT
2

�
2

64
AAA11 AAA12

AAA21 AAA22

3

75

0

B@
y1

y2

1

CA =
2

Â
i=1

2

Â
j=1

xT
i AAAijyj.

6.

Proposition 2.1 Postmultiplying QQQ for the vector v =

2

64
x1

x2

3

75 has the same effect

of rotating v in the plane anticlockwise by the angle q, where

QQQ =

2

64
cosq �sinq

sinq cosq

3

75 .

43



Proof. We convert vector v into the form v =

2

64
rcosj

rsinj

3

75, where r =
q

x2
1 + x2

2, and

j = arctan( x2
x1
). Hence we obtain the product of QQQ and v:

QQQv =

2

64
cosq �sinq

sinq cosq

3

75

2

64
rcosj

rsinj

3

75 =

2

64
rcosqcosj� rsinqsinj

rcosqsinj + rsinqcosj

3

75 =

2

64
rcos(q + j)

rsin(q + j)

3

75

This is the form that this vector has been rotated anticlockwise by the angle q. ⌅

7. Given m⇥ n matrix AAA =


aij

�
, how to flip this matrix vertically? We just need to

postmultiply a special matrix:

2

66666664

0 1

1

. . .

1 0

3

77777775

2

66666664

a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...

am1 am2 · · · amn

3

77777775

=

2

66666664

am1 am2 . . . amn

a(m�1)1 a(m�1)2 . . . a(m�1)n
...

...
. . .

...

a11 a12 · · · a1n

3

77777775

If we aftermultiply this matrix for the matrix AAA, we can flip AAA horizontally:

2

66666664

a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...

am1 am2 · · · amn

3

77777775

2

66666664

0 1

1

. . .

1 0

3

77777775

=

2

66666664

a1n a1(n�1) . . . a11

a2n a2(n�1) . . . a21
...

...
. . .

...

amn am(n�1) · · · am1

3

77777775

2.1.3. Inverse

Let’s introduce the definition for inverse matrix:

Definition 2.2 [Inverse matrix] For n ⇥ n matrix AAA, the matrix BBB is said to be the

inverse of AAA if we have AAABBB = BBBAAA = III. If such BBB exists, we say matrix AAA is invertible

or nonsingular. ⌅

And inverse matrix has some interesting properties:

Proposition 2.2 Matrix inverse is Unique. In other words, if we have AAABBB1 = BBB1AAA = III
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and AAABBB2 = BBB2AAA = III, then we obtain BBB1 = BBB2.

Proof.

AAABBB1 = III =) BBB2AAABBB1 = BBB2 III =) BBB2AAABBB1 = BBB2

=) (BBB2AAA)BBB1 = IIIBBB1 = BBB1 = BBB2.

⌅

Proposition 2.3 If we have both AAABBB = III and CCCAAA = III, then we have CCC = BBB.

Proof. On the one hand, we have

CCCAAABBB = CCC(AAABBB) = CCCIII = CCC

On the other hand, we obtain:

CCCAAABBB = (CCCAAA)BBB = IIIBBB = BBB

Hence we have CCC = BBB. ⌅

2.1.3.1. How to compute inverse? When does it exist?

Assuming the inverse of n⇥ n matrix AAA exists, and we define it to be

AAA�1 := XXX =


x1 x2 . . . xn

�
=


xij

�

By definition, we have AAAXXX = III. We write it into block columns:

AAAXXX = AAA


x1 x2 . . . xn

�
= III =


e1 e2 . . . en

�
,

where e1, e2, . . . , en are all unit vectors.

Hence we obtain

AAA


x1 x2 . . . xn

�
=


AAAx1 AAAx2 . . . AAAxn

�
=


e1 e2 . . . en

�
.
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Thus we only need to compute n system of equations AAAxi = ei, i = 1, . . . ,n to get the

columns of the inverse matrix XXX. Or equivalently, we need to do Gaussian Elimination

to convert the augmented matrix


AAA III
�

into the form


III XXX
�

. Once we have done

that, we get the inverse of AAA immediately. Let’s discuss an example to show how to

achieve it:

⌅ Example 2.1 Assuming we have only 3 systems of equations to solve. And we put

them altogehter into one Augmented matrix. And the right side of augmented matrix is

an identity matrix


AAA e1 e2 e3

�
=

2

66664

2 1 1 1 0 0

4 �6 0 0 1 0

�2 7 2 0 0 1

3

77775

EEE31=

2

66666664

1 0 0

0 1 0

1 0 1

3

77777775

===========)

EEE21=

2

66666664

1 0 0

�2 1 0

0 0 1

3

77777775

2

66664

2 1 1 1 0 0

0 �8 �2 �2 1 0

0 8 3 1 0 1

3

77775

EEE32=

2

66666664

1 0 0

0 1 0

0 1 1

3

77777775

==========)

2

66664

2 1 1 1 0 0

0 �8 �2 �2 1 0

0 0 1 �1 1 1

3

77775

EEE23=

2

66666664

1 0 0

0 1 2

0 0 1

3

77777775

===========)

EEE13=

2

66666664

1 0 �1

0 1 0

0 0 1

3

77777775

2

66664

2 1 0 2 �1 �1

0 �8 0 �4 3 2

0 0 1 �1 1 1

3

77775

==)

2

66664

2 1 0 2 �1 �1

0 1 0 1
2 �

3
8 �

1
4

0 0 1 �1 1 1

3

77775

EEE12=

2

66666664

1 �1 0

0 1 0

0 0 1

3

77777775

===========)

2

66664

2 0 0 12
8 �

5
8 �

6
8

0 1 0 1
2 �

3
8 �

1
4

0 0 1 �1 1 1

3

77775
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==)

2

66664

1 0 0 12
16 �

5
16 �

6
16

0 1 0 1
2 �

3
8 �

1
4

0 0 1 �1 1 1

3

77775

The final augmented matrix is equivalent to the system IIIXXX =

2

66664

12
16 �

5
16 �

6
16

1
2 �

3
8 �

1
4

�1 1 1

3

77775
.

Hence we obtain the inverse: AAA�1 = XXX =

2

66664

12
16 �

5
16 �

6
16

1
2 �

3
8 �

1
4

�1 1 1

3

77775
. ⌅

Then let’s study in which case does the inverse exist:

Theorem 2.1 The inverse of n⇥ n matrix AAA exists if and only if AAAxxx = bbb has a unique

solution.

Proofoutline. The inverse of n⇥ n matrix AAA exists

, none pivot values of AAA is zero., AAAxxx = bbb has a unique solution xxx = AAA�1bbb. ⌅

At the end, let’s prove the claim at the beginning of the lecture:

Theorem 2.2 Let AAA be n⇥ n matrix, the following statements are equivalent:

1. Columns of AAA can be linearly combined to zero nontribally.

2. AAAxxx = 000 has infinitely many solutions.

3. Row vectors of AAA can be linearly combined to zero nontrivally.

Proofoutline. The following statements are equivalent:

• Columns of AAA can be linearly combined to zero nontribally.

• Given AAA =


a1 a2 . . . an

�
, then there exists xi’s that are not all zero such that

a1x1 + a2x2 + · · ·+ anxn = 0.

• AAAxxx = 000 has a nonzero solution xxx.
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• 2xxx,3xxx, . . . are also solutions to AAAxxx = 000.

• AAAxxx = 000 has infinitely many solutions.

• AAA�1 does not exist. (otherwise we will only have unique solution AAA�1
⇥ 000 = 000.)

• Gaussian Elimination breaks down, i.e., there exists zero row in the row echelon

form.

• Row vectors of AAA can be linearly combined to zero nontrivally.

⌅
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2.2. Wednesday

2.2.1. Remarks on Gaussian Elimination

Gaussian Elimination to compute AAA�1 is equivalent to solving n linear systems AAAxxxi = ei,

i = 1,2, . . . ,n.

Computing Complexity. For each i solving AAAxxxiii = ei takes O(n3) operations.

• Hence, solving these systems one by one take O(n4) time.

• However, if we solve AAAxxxiii = ei for i = 1,2, . . . ,n simultaneously (that means we

write all bi at the right side of the Augmented matrix), by Gaussian Elimination,

it only takes O(n3) operations.

Large Scale Inverse Computation. Gaussian Elimination is not a good job for

large scale sparse matrix (sparse matrix is a matrix in which most of the elements are

zero. If given a 1000⇥ 1000 sparse matrix, it is expensive to do Gaussian Elimination

on this matrix).

Actually, for such matrix we use iterative method to solve it.

Gaussian Elimination is just a sequence of matrix multiplications. Given

nonsingular matrix AAA, Gaussian Elimination is really a sequence of multiplications by

elementary matrices EEE’s and permutation matrix PPP:

EEE · · ·EEEPPPAAA = UUU,

where UUU is an upper triangular matrix.

By postmultiplying UUU�1 we obtain

UUU�1(EEE . . . EEEPPPAAA) = III =) (UUU�1EEE . . . EEEPPP)AAA = III.

Furthermore, we could decompose AAA as the product of a permutation matrix, a lower
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triangular matrix and an upper triangular matrix:

AAA = PPP�1(EEE�1 . . . EEE�1)UUU

2.2.2. Properties of matrix
1. If AAA is a diagonal matrix which is given by

AAA =

2

66664

d1 0
...

0 dn

3

77775
,

and d1d2d3 . . . dn 6= 0, then AAA�1 exists, and AAA�1 =

2

66664

d�1
1 0

...

0 d�1
n

3

77775
.

2. If DDD1, DDD2 are diagonal and their product exists, then we have

DDD1DDD2 = DDD2DDD1

3. If AAA, BBB are both invertible, then AAABBB is also invertible. The inverse of product AAABBB

is

(AAABBB)�1 = BBB�1AAA�1

Proofoutline. To see why the order is reversed, firstly multiply AAABBB with BBB�1AAA�1:

AAABBB(BBB�1 AAA�1) = AAA(BBBBBB�1)AAA�1 = AAAIIIAAA�1 = AAAAAA�1 = III

Similarly, BBB�1AAA�1 times AAABBB leads to the same result. Hence we draw the conclu-

sion: Inverse come in reverse order. ⌅

4. The same reverse order applies to three or more matrix:

If AAA, BBB,CCC are nonsingular, then (AAABBBCCC)�1 = CCC�1BBB�1AAA�1.
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5. It’s hard to say whether (AAA+ BBB) is invertible, but we have an interesting property:

When AAA is “small” (we will explain it later), we have (III � AAA)�1 = Â•
i=1 AAAi

6. A triangular matrix is invertible if and only if no diagonal entries are zero.

In order to explain it, let’s discuss an example:

⌅ Example 2.2

We want to find the inverse of a lower triangular matrix AAA:

AAA =

2

66666664

1 0 0 0

1 1 0 0

1 1 1 0

1 1 1 1

3

77777775

Thus we do Gaussian Elimination to compute solution to AAAxxx = III:

2

66666664

1 0 0 0 1 0 0 0

1 1 0 0 0 1 0 0

1 1 1 0 0 0 1 0

1 1 1 1 0 0 0 1

3

77777775

=)

2

66666664

1 0 0 0 1 0 0 0

0 1 0 0 �1 1 0 0

0 0 1 0 0 �1 1 0

0 0 0 1 0 0 �1 1

3

77777775

This result is obtained by three row operations:

(a) “Add (�1)⇥ row 3 to row 4”;

(b) “Add (�1)⇥ row 2 to row 3”;

(c) “Add (�1)⇥ row 1 to row 2”.

⌅

Proof. Only for a nonzero diagonal lower triangular matrix, we can continue the

Gaussian Elimination to convert it into identity matrix. ⌅

7. Given an invertible lower triangular matrix AAA, the inverse of AAA remains lower

triangular.
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8. The LDU decomposition is unique for an invertible matrix. (We assume the

existence of the LDU decomposition).

Proof. • Assume the invertible matrix AAA could be decomposed as:

AAA = LLL1DDD1UUU1 = LLL2DDD2UUU2

• By aftermultiplying UUU�1
1 and postmultiplying LLL�1

2 for the latter equation,

we obtain:

LLL1DDD1UUU1 = LLL2DDD2UUU2 =) LLL�1
2 LLL1DDD1 = DDD2UUU2UUU�1

1 (2.1)

• Note that LLL�1
2 LLL1 remains lower triangular with unit diagonal, thus LLL�1

2 LLL1DDD1

must be lower triangular matrix. Similarly, DDD2UUU2UUU�1
1 must be upper trian-

gular matrix. Hence LLL�1
2 LLL1DDD1 and DDD2UUU2UUU�1

1 must be diagonal matrix due

to equality (2.1).

• Note that the diagonal of LLL�1
2 LLL1DDD1 is the same as the diagonal of DDD1 since

LLL�1
2 LLL1 has unit diagonal. Hence

LLL�1
2 LLL1DDD1 = DDD1. (2.2)

Similarly,

DDD2UUU2UUU�1
1 = DDD2. (2.3)

Combining (2.1) to (2.3), we derive DDD1 = DDD2.

• Furthermore,

LLL�1
2 LLL1DDD1 = DDD1 =) LLL�1

2 LLL1 = III =) LLL1 = LLL2

Similarly, UUU1 = UUU2.

⌅
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2.2.3. matrix transpose
We introduce a new matrix, it is the transpose of AAA:

Definition 2.3 [Transpose] The transpose of matrix AAA 2R
m⇥n is denoted as AAAT. The

columns of AAAT are the rows of AAA, i.e., AAAT means that

AAAT =

2

66666664

a11 a21 · · · am1

a12 a22 · · · am2
...

...
. . .

...

a1n a2n · · · amn

3

77777775

2R
n⇥n

⌅

For example,

• given a column vector x 2R
n, the transpose xT = (x1, x2, . . . , xn) is row vector.

• When AAA is m⇥ n matrix, the transpose is n⇥m:

AAA =

2

64
2 1 4

0 0 3

3

75 AAAT =

2

66664

2 0

1 0

4 3

3

77775
(AAAT)T = AAA

The entry in row i, column j of AAAT comes from row j, column i of the original matrix

AAA:

Exchange rows and columns (AAAT)ij = AAAji

The rules for transposes are very direct:

Proposition 2.4 • Sum The transpose of AAA + BBB is AAAT + BBBT.

• Product The transpose of AAABBB is (AAABBB)T = (BBB)T(AAA)T.
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Proofoutline of Product Rule.

• We start with (AAAx)T = xTAAAT, where x refers to a vector:

AAAx combines the columns of AAA; while xTAAAT combines the rows of AAAT.

Since they are the same combinations of the same vectors, we obtain (AAAx)T =

xT AAAT.

• Now we can prove the formula (AAABBB)T = (BBB)T(AAA)T, where BBB has several columns:

Assuming BBB=


b1 b2 . . . bk

�
, then Transposing AAABBB=


AAAb1 AAAb2 . . . AAAbk

�

gives

(AAABBB)T =

2

66666664

bT
1 AAAT

bT
2 AAAT

...

bT
k AAAT

3

77777775

,

which is actually BBBT AAAT.

⌅

2.2.3.1. symmetric matrix

For a symmetric matrix, transposing AAA into AAAT makes no change.

Definition 2.4 [symmetric matrix] A matrix AAA 2R
n⇥n is symmetric matrix if we have

AAA = AAAT. This means that aij = aji for all i, j. We usually denote it as AAA 2 S
n⇥n. ⌅

Choose any matrix AAA (probably rectangular), then postmultiplying AAAT for AAA

automatically leads to a square symmetric matrix:

The transpose of AAAT AAA is AAAT(AAAT)T, which is AAAT AAA.

The matrix AAAAAAT is also symmetric. But note that AAAAAAT is a different matrix from AAAT AAA.

R For two vector x and y,
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• The dot product or inner product is denoted as xTy

• The rank one product or outer product is denoted as xyT

xTy is a number while xyT is a matrix.

We introduce a matrix that seems opposite to symmetric matrix:

Definition 2.5 [Skew-symmetric] For matrix AAA, if we have AAAT = �AAA, then we say AAA is

skew-symmetric or anti-symmetric. ⌅

Moreover, any n⇥ n matrix can be decomposed as the summation of a symmetric and

a skew-symmetric matrix. Let’s prove it in the next lecture.
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2.3. Assignment Two

1. Let MMM = AAABBBCCC, where AAA, BBB,CCC are square matrices. Then show that MMM is invertible

if and only if AAA, BBB,CCC are all invertible.

2. Find the inverses of

2

64
III 000

CCC III

3

75

2

64
AAA 000

CCC DDD

3

75

2

64
000 III

III DDD

3

75 .

3. For which values of c is the following matrix not invertible? Explain your answers.

2

66664

2 c c

c c c

8 7 c

3

77775
.

4. Determine if the following statements are true or false. (with a counter example

if false and a reason if true)

(a) A 4⇥ 4 matrix with a row of zeros is not invertible.

(b) A matrix with 1’s down the main diagonal is invertible.

(c) If AAA is invertible, then AAA�1 is invertible.

(d) If AAAT is invertible, then AAA is invertible.
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2.4. Friday

2.4.1. symmetric matrix

Definition 2.6 [symmetric matrix] A n⇥ n matrix AAA is a symmetric matrix if we have

AAAT = AAA, which means aij = aji for all i, j. ⌅

For example, the matrix AAA shown below is a symmetric matrix:

symmetric matrix AAA =

2

64
2 1

1 3

3

75 = AAAT

Definition 2.7 [skew-symmetric matrix] A n⇥ n matrix AAA is a skew-symmetric matrix

or say, anti-symmetric matrix if we have AAA = �AAAT. ⌅

For example, matrix BBB shown below is a skew-symmetric matrix:

skew-symmetric matrix BBB =

2

64
0 �1

1 0

3

75 = �BBBT

Theorem 2.3 Any n⇥ n matrix can be decomposed as the sum of a symmetric and a

skew-symmetric matrix.

Proofoutline. Given any n⇥ n matrix AAA, we can write AAA as:

AAA =
AAA + AAAT

2| {z }
symmetric

+
AAA� AAAT

2| {z }
skew-symmetric

⌅
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2.4.2. Interaction of inverse and transpose

Proposition 2.5 If AAA exists, then AAAT also exists, and (AAAT)�1 = (AAA�1)T.

Proof.

(AAA�1 AAA)T = AAAT(AAA�1)T = III =) (AAA�1)T = (AAAT)�1

⌅

Corollary 2.1 If matrix AAA is symmetric and invertible, then AAA�1 remains symmetric.

Proof.

(AAA�1)T = (AAAT)�1 = AAA�1 =) AAA�1 is symmetric.

⌅

Proposition 2.6 If MMM =

2

64
AAA BBB

CCC DDD

3

75, then MMMT =

2

64
AAAT CCCT

BBBT DDDT

3

75 .

Corollary 2.2 Given matrix MMM =

2

64
AAA BBB

CCC DDD

3

75, matrix MMM is symmetric if and only if

AAA = AAAT, DDD = DDDT, BBBT = CCC.

Proposition 2.7 Suppose AAA is invertible and symmetric. When we do LDU decompo-

sition such that AAA = LLLDDDUUU, UUU is exactly LLLT.

Proofoutline. Note that

AAAT = (LLLDDDUUU)T = UUUTDDDTLLLT = AAA = LLLDDDUUU.

Since DDD is diagonal matrix, we have DDD = DDDT. It follows that

UUUTDDDLLLT = LLLDDDUUU = AAA.
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Since UUUT is also a lower triangular matrix, LLLT is also an upper triangular matrix,

UUUTDDDLLLT is also the LDU decomposition of AAA.

Due to the uniqueness of LDU decomposition, we obtain UUUT = LLL, LLLT = UUU. ⌅

2.4.3. Vector Space
We move to a new topic: vector spaces.

From Numbers to Vectors. We know matrix calculation(such as AAAx = bbb) involves

many numbers, but they are just linear combinations of n vectors.

Third Level Undetstanding. This topic moves from numbers and vectors to a third

level of understanding (the highest level). Instead of individual column vectos, we look

at "spaces" of vectors. And this topic will end with the "Fundamental Theorem of Linear

Algebra".

Matrix Calculation: Numbers =) Vectos =) Spaces

We begin with the typical vector space, which is denoted as R
n.

Definition 2.8 [Real Space] The space R
n contains all column vectors v such that v has

n real number entries. ⌅

Notation. We denote vectors as a column between brackets, or along a line using commas

and parentheses: 2

64
4

p

3

75 is in R
2 (1,1,1) is in R

3.

Definition 2.9 [vector space] A vector space VVV is a set of vectors such that these

vectors satisfy vector addition and scalar multiplication:

• vector addition:If vector v and w is in VVV, then v + w 2 VVV.

• scalar multiplication:If vector v 2 VVV, then cv 2 VVV for any real numbers c.
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⌅

In other words, the set of vectors is closed under addition v + w and multiplication cv.

In other words,

any linear combination is closed under vector space.

Proposition 2.8 Every vector space must contain the zero vector.

Proof. Given v 2 VVV =) �v 2 VVV =) v + (�v) = 000 2 VVV. ⌅

⌅ Example 2.3

VVV =

8
>>>>>>>>>>><

>>>>>>>>>>>:

0

BBBBBBBBBBB@

a1

a2
...

an
...

1

CCCCCCCCCCCA

�����������������

{an} is infinite length sequences.

9
>>>>>>>>>>>=

>>>>>>>>>>>;

is a vector space.

This is because for any vector v =

0

BBBBBBBBBBB@

a1

a2
...

an
...

1

CCCCCCCCCCCA

,w =

0

BBBBBBBBBBB@

b1

b2
...

bn
...

1

CCCCCCCCCCCA

, we can define vector addition

and scalar multiplication as follows:

v + w =

0

BBBBBBBBBBB@

a1 + b1

a2 + b2
...

an + bn
...

1

CCCCCCCCCCCA

cv =

0

BBBBBBBBBBB@

ca1

ca2
...

can
...

1

CCCCCCCCCCCA

for any c 2R.
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VVV = span

8
>>>>>>>>>>><

>>>>>>>>>>>:

v1 =

0

BBBBBBBBBBB@

1
2

1
4
...

1
2n

...

1

CCCCCCCCCCCA

,v2 =

0

BBBBBBBBBBB@

1
3

1
9
...

1
3n

...

1

CCCCCCCCCCCA

,v3 =

0

BBBBBBBBBBB@

1
4

1
16
...

1
4n

...

1

CCCCCCCCCCCA

9
>>>>>>>>>>>=

>>>>>>>>>>>;

= {a1v1 + a2v2 + a3v3 | a1,a2,a3 2R}

is also vector space.

Definition 2.10 [Span] The span of a collection of vectors aaa1, . . . , aaan 2R
m is defined

as:

span{aaa1, . . . , aaan} =

(
yyy 2R

m

�����yyy =
n

Â
i=1

aiaaai,aaa 2R
n

)
,

i.e., it is the set of all linear combinations of aaa1, . . . , aaan. ⌅

How to check VVV is a vector space?

Given any two vectors u,w in VVV, suppose

u = a1v1 + a2v2 + a3v3, v = b1v1 + b2v2 + b3v3,

then we obtain:

g1u + g2v = g1(a1v1 + a2v2 + a3v3) + g2(b1v1 + b2v2 + b3v3)

= (g1a1 + g2b1)v1 + (g1a2 + g2b2)v2 + (g1a3 + g2b3)v3

where g1,g2 2R. Hence any linear combination of u and w are also in VVV. Hence VVV is a

vector space. ⌅

⌅ Example 2.4 FFF = { f (x) | f : [0,1] 7!R} is also a vector space. (verify it by yourself.)

This vector space FFF contains all real functions defined on [0,1], an it is infinite

dimensional.
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Given two functions f and g in FFF, the inner product of f and g is defined as:

h f , gi :=
Z 1

0
f (x)g(x)dx

Also, we can use the span to form a vector space:

FFF = span{sinx, x3, ex
} = {a1sinx + a2x3 + a3ex

| a1,a2,a3 2R.}

This set FFF is also a vector space. ⌅

⌅ Example 2.5

VVV =

8
><

>:

2

64
a11 a12 a13

a21 a22 a23

3

75

�������
aij 2R for i = 1,2; j = 1,2,3.

9
>=

>;

is a vector space. Moreover, it is equivalent to the span of six basic vectors:

VVV = span

8
><

>:

2

64
1 0 0

0 0 0

3

75 ,

2

64
0 1 0

0 0 0

3

75 ,

2

64
0 0 1

0 0 0

3

75 ,

2

64
0 0 0

1 0 0

3

75 ,

2

64
0 0 0

0 1 0

3

75 ,

2

64
0 0 0

0 0 1

3

75

9
>=

>;

We say that VVV is 6-dimensional without introducing the definiton of dimension formally. ⌅

⌅ Example 2.6

VVV =

⇢
aij

�

3⇥3

����any 3⇥ 3 matrices
�

is also a vector space.

Obviously, it is 9-dimensional. We usually denote it as dim(VVV) = 9.

VVV1 =

⇢
aij

�

3⇥3

����any 3⇥ 3 symmetric matrices
�

is a special vector space.

Notice that VVV1 ⇢ VVV, so we say VVV1 is a subspace of VVV. In the future we will know

dim(VVV1) = 6 < 9. ⌅
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2.4.3.1. The solution to AAAxxx = 000

We can use vector space to discuss the solution to system of equation. Firstly, let’s

introduce some definitions:

Definition 2.11 [homogeneous equations] A system of linear equations is said to be

homogeneous if the constants on the righthand side are all zero. In other words, AAAxxx = 000

is said to be homogeneous. ⌅

Definition 2.12 [column space] The column space consists of all linear combinations

of the columns of matrix AAA. In other words, for the matrix AAA 2 R
m⇥n given by AAA =

a1 a2 . . . an

�
, its column space is denoted as

CCC(AAA) := span(a1, a2, . . . , an) ⇢R
m.

⌅

Definition 2.13 [null space] The null space of a matrix AAA 2R
m⇥n consists of all solutions

to AAAxxx = 000, which can be denoted as

NNN(AAA) = {xxx | AAAxxx = 000} ⇢R
n.

⌅

Proposition 2.9 The null space NNN(AAA) is a vector space.

Proofoutline. For any two vectors xxx,yyy 2 NNN(AAA), we have AAAxxx = 000, AAAyyy = 000.

=) AAA(axxx + byyy) = a(AAAxxx) + b(AAAyyy) = a000 + b000 = 000 a, b 2R.

Since the linear combination of xxx and yyy is also in NNN(AAA), NNN(AAA) is a vector space. ⌅
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⌅ Example 2.7 Describe the null space of AAA =

2

66664

1 0

5 0

2 3

3

77775
.

Obviously, converting matrix into linear system of equation we obtain:

8
>>>>><

>>>>>:

x1 + 0x2 = 0

5x1 + 4x2 = 0

2x1 + 3x2 = 0

We can easily obtain the solution

8
><

>:

x1 = 0

x2 = 0
. Hence the null space is NNN(AAA) = 000. ⌅

⌅ Example 2.8 Describe the null space of AAA =

2

66664

1 0 1

5 4 9

2 3 5

3

77775
.

In the next lecture we will know its null space is a line.

We find that AAA

0

BBBB@

1

1

�1

1

CCCCA
= 000, so

0

BBBB@

1

1

�1

1

CCCCA
is a special solution.

Note that the null space contains all linear combinations of special solutions. Hence

the null space is NNN(AAA) =

8
>>>><

>>>>:

c

0

BBBB@

1

1

�1

1

CCCCA

����������

c 2R

9
>>>>=

>>>>;

. ⌅

2.4.3.2. The complete solution to AAAxxx = bbb

In order to find all solutions of AAAxxx = bbb, (AAA may not be square matrix), let’s introduce

two kinds of solutions:

Definition 2.14 [Particular & Special Solution] For the system of equations AAAxxx = bbb,
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there are two kinds of solutions:

xxxparticular The particular solution that solves AAAxxx = bbb

xxxnullspace The special solutions that solves AAAxxx = 000

⌅

There is a theorem that helps us to obtain the complete solution to AAAxxx = bbb.

Theorem 2.4 Any solution to AAAxxx = bbb can be represented as xxxcomplete = xxxppp + xxxnnn.

Proof. Sufficiency. Given xxxcomplete = xxxppp + xxxnnn, it suffices to show xxxcomplete is the solution

to AAAxxx = bbb.

Note that

AAAxxxcomplete = AAA(xxxppp + xxxnnn) = AAAxxxppp + AAAxxxnnn = bbb + 000 = bbb.

Hence xxxcomplete is the solution to AAAxxx = bbb. ⌅

Necessity. Suppose xxx⇤ is the solution to AAAxxx = bbb, it suffices to show xxx⇤ could be repre-

sented as xxxppp + xxxnnn.

It suffices to show xxx⇤ � xxxppp 2 NNN(AAA).

Notice that AAA(xxx⇤ � xxxppp) = AAAxxx⇤ � AAAxxxppp = bbb� bbb = 000 =) xxx⇤ � xxxppp 2 NNN(AAA). ⌅

⌅

⌅ Example 2.9 Let’s study a system that has n = 2 unknowns but only m = 1 equation:

x1 + x2 = 2.

It’s easy to check that the particular solution is xxxppp =

0

B@
1

1

1

CA, the special solutions are

xxxnnn = c

0

B@
1

�1

1

CA, c can be taken arbitararily.
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Hence the complete solution for the equations could be written as

xxxcomplete = xxxppp + xxxnnn =

0

B@
c + 1

�c + 1

1

CA .

So we summarize that if there are n unknowns and m equations such that m < n,

then AAAxxx = bbb is underdetermined (It may have infinitely many solutions since the special

solutions could be infinite).

Figure 2.1: Complete solution = one particular solution + all nullspace solutions

⌅

2.4.3.3. Row-Echelon Matrices

Given m⇥ n rectangular matrix AAA, we can still do Gaussian Elimination to convert AAA

into UUU, where UUU is of Row Echelon form. The whole process could be expressed as:

PPPAAA = LLLDDDUUU.

where LLL is m⇥m lower triangular matrix, UUU is m⇥ n matrix that is of row echelon

form.

⌅ Example 2.10 Here is a 4⇥ 7 row echelon matrix with the three pivots 111 highlighted
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in blue:

UUU =

2

66666664

1 ⇥ ⇥ ⇥ ⇥ ⇥ ⇥

0 1 ⇥ ⇥ ⇥ ⇥ ⇥

0 0 0 0 0 1 ⇥

0 0 0 0 0 0 0

3

77777775

• Columns 3,4,5,7 have no pivots, and we say the free variables are x3, x4, x5, x7.

• Columns 1,2,6 have pivots, and we say the pivot variables are x1, x2, x6.

Moreover, we can continue Gaussian Elimination to convert UUU into RRR that is of reduced

row echelon form:

RRR =

2

66666664

1 0 ⇥ ⇥ ⇥ 0 ⇥

0 1 ⇥ ⇥ ⇥ 0 ⇥

0 0 0 0 0 1 ⇥

0 0 0 0 0 0 0

3

77777775

The reduced row echelon matrix RRR has zeros above the pivots as well as below.

Zeros above the pivots come from upward elimination. ⌅

R Remember the two steps (forward and back elimination) in solving AAAxxx = bbb:

1. Forward Elimination takes AAA to UUU. (or its reduced form RRR)

2. Back Elimination in UUUxxx = ccc or RRRxxx = ddd produces xxx.

2.4.3.4. Problem Size Analysis

When faced with m⇥ n matrix AAA, notice that mmm refers to the number of equations, nnn

refers to the number of variables. Assume rrr denotes number of pivots, then we know

rrr is also the number of pivot variables, nnn� rrr is the number of free variables. Finally

we have mmm� rrr redundant equations and rrr irredundant equations. In next lecture, we

will introduce the definition for rrr formally (rank).
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2.5. Assignment Three

1. Check and verify the following:

(a) If MMM = III � uuuvvvT, then

MMM�1 = III +
uuuvvvT

1� vvvTuuu
. (vvvTuuu 6= 1)

(b) If MMM = AAA� uuuvvvT, then

MMM�1 = AAA�1 +
AAA�1uuuvvvT AAA�1

1� vvvTAAA�1uuu
. (vvvTAAA�1uuu 6= 1)

(c) If MMM = III �UUUVVV, where UUU 2R
n⇥m,VVV 2R

m⇥n, then

MMM�1 = IIIn + UUU(IIIm �VVVUUU)�1VVV.

(d) If MMM = III �UUUWWW�1VVV, where WWW 2R
m⇥m,UUU 2R

n⇥m,VVV 2R
m⇥n, then

MMM�1 = AAA�1 + AAA�1UUU(WWW �VVVAAA�1UUU)�1VVVAAA�1.

2. If AAA = AAAT and BBB = BBBT, which of these matrices are certainly symmetric?

(a) AAA2
� BBB2

(b) (AAA + BBB)(AAA� BBB)

(c) AAABBBAAA

(d) AAABBBAAABBB

3. Strat from LDU decomposition, show that each n⇥ n matrix AAA can be factorized

into a triangular matrix times a symmetric matrix.

4. Let

AAA =

2

64
5 3

3 2

3

75 , BBB =

2

64
6 2

2 4

3

75 , CCC =

2

64
4 �2

�6 3

3

75

solve each of the following matrix equations:

(a) AAAxxx + BBB = CCC
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(b) XXXAAA + BBB = CCC

(c) AAAXXX + BBB = XXX

(d) XXXAAA + CCC = XXX

5. Let UUU and RRR be n⇥ n upper triangular matrices and TTT = UUURRR, show that TTT is also

upper triangular and that tjj = ujjrjj, j = 1, . . . ,n.

6. Consider the graph

(a) Determine the adjacency matrix AAA of the graph.

(b) Compute AAA2. What do the entries in the first row of AAA2 tell you about walks

of length 2 that start from V1?

(c) Compute AAA3. How many walks of length 3 are there from V2 to V3? How

many walks of length less than or equal to 3 are there from VVV2 to VVV4?
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Chapter 3

Week3

3.1. Tuesday

3.1.1. Introduction

3.1.1.1. Motivation of Linear Algebra

So, we raise the question again, why do we learn LA?

• Baisis of AI/ML/SP/etc.

In information age, artificial intelligence, machine learning, structured programming,

and otherwise gains great popularity among researchers. LA is the basis of them,

so in order to explore science in modern age, you should learn LA well.

• Solving linear system of equations.

How to solve linear system of equations efficiently and correctly is the key

question for mathematicians.

• Internal grace.

LA is very beautiful, hope you enjoy the beauty of math.

• Interview questions.

LA is often used for interview questions for phd. The interviewer usually ask

difficult questions about LA.
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3.1.1.2. Preview of LA

The main branches of Mathematics are given below:

mathematics

8
>>>>>><

>>>>>>:

Analysis + Calculus

Algebra: foucs on structure

Geometry

All parts of math are based on axiom systems. And LA is the significant part of Algebra,

which focus on the linear structure.

3.1.2. Review of 2 weeks
How to solve linear system equations?. The basic method is Gaussian Elimina-

tion, and the main idea is induction to make simpler equations.

• Given one equation ax = b, we can easily sovle it:

If a = 0, there is no solution otherwise x = b
a .

• We could solve 1⇥ 1 system. By induction, if we could solve n⇥ n systems, then

we can solve (n + 1)⇥ (n + 1) systems.

In the above process, math notations is needed:

• matrix multiplication

• matrix inverse

• transpose, symmetric matrices

So in first two weeks, we just learn two things:

• linear system could be solved almost by G.E.

• Furthermore, Gaussian Elimination is (almost) LU decomposition.

But there is a question remained to be solved:
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How to solve linear singular system equations?.

• When does the system have no solution, when does the system have infinitely

many solutions? (Note that singular system don’t has unique solution.)

• If it has infinitely many solutions, how to find and express these solutions?

If we express system into matrix form, the question turns into:

How to solve the rectangular?

3.1.3. Examples of solving equations
• For square case, we often convert the system into UUUxxx = ccc, where UUU is of row

echelon form.

• However, for rectangular case, row echelon form(ref) is not enough, we must

convert it into reduced row echelon form(rref):

UUU(ref) =

2

66666664

1 0 ⇥ ⇥ ⇥ 0 ⇥

0 1 ⇥ ⇥ ⇥ 0 ⇥

0 0 0 0 0 1 ⇥

0 0 0 0 0 0 0

3

77777775

=) RRR(rref) =

2

66666664

1 0 ⇥ ⇥ ⇥ 0 ⇥

0 1 ⇥ ⇥ ⇥ 0 ⇥

0 0 0 0 0 1 ⇥

0 0 0 0 0 0 0

3

77777775

⌅ Example 3.1 We discuss how to solve square matrix of rref:

• If all rows have nonzero entry, we have:

2

66666664

1 0
1

1

0 1

3

77777775

xxx = ccc =) xxx = ccc
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• But note that some rows could be all zero:

2

66666664

1

1

1

0

3

77777775

xxx = ccc =)

8
>>>>>>>>>><

>>>>>>>>>>:

x1 = c1

x2 = c2

x3 = c3

0 = c4

So the solution results have two cases:

– If c4 6= 0, we have no solution of this system.

– If c4 = 0, we have infinitely many solutions, which can be expressed as:

xcomplete =

0

BBBBBBB@

c1

c2

c3

x4

1

CCCCCCCA

=

0

BBBBBBB@

c1

c2

c3

0

1

CCCCCCCA

+ x4

0

BBBBBBB@

0

0

0

1

1

CCCCCCCA

where x4 could be arbitarary number.

Hence, for square system, does Gaussian Elimination work?

Answer: Almost, except for the “pivot=0”case:

• All pivots 6= 0 =) the system has unique solution.

• Some pivots = 0 (The matrix is singular)

1. No solution. (When LHS 6= RHS)

2. Infinitely many solutions.

⌅
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3.1.3.1. Review of G.E. for Nonsingular case

We use matrix to represent system of equations:

8
>>>>>>>>>><

>>>>>>>>>>:

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a23xn = b2

. . .

am1x1 + am2x2 + · · ·+ am3xn = bm

=) AAAxxx = bbb

By postmultiplying EEEij or PPPij, we are essentially doing one step of elimination:

EEEij AAAxxx = EEEijbbb or PPPij AAAxxx = EEEijbbb

By several steps of elimination, we obtain the final result:

L̂LLPPPAAAxxx = L̂LLPPPbbb

where L̂LLPPPAAA represents an upper triangular matrix UUU, L̂ is the lower triangular matrix.

Equivalently, we obtain

L̂LLPPPAAA = UUU =) PPPAAA = L̂LL�1UUU , LLLUUU

Hence, Gaussian Elimination is almost the LU decomposition.

3.1.3.2. Example for solving rectangular system of rref

Recall the definition for rref:

Definition 3.1 [reduced row echelon form] Suppose a matrix has r nonzero rows, each

row has leading 1 as pivots. If all columns with pivots (call it pivot column) are all zero

entries apart from the pivot in this column, then this matrix is said to be reduced row

echelon form(rref). ⌅
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Next, we want to show how to solve a rectangular system of rref. Note that in last

lecture we study the solution to a rectangular system is given by:

xxxcomplete = xxxp + xxxspecial.

⌅ Example 3.2 Solve the system

2

66664

1 3 0 0

0 0 1 1

0 0 0 0

3

77775
xxx = ccc.

Step 1: Find null space. Firstly we solve for RRRxxx = 000:

2

66664

1 3 0 0

0 0 1 1

0 0 0 0

3

77775

2

66666664

x1

x2

x3

x4

3

77777775

=

2

66664

0

0

0

3

77775
=)

8
><

>:

x1 + 3x2 = 0

x3 + x4 = 0

Then we express the pivot variables in the form of free variables.

Note that the pivot columns in RRR are column 1 and 3, so the pivot variable

is x1 and x3. The free variable is the remaining variable, say, x2 and x4.

The expressions for x1 and x3 are given by:

8
><

>:

x1 = �3x2

x3 = �x4

76



Hence, all solutions to RRRxxx = 000 are

xxxspecial =

2

66666664

�3x2

x2

�x4

x4

3

77777775

= x2

2

66666664

�3

1

0

0

3

77777775

+ x4

2

66666664

0

0

�1

1

3

77777775

where x2 and x4 can be taken arbitararily.

Step 2: Find one particular solution to RRRxxx = ccc. The trick for this step is to set

x2 = x4 = 0. (set free variable to be zero and then derive the pivot variable.):

2

66664

1 3 0 0

0 0 1 1

0 0 0 0

3

77775

2

66666664

x1

0

x3

0

3

77777775

=

2

66664

c1

c2

c3

3

77775
=)

8
>>>>><

>>>>>:

x1 = c1

x3 = c2

0 = c3

which follows that:

• if c3 = 0, then exists particular solution xxxp =

2

66666664

c1

0

c2

0

3

77777775

;

• if c3 6= 0, then RRRxxx = ccc has no solution.

Final solution. If assume c3 = 0, then all solutions to RRRxxx = ccc are given by:

xxxcomplete = xxxp + xxxspecial =

2

66666664

c1

0

c2

0

3

77777775

+ x2

2

66666664

�3

1

0

0

3

77777775

+ x4

2

66666664

0

0

�1

1

3

77777775

⌅

Next we show how to solve a general rectangular:
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3.1.4. How to solve a general rectangular

For linear system AAAxxx = bbb, where AAA is rectangular, we can solve this system as follows:

Step 1: Gaussian Elimination. With proper row permutaion (postmultiply PPPij)

and row transformation (postmultiply EEEij), we convert AAA into RRR(rref), then we only

need to solve RRRxxx = ccc.

⌅ Example 3.3 The first example is a 3⇥ 4 matrix with two pivots:

AAA =

2

66664

1 1 2 3

2 2 8 10

3 3 10 13

3

77775

Clearly a11 = 1 is the first pivot, then we clear row 2 and row 3 of this matrix:

AAA

EEE21=

2

66666664

1 0 0

�2 1 0

0 0 1

3

77777775

===========)

EEE31=

2

66666664

1 0 0

0 1 0

�3 0 1

3

77777775

2

66664

1 1 2 3

0 0 4 4

0 0 4 4

3

77775

EEE12=

2

66666664

1 �
1
2 0

0 1 0

0 0 1

3

77777775

===========)

EEE32=

2

66666664

1 0 0

0 1 0

0 �1 1

3

77777775

2

66664

1 1 0 1

0 0 4 4

0 0 0 0

3

77775

=)

2

66664

1 1 0 1

0 0 1 1

0 0 0 0

3

77775

If we want to solve AAAxxx = bbb, firstly we should convert AAA into

2

66664

1 1 0 1

0 0 1 1

0 0 0 0

3

77775
(rref). ⌅

Then we should identify pivot variables and free variables. we can follow the
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proceed below:

pivots =) pivot columns =) pivot variables

⌅ Example 3.4 we want to identify pivot variables and free variables of RRR:

RRR =

2

66666664

1 0 ⇥ ⇥ ⇥ 0 ⇥

0 1 ⇥ ⇥ ⇥ 0 ⇥

0 0 0 0 0 1 ⇥

0 0 0 0 0 0 0

3

77777775

The pivot are r11,r22,r36. So the pivot columns are column 1,2,6. So the pivot variables

are x1, x2, x6; the free variables are x3, x4, x5, x7. ⌅

Step2: Compute null space N(AAA). In order to find N(AAA), it suffices to compute

N(RRR). The space N(RRR) has (n � r) dimensions, so it suffices to get (n � r) special

solutions first:

• For each of the (n� r) free variables,

– set the value of it to be 1;

– set the value of other free variables to be 0;

– Then solve RRRxxx = 000 (to get the value of pivot variables) to get the special

solution.

⌅ Example 3.5 Continue with 3⇥ 4 matrix example:

RRR =

2

66664

1 1 0 1

0 0 1 1

0 0 0 0

3

77775

We want to find special solutions to RRRxxx = 000:
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1. Set x2 = 1 and x4 = 0. Solve RRRxxx = 000, then x1 = �1 and x3 = 0.

Hence one special solution is y1 =

2

66666664

�1

1

0

0

3

77777775

.

2. Set x2 = 0 and x4 = 1. Solve RRRxxx = 000, then x1 = �1 and x3 = �1.

Then another special solution is y2 =

2

66666664

�1

0

�1

1

3

77777775

.

⌅

• Then N(AAA) is the collection of linear combinations of these special solutions:

N(AAA) = span(y1,y2, . . . ,yn�r).

⌅ Example 3.6 We continue the example above, when we get all special solutions

y1 =

2

66666664

�1

1

0

0

3

77777775

y2 =

2

66666664

�1

0

�1

1

3

77777775

,

the null space contains all linear combinations of the special solutions:

xxxspecial = span(

2

66666664

�1

1

0

0

3

77777775

,

2

66666664

�1

0

�1

1

3

77777775

) = x2

2

66666664

�1

1

0

0

3

77777775

+ x4

2

66666664

�1

0

�1

1

3

77777775

where x2, x4 here could be arbitarary. ⌅
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Step3: Compute a particular solution xxxp. The easiest way is to “read” from

RRRxxx = ccc:

• Guarantee the existence of the solution. Suppose RRR 2 R
m⇥n has

r( m) pivot variables, then it has (m� r) zero rows and (n� r) free

variables. For the existence of solutions, the value of entries of ccc which

correspond to zero rows in RRR must also be zero.

⌅ Example 3.7 If RRRxxx =

2

66664

1 3 0 2

0 0 1 4

000 000 000 000

3

77775
xxx = ccc =

2

66664

c1

c2

c3

3

77775
, then in order to

have a solution, we must let c3 6= 0. ⌅

• If the condition above is not satisfied, then the system has no solution.

Let’s preassume the satisfaction of such a condition. To compute a

particular solution xxxp, we set the value for all free variables of xxxp to be

zero, and the value for the pivot variables are from ccc.

More specifically, the first entry in ccc is exactly the value for the first

pivot variable;the second entry in ccc is exactly the value for the second

pivot variable. . . . . . , and the remaining entries of xxxp are set to be

zero.

⌅ Example 3.8 If RRRxxx =

2

66664

1 3 0 2

0 0 1 4

000 000 000 000

3

77775
xxx = ccc =

2

66664

c1

c2

0

3

77775
, we want to

compute particular solution

xxxp =

2

66666664

x1

x2

x3

x4

3

77777775

As we know x2, x4 are free variable, x2 = x4 = 0; and x1, x3 are pivot
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variable, so we have

0

B@
x1

x3

1

CA =

0

B@
c1

c2

1

CA.

Hence the solution for RRRxxx = ccc is

xxxp =

2

66666664

c1

0

c2

0

3

77777775

.

⌅

Final step: Obtain complete solutions. All solution of AAAxxx = bbb are

xxxcomplete = xxxp + xxxspecial,

where xspecial 2 N(AAA). Note that xxxp is defined in step3, xxxspecial is defined in step2.

However, where does the number r come? r denotes the rank of a matrix, which

will be discussed in the next lecture.
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3.2. Thursday

3.2.1. Review
The last lecture you may be confused about how to compute the null space N(AAA), i.e.,

why we follow the proceed to compute special solutions yi. Let’s review the whole

steps for solving rectangular by using block matrix form.

• After converting the matrix AAA into the rref form RRR, without loss of generality, we

could convert the rref into the form

2

64
III BBB

000 000

3

75 by switching columns.

⌅ Example 3.9 Last time our rref is given by:

RRR =

2

66664

1 1 0 1

0 0 1 1

0 0 0 0

3

77775

We notice that column 3 is pivot column, so we can switch it into the second column.

(By switching column 2 and column 3):

RRR =)

2

66664

1 0 3 �1

0 1 0 1

0 0 0 0

3

77775
=

2

64
III BBB

000 000

3

75

⌅

• Thus our system could be written into the form:

RRRxxx = ccc =)

2

64
III BBB

000 000

3

75

2

66666664

x1

x2

x3

x4

3

77777775

=

2

66664

c1

c2

c3

3

77775
(3.1)

Since we have changed the columns of RRR, so the row 2 and row 3 of xxx is also

83



switched respectively. Thus x1 and x2 are pivot variables, and x3 and x4 are free

variables of xxx. From (3.1) we derive:

8
>>>>><

>>>>>:

III

2

64
x1

x2

3

75+ BBB

2

64
x3

x4

3

75 =

2

64
c1

c2

3

75

0 = c3

• If c3 6= 0, then there is no solution; so let’s preassume c3 = 0. Then pivot variables

could be expressed as the form of free variables:

0

B@
x1

x2

1

CA =

0

B@
c1

c2

1

CA� BBB

0

B@
x3

x4

1

CA

Suppose �BBB =


ŷyy111 ŷyy222

�
, then pivot variables can be expressed as:

0

B@
x1

x2

1

CA =

0

B@
c1

c2

1

CA+ x3ŷyy111 + x4ŷyy222
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• Therefore, the complete solution to the system is given by

xxx =

0

BBBBBBB@

x1

x2

0

0

1

CCCCCCCA

+

0

BBBBBBB@

0

0

x3

x4

1

CCCCCCCA

=

0

BBBBBBB@

c1

c2

0

0

1

CCCCCCCA

+

0

BBBB@

x3ŷyy111 + x4ŷyy222

0

0

1

CCCCA
+

0

BBBBBBB@

0

0

x3

x4

1

CCCCCCCA

(3.2)

=

0

BBBBBBB@

c1

c2

0

0

1

CCCCCCCA

+ x3

0

BBBB@

ŷyy111

0

0

1

CCCCA
+ x4

0

BBBB@

ŷyy222

0

0

1

CCCCA
+ x3

0

BBBBBBB@

0

0

1

0

1

CCCCCCCA

+ x4

0

BBBBBBB@

0

0

0

1

1

CCCCCCCA

(3.3)

=

0

BBBBBBB@

c1

c2

0

0

1

CCCCCCCA

| {z }
xxxp

+ x3

0

BBBB@

ŷyy111

1

0

1

CCCCA
+ x4

0

BBBB@

ŷyy222

0

1

1

CCCCA

| {z }
xxxspecial

(3.4)

where x3 and x4 could be arbitarary.

• We can verify our computed special solutions is true by matrix multiplication:

Special Solution Matrix:

0

BBBB@

ŷyy111 ŷyy222

1 0

0 1

1

CCCCA
=

0

B@
�BBB

III

1

CA

Verification:

0

B@
III BBB

000 000

1

CA

2

64
�BBB

III

3

75 =

2

64
�BBB + BBB

000

3

75 =

2

64
000

000

3

75

Open Question: If our rectangular matrix is m⇥ n(m > n), how to solve it?

Answer: Similarly, we do G.E. to get rref. After switching columns, it will be of the
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form:

2

66666664

1
. . .

1

0 . . . 0

3

77777775

or

2

666666666666664

1
. . .

1

0

0

0 0 0 . . . 0

3

777777777777775

3.2.2. Remarks on solving linear system equations
There are two kinds of linear equations, and the classification criteria depends on

m and n:

Theorem 3.1 Let m denotes the number of equations, n denotes the number of

variables. For the number of solutions for AAAxxx = bbb, where AAA 2R
m⇥n, we obtain:

• m < n: either no solution or infinitely many solutions

• m� n: no solution; unique solution (N(AAA) = 000); or infinitely many solutions.

We prove for the m < n case first:

Proofoutline for m < n case: Recall that we can convert AAAxxx = bbb into RRRxxx = ccc. WLOG, we

switch columns of RRR to put pivot columns in the left-most:

2

666666666666664

1 ⇥ ⇥

. . . ⇥ ⇥

1 ⇥ ⇥

0 0 0 0 0

. . .

0 0 0 0 0

3

777777777777775

xxx =

2

666666666666664

c1
...

cr

cr+1
...

cn

3

777777777777775

,

where x1.x2. . . . , xr are pivot variables. Hence, we have (n� r) free variables, and N(AAA)

is spanned by (n� r) special vectors y1,y2, . . . ,yn�r.

It suffices to show that the m < n rectangular system does not have unique solution,
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i.e., N(AAA) > 0. It suffices to show n > r.

Obviously, r  m, and we have n > m, so we obtain n > r. ⌅

Equivalently, we obtain the proposition and the corollary below:

Proposition 3.1 For system AAAxxx = bbb, where AAA 2R
m⇥n, m < n,

it either has no solution or infinitely many solutions.

Corollary 3.1 For system AAAxxx = 000, where AAA 2R
m⇥n, m < n,

it always has infinitely many solutions.

3.2.2.1. What is r?

We ask the question again, what is r? Let’s see some examples before answering this

question.

⌅ Example 3.10 If we want to solve system of equations of size 1000 as the following:

8
>>>>>>>>><

>>>>>>>>>:

x1 + x2 = 3

2x1 + 2x2 = 6

. . .

1000x1 + 1000x2 = 3000

It seems very difficult when hearding it has 1000 equations, but the remaining 999 equations

could be redundant (They actually don’t exist):

2

66666664

1 1

2 2
...

...

1000 1000

3

77777775

=)

2

66666664

1 1

0 0
...

...

0 0

3

77777775

⌅

Here we see that only one equation x1 + x2 = 3 is real, the remaining part is not real.

So we claim that r is the number of “real” equations. But what is the definition for
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“real” equations? Let’s discuss the definition for linear dependence first.

3.2.3. Linear dependence

Definition 3.2 [linear dependence] The vectors vvv1,vvv2, . . . ,vvvn in linear space VVV are linearly

dependent if there exists c1, c2, . . . , cn 2R s.t.

c1vvv1 + c2vvv2 + · · ·+ cnvvvn = 000.

In other words, it means one of vi could be expressed as the linear combination of others.

Assume cn 6= 0, we can express vvvn as:

vvvn = �
c1

cn
vvv1 �

c2

cn
vvv2 � · · ·�

cn�1

cn
vvvn�1.

⌅

Definition 3.3 [linear independence] The vectors vvv1,vvv2, . . . ,vvvn in linear space VVV are

linearly independent if the equation

c1vvv1 + c2vvv2 + · · ·+ cnvvvn = 000

only has the trivial solution c1 = c2 = · · · = cn = 0.

In other words, if vvv1,vvv2, . . . ,vvvn are not linearly dependent, they must be linearly

independent. ⌅

R Note that only in this course, if we say vectors are dependent, we mean

they are linearly dependent. In other courses dependent may have other

definitions. In the following lectures, we simplify the noun dependent as dep.;

and the noun independent as ind.

Here we pick some examples to help you understand dep. and ind.:
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⌅ Example 3.11 • vvv1 = (1,1) and vvv2 = (2,2) are dep. because

(�2)⇥ vvv1 + vvv2 = 000.

• The only one vector vvv1 = 2 is ind. because

cvvv1 = 000() c = 0.

• The only one vector vvv1 = 0 is dep. because

2⇥ vvv1 = 000

• vvv1 = (1,2) and vvv2 = (0,0) are dep. because

0⇥ vvv1 + 1⇥ vvv2 = 000.

• The upper triangular matrix AAA =

2

66664

3 4 2

0 1 5

0 0 2

3

77775
has three column vectors:

vvv1 =

2

66664

3

0

0

3

77775
,vvv2 =

2

66664

4

1

0

3

77775
,vvv3 =

2

66664

2

5

2

3

77775

vvv1,vvv2,vvv3 are ind. because

c1vvv1 + c2vvv2 + c3vvv3 = 000() c1 = c2 = c3 = 0.(Why? because AAA is invertible)

⌅
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3.2.3.1. Remarks

How many solutions meet the linear dependence criteria?. Recall that in last

week we have studied that the following statements are equivalent: ()

• Vectors a1, a2, . . . , an 2R
m are dep.

• 9 nonzero ccc s.t. Ân
i=1 ciai = 000.

• 9 ccc 6= 000 s.t.

AAAccc :=


a1 . . . an

�
ccc = 000

For the third statement, if we could choose one ccc, then how many ccc can we choose?

For the m < n case, by corollary (3.1), we obtain:

Corollary 3.2 When vectors a1, a2, . . . , an 2 R
m(m < n) are dependent, there exists

infinitely solutions c1, c2, . . . , cn such that Ân
i=1 ciai = 000.

The real equations are essentially those linearly independent equations.

3.2.4. Basis and dimension
Definition 3.4 [Basis] The vectors v1, . . . ,vn form a basis for a vector space VVV if and

only if:

1. v1, . . . ,vn are linearly independent.

and

2. v1, . . . ,vn span VVV.

⌅

⌅ Example 3.12 In R
3,

•

2

66664

1

0

0

3

77775
,

2

66664

0

1

0

3

77775
,

2

66664

0

0

1

3

77775
form a basis.
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•

2

66664

1

0

0

3

77775
is not a basis, since it doesn’t span R

3.

•

2

66664

1

0

0

3

77775
,

2

66664

0

1

0

3

77775
,

2

66664

0

0

1

3

77775
,

2

66664

2

0

0

3

77775
don’t form a basis, since they aren’t linearly independent.

•

2

66664

1

0

0

3

77775
,

2

66664

1

2

3

3

77775
,

2

66664

2

1

3

3

77775
form a basis.

⌅

We find that the number of vectors for the basis of R
3 is always 3, is this a coincidence?

The theorem below gives the answer.

Theorem 3.2 If v1,v2, . . . ,vm is a basis; and w1,w2, . . . ,wn is another basis for the

same vector space VVV, then n = m.

In order to proof it, let’s try simple case first:

proofoutline. 1. In order to proof it, let’s try simple case first:

• Consider VVV = R case first: For R, the number 1 forms a basis. Let’s show

that 2 vectors in R cannot be a basis:

– Given any two vectors x and y, they are not a basis for R, since that

⇤ if x = 0 or y = 0, they are not ind.

⇤ otherwise, y = y
x ⇥ x =) y

x ⇥ x + (�1)⇥ y = 0. So they are not ind.

• Then we consider VVV = R
3 case:

For R
3,

2

66664

1

0

0

3

77775
,

2

66664

0

1

0

3

77775
,

2

66664

0

0

1

3

77775
is a basis. Our goal is to show that if v1,v2, . . . ,vm is

a basis, then m = 3.

– Let’s show that m = 4 is impossible, i.e., 4 vectors in R
3 cannot be a

basis.):
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⇤ It suffices to show that for 8a1, a2, a3, a4 2R
3 they must be dep.

⇤ Or equivalently, AAAxxx = 000 has nonzero solutions, where AAA=


a1 a2 . . . a4

�
2

R
3⇥4, which is true by corollary (3.1).

– Similarly, we could show any basis for R
3 satisfies m  3 (i.e., m=4,5,. . .

is impossible).

– Then let’s show that m = 2 is impossible, i.e., 2 vectors in R
2 cannot be

a basis:

⇤ It suffics to show that for 8a1, a2 2R
3, they cannot span the whole

space.

⇤ Otherwise, AAAxxx = bbb must have solution for arbitrary bbb 2R
3, where

AAA =


a1 a2

�
2R

3⇥2.

⇤ However, this kind system may have no solution, which is a contra-

diction.

– Similarly, we could show any basis for R
3 satisfies m � 3.

• The same arugment could show any basis for R
n satisfies m = n.

2. Next, let’s consider general vector space. We assume that n < m (by contradiction

method).

Given that v1, . . . ,vn and w1, . . . ,wm are the basis of VVV, our goal is to construct a

contradiction that w1, . . . ,wm cannot form a basis.

It suffices to show that 9(construct) ccc =


c1 c2 . . . cm

�T
6= 000 s.t.

c1w1 + c2w2 + · · ·+ cmwm = 0. (3.5)

Moreover, we can express w1, . . . ,wm in form of v1, . . . ,vn:

8
>>>>><

>>>>>:

w1 = a11v1 + · · ·+ a1nvn

. . .

wm = am1v1 + · · ·+ amnvn

(3.6)
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By (3.6), we can write (3.5) as:

0 =
m

Â
j=1

cjwj

=
m

Â
j=1

cj(
n

Â
i=1

ajivi)

=
m

Â
j=1

n

Â
i=1

cjajivi

=
n

Â
i=1

m

Â
j=1

cjajivi

=
n

Â
i=1

vi ⇥ (
m

Â
j=1

cjaji)

= v1 ⇥ (
m

Â
j=1

cjaj1) + v2 ⇥ (
m

Â
j=1

cjaj2) + · · ·+ vn ⇥ (
m

Â
j=1

cjajn)

So, in order to let LHS=0, we only need to let each of RHS=0, i.e.,

m

Â
j=1

cjaj1 =
m

Â
j=1

cjaj2 = · · · =
m

Â
j=1

cjajn = 0. (3.7)

In order to construct cj, we write (3.7) into matrix form:

AAATccc = 000, where AAA =


aij

�

1im;1jn
, ccc =


c1 c2 . . . cm

�T
.

The system AAATccc = 000 has infinitie nonzero solutions by corollary (3.1). Hence we

could construct infinitely such cj.

⌅

During the proof, we face two difficulties:

1. For arbitararily VVV, we write a concrete form to express w1,w2, . . . ,wm.

2. We write into matrix form to express Âm
j=1 cjaj1 = Âm

j=1 cjaj2 = · · · = Âm
j=1 cjajn = 0.

Since any basis for VVV contains the same number of vectors, we can define the number

of vectors to be dimension:
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Definition 3.5 [Dimension] The dimension for a vector space is the number of vectors

in a basis for it. ⌅

R Remember that vector space {0} has dimension 0.

In order to denote the dimension for a given vector space VVV, we often write it

as dim(VVV).

⌅ Example 3.13 • R
n has dimension n.

• {All m⇥ n matrix} has dimension m · n.

• {All n⇥ n symmetric matrix} has dimension n(n+1)
2 .

• Let PPP denote the vector space of all polynomials f (x) = a0 + a1x + · · ·+ anxn.

dim(PPP) 6= 3 since 1, x, x2, x3 are ind.

The same argument can show dim(PPP) doesn’t equal to any real number, so

dim(PPP)=•

⌅

Human beings often ask a question: for a line and a plane, which is bigger?

Does plane has more point than a line?. No, Cantor syas they have the same

“number” of points by constructing one-to-one mapping.

Furthermore, R,R2, . . . ,Rn has the same number of points.

Plane and line have different dimensions. However, a plane has more dimensions

than a line. So from this point of view, a plane is bigger than a line.

You should know some common knowledge for dimension:

1. Programmer lives in 222 dimension world. (They only live with binary.)

2. Engineer lives in 333 dimension world. (They only live with enign.)

3. Physician lives in 444 dimension world. (They discuss time.)

4. String theories states that our world is 111111 or 222666 dimension, which has been

proved by Qingshi Zhu.
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What is rank?. Finally let’s answer the question: What is rank?

rank = dimension of row space of a matrix.

We will discuss it in the next lecture.
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3.3. Friday

3.3.1. Review

Proposition 3.2 Undetermined system AAAxxx = bbb with m < n, i.e., number of equations

< number of unknowns, has no solution or infinitely many solutions.

We want to understand the meaning of rank: number of ”real” equations.

Then we introduce definition of linearly independence and linearly dependence.

The linear dependence has relation with the system:

Proposition 3.3 AAAxxx = 000 has nonzero solutions if and only if the column vectors of AAA

are dep.

Combining proposition (3.3) with (3.2), we derive the corollary:

Corollary 3.3 Any (n + 1) vectors in R
n are dep.

Proposition 3.4 Undetermined system AAAxxx = bbb with m � n, i.e., number of equations

� number of unknowns may have no solution or unique solution or infinitely many

solutions.

From this proposition we derive the corollary immediately:

Corollary 3.4 Any (n� 1) vectors in R
n cannot span the whole space.

Then we introduce the definition of basis:

Definition 3.6 [Basis] A set of ind. vectors that span this space is called the basis of

this space. ⌅

Then we introduce a theorem saying that All basis of a given vector space have the

same size.

Thus we introduce dimension to denote the number of vectors in a basis.
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3.3.2. More on basis and dimension
The basis of a given vector space has to satisfy two conditions:

linear independence
| {z }

not too many

+span the space
| {z }

not too few

The ind. constraint let the size of basis not too many. For example, if given 1000

vectors of R
3, they are very likely to be dep.

Spanning the space let the size of basis not too few. For example, given only 3

vectors of R
100, they cannot span the whole space obviously.

We claim that:

A basis = maximal ind. set

= minimal spanning set

Definition 3.7 [spanning set] v1,v2, . . . ,vn is said to be the spanning set of VVV if

VVV = span{v1,v2, . . . ,vn}.

⌅

⌅ Example 3.14 v1 =

0

BBBB@

1

2

1

1

CCCCA
is not a basis of R

3.

We can add v2 =

0

BBBB@

1

0

0

1

CCCCA
, which is ind. of v1. But v1,v2 still don’t form a basis.
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If we add one more vector v3 =

0

BBBB@

0

1

0

1

CCCCA
, then v1,v2,v3 form a basis of R

3. ⌅

Theorem 3.3 Let VVV be a space of dimension n > 0, then

1. Any set of n ind. vectors span VVV.

2. Any n vectors that span VVV are ind.

Here is the proof outline, but you should complete the proof in detail.

proofoutline. 1. Suppose v1,v2, . . . ,vn are ind. and v is an arbitarary vector in VVV.

Firstly, show that v1,v2, . . . ,vn,v is dep., thus derive the equation c1v1 + c2v2 +

· · ·+ cnvn + cn+1v = 000. Argue that the scalar cn+1 6= 0. Then we can express v in

form of v1,v2, . . . ,vn, i.e., v1,v2, . . . ,vn span VVV.

2. Suppose v1,v2, . . . ,vn span VVV. Assume v1,v2, . . . ,vn are dep. Then show that vn

could be written as form of other (n� 1) vectors, it follows that v1,v2, . . . ,vn�1

still span VVV. If v1,v2, . . . ,vn�1 are also dep, we can continue eliminating one vector.

We continue this way until we get an ind. spanning set with k < n elements,

which contradicts dim(VVV)= n. Therefore, v1,v2, . . . ,vn must be ind.

⌅

⌅ Example 3.15

0

BBBB@

1

1

2

1

CCCCA
,

0

BBBB@

2

1

3

1

CCCCA
,

0

BBBB@

1

3

2

1

CCCCA
are ind. =) they span R

3. ⌅

3.3.2.1. Clarification of dimension

Firstly, we need to understand “set”:

1. P , {All polynomials} = span{1, x, x2, . . .} =) dim(P) = •.

2. P3 , {All polynomials with degree  3} = span{1, x, x2, x3} =) dim(P) = 4.

3. Q , span{x2,1 + x3 + x10, x300} =) dim(Q) = 3.
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R dim of space 6= dim of the space it lives in.

For example, the line in R
100 has dim 1.

3.3.3. What is rank?
Definition 3.8 [Rank] The rank of matrix AAA is defined as the number of nonzero

pivots of rref of AAA. ⌅

⌅ Example 3.16

AAA =

2

66664

1 3 3 4

2 6 9 7

�1 �3 3 4

3

77775
row transform
=======)UUU =

2

66664

1 3 0 �1

0 0 1 1

0 0 0 0

3

77775

UUU has two pivots, hence rank(AAA) = rank(UUU) = 2. ⌅

However, the definition for rank is too complicated, can we define rank of AAA directly?

Key question: What quantity is not changed under row transformation?

Answer: Dimension of row space.

Definition 3.9 [column space] The column space of a matrix is the subspace of R
n

spanned by the columns.

In other words, suppose AAA =


a1 . . . an

�
, the column space of AAA is given by

C(AAA) = span{a1, a2, . . . , an}.

⌅

Definition 3.10 [row space] The row space of a matrix is the subspace of R
n spanned

by the rows.
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Suppose AAA =

2

66664

a1

. . .

an

3

77775
, the row space of AAA is given by

R(AAA) = span{a1, a2, . . . , an}.

The row space of AAA is essentially R(AAA) := C(AAAT), i.e., the column space of AAAT. ⌅

Proposition 3.5 Row transforamtion doesn’t change the row space

Proof. After row transformation, new rows are linear combinations of old rows.

Hence we have R(new rows) ⇢R(old rows).

More specifically, assuming AAA Row Transfom
========) BBB, then we have R(BBB) ⇢R(AAA).

Since row transformations are invertible, we also have BBB Row Transfom
========) AAA, thus we

have R(AAA) ⇢R(BBB).

In conclusion, we obtain R(BBB) =R(AAA). ⌅

Hence rank(AAA) = pivots of UUU = dim(row(UUU)) = dim(row(AAA)).

Hence we have a much simpler definition for rank:

Definition 3.11 [rank] The dimension of the row space is the rank of a matrix, i.e.,

rank(AAA) = dim(R(AAA)).

⌅

In the example (3.15), we find dim(row(AAA)) = dim(col(AAA)) = 2, is this a coinci-

dence? The fundamental theorem of linear algebra gives this answer:

Theorem 3.4 The row space and column space both have the same dimension rrr.

We call dim(C(AAA)) as column rank; dim(R(AAA)) as row rank.

In brevity, column rank=row rank= rank, i.e.,

dim(C(AAA)) = dim(R(AAA)) = rank(AAA), for matrix AAA
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Let’s discuss an example to have an idea of proving it.

⌅ Example 3.17

AAA =

2

66664

1 3 3 4

2 6 9 7

�1 �3 3 4

3

77775
row transform
=======)UUU =

2

66664

1 3 0 �1

0 0 1 1

0 0 0 0

3

77775

We notice that column rank of AAA = 222 and column rank of UUU = 222.

Why do they have the same column space dimension?

Wrong reason: AAA and UUU has the same column space. This is false. For

example, the first column of AAA is

0

BBBB@

1

2

�1

1

CCCCA
/2 col(UUU). The column spaces of AAA and UUU are

different, but the dimension of them are equal.

Right reason: AAAxxx = 000 iff. UUUxxx = 000. The same combinations of the columns are zero

(or nonzero) for AAA and UUU.

In other words, the r pivot columns (for both AAA and UUU) are independent; the (n� r)

free columns (for both AAA and UUU) are dependent.

For example, for UUU, column 1 and 3 are ind.(pivot columns); column 2 and 4 are

dep.(free columns).

For AAA, column 1 and 3 are also ind.(pivot columns); column 2 and 4 are also dep.(free

columns). ⌅

This example shows that Row transformation doesn’t change independence relations

of columns. We give a formal proof below:

Proposition 3.6 Suppose matrix AAA is converted into BBB by row transformation. If a set

of columns of AAA are ind. then so are the corresponding columns of BBB.

Proof. Assume AAA =


a1 . . . an

�
, BBB =


b1 . . . bn

�
.

Without loss of generality (We often denote it as “WLOG”), we assume a1, a2, . . . , ak

are ind.(We can achieve it by switching columns.)
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We define the sub-matrices ÂAA =


a1 . . . ak

�
and B̂BB =


b1 . . . bk

�
.

1. Notice that ÂAA could be converted into B̂BB by row transformation.

Hence ÂAAxxx = 000 and B̂BBxxx = 000 has the same solutions.

2. On the other hand, a1, a2, . . . , ak are ind. columns.

Hence ÂAAxxx = 000 has the only zero solution.

Combining (1) and (2), B̂BBxxx = 000 has the only zero solution. Hence b1,b2, . . . ,bk are

ind. ⌅

We can answer why the coincidence shown in the example, i.e., AAA and UUU has the

same column space dimension:

Proposition 3.7 Row transformation doesn’t change the column rank.

Proof. Assume AAA row transform
=======) BBB.

Suppose dim(C(AAA)) = r, then we pick r ind. columns of AAA. After row transforma-

tion, they are still ind. Hence dim(C(BBB)) � r = dim(col(AAA)).

Since row transformations are invertible, we get BBB row transform
=======) AAA. Similarly, dim(C(AAA))�

dim(C(BBB)).

Hence dim(C(AAA)) = dim(C(BBB)). ⌅

Combining proposition (3.5) and (3.7), we can proof theorem (3.4):

Proof for theorem 3.4. Assume AAA row transform
=======)UUU(rref).

• Proposition (3.5) =) dim(R(AAA)) = dim(R(UUU)).

• Proposition (3.7) =) dim(C(AAA) = dim(C(UUU)).

• Notice that dim(R(UUU)) denotes the number of pivots, dim(C(UUU)) denotes the

number of pivot columns. Obviously, dim(R(UUU)) = dim(C(UUU)).

Hence dim(R(AAA)) = dim(C(AAA)). ⌅

R dim(R(UUU)) essentially denotes the number of “real” equations. dim(C(UUU))

denotes the number of “real” variables.
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So Theorem 3.4 implies that the number of “real” equations should equal to

the number of “real” variables.

3.3.3.1. What is the null space dimension?

Assume the system AAAxxx = bbb has n variables.

Proposition 3.8 For matrix AAA,

rank(AAA) + rank(N(AAA)) = n.

Proof. Number of pivot varibales + Number of free variables = nnn. ⌅

Note that bbb 2 col(AAA) iff. AAAxxx = bbb for some xxx.

Hence C(AAA) denotes all possible vectors in the form AAAxxx. Hence we call C(AAA) as

“range space” of AAA, which is denoted as range(AAA).

Equivalently, we have dim(range(AAA)) + dim(N(AAA)) = n.

Proposition 3.9 If AAAxxx = bbb has at least one solution, then rank(AAA) = rank(


AAA bbb
�
).

⌅ Example 3.18 Suppose AAA =


a1 a2 a3

�
. If AAAxxx = bbb has at least one solution, then

rank(


a1 a2 a3

�
) = rank(


a1 a2 a3 b

�
). ⌅

Proofoutline.

AAAxxx = bbb() bbb 2 C(AAA)

Hence bbb is the linear combination of columns of AAA. Adding one more column bbb into AAA

doesn’t change the dimension of C(AAA). Hence rank(AAA) = rank(


AAA bbb
�
). ⌅

Proposition 3.10 If rank(AAA) n� 1 for m⇥ n matrix AAA, then AAAxxx = bbb has no solution

or infinitely many solutions.
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Proofoutline.

dim(C(AAA)) + dim(N(AAA)) = n =) dim(N(AAA)) � 1

So we have special solutions for AAAxxx = bbb. For the particular solution, if doesn’t exist,

then we have no solution, otherwise we have infinitely many solutions. ⌅

Definition 3.12 [Full Rank] For m⇥ n matrix AAA, if rank(AAA) = min(m,n), then we say

AAA is full rank. ⌅

Theorem 3.5 For n⇥ n matrix AAA, it is invertible iff. rank(AAA) = n.

Proof. Sufficiency. Assume rank(AAA) = r < n, then by row transformation, we can convert

AAA into UUU :=

2

64
IIIr BBB

000 000

3

75(rref), where BBB 2R
r⇥(n�r). We can represent this process in matrix

notation:

PPPAAA = UUU :=

2

64
IIIr BBB

000 000

3

75 ,

where PPP is the product of row transformation matrices, which is obviously invertible.

Since AAA is invertible, we let AAA�1 =

2

64
CCC1

CCC2

3

75

(r+(n�r))⇥n

. It follows that

PPP = PPPIIIn = PPP(AAAAAA�1) = (PPPAAA)AAA�1 = UUUAAA�1 =

2

64
IIIr BBB

000 000

3

75

2

64
CCC1

CCC2

3

75 =

2

64
CCC1 + BBBCCC2

000

3

75 .

Since PPP has (n� r) zero rows as shown above, it is not invertible, which is a contradic-

tion.

Necessity. If AAA is full rank, then it has n pivots, then by row transformation we can

convert it into III(rref). We can represent this process in matrix notation:

PPPAAA = III
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where PPP is the product of row transformation matrix. Hence PPP is the left inverse of AAA,

AAA is invertible. ⌅

3.3.3.2. Matrices of rank 1
⌅ Example 3.19

AAA =

2

66666664

2 1 1

4 2 2

8 4 4

�2 �1 �1

3

77777775

vvvT=

"

2 1 1
#

==========

2

66666664

vvvT

2vvvT

4vvvT

�vvvT

3

77777775

=

2

66666664

1

2

4

�1

3

77777775

vvvT
uuu=

"

1 2 4 �1
#T

============== uuuvvvT

Here rank(AAA) = 1. ⌅

Proposition 3.11 Every rank 1 matrix AAA has the form AAA = uuuvvvT = column vector⇥

row vector.

You may prove it directly by SVD decomposition (we will learn it later, but note

that most theorems or propositions could be proved by SVD). Alternatively, we have

another proof:

Proof. We set

AAA =

2

66666664

ccc1

ccc2
...

cccn

3

77777775

,

where ccci is row vector. WLOG, we set ccc1 6= 000 and ccc1 =

✓
a1b1 a1b2 . . . a1bn

◆
, where

a1 6= 0, and bi(i = 1, . . . ,n) are not all zero.

Since rank(AAA) = 1, we have dim(R(AAA)) = 1. Hence other ccci are dep. with ccc1. So

we set

bi =
ai
a1

for i = 1,2, . . . ,n.
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Thus we construct the form of AAA:

AAA =

2

66666664

a1b1 a1b2 . . . a1bn

a2b1 a2b2 . . . a2bn
...

...
...

anb1 anb2 . . . anbn

3

77777775

=

2

66666664

a1

a2
...

an

3

77777775


b1 b2 . . . bn

�

⌅

Question: What about the form of rank 2?

Answer: By SVD, it has the form uuu1vvvT
1 + uuu2vvvT

2 .

Enjoy Your Midterm!
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3.4. Assignment Four

1. Let

AAA =

2

66664

1 2 3 1 �3

2 5 5 4 9

3 7 8 5 6

3

77775

(a) Compute the reduced row echelon form UUU of AAA.

(b) Compute all solutions of AAAxxx = bbb, where bbb =


1 1 2
�T

.

(c) Compute all solutions of AAAxxx = bbb, where bbb =


b1 b2 b3

�T
.

Note:Identify when there is no solution, and when the solution exists, write

down all solutions in terms of b1,b2,b3.

2. In each of the following, determine the dimension of the space:

(a) span

8
>>>><

>>>>:

0

BBBB@

1

�2

2

1

CCCCA
,

0

BBBB@

2

�2

4

1

CCCCA
,

0

BBBB@

�3

3

6

1

CCCCA

9
>>>>=

>>>>;

;

(b) col(AAA), where AAA =

2

66664

1 �2 3 2

�1 2 �2 �1

2 �4 5 3

3

77775
;

(c) N(BBB), where BBB =

2

66664

1 3 2

2 1 4

4 7 8

3

77775
;

(d) span{(x� 2)(x + 2), x2(x4 � 2), x6 � 8};

(e) span{5,cos2x, cos2 x} as a subspace of C[�p,p].

C[�p,p] denotes the space of continuous functions defined on the domain

C[�p,p].

3. Let AAA be an 6⇥ n matrix of rank r. For each pair of values of r and n below,

how many solutions could one have for the linear system AAAxxx = bbb? Explain your

answers.
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(a) n = 7,r = 5;

(b) n = 7,r = 6;

(c) n = 5,r = 5.

4. Prove the following proposition:

Let VVV be a vector space of dimension n > 0, then

(a) Any set of n linearly independent vectors in VVV form a basis.

(b) Any set of n vectors that span VVV form a basis.

Hint: refer to theorem(3.3)

5. (a) Assume UUU.VVV are subspaces of a vector space WWW.

Define UUU + VVV = {u + v|u 2UUU,v 2 VVV}, i.e. each vector in UUU + VVV is the sum

of one vector in UUU and one vector in VVV.

Prove that UUU + VVV is a subspace of WWW.

(b) Prove the intersection UUU \VVV = {x|x 2 UUU and x 2 VVV} is also a subspace of

WWW.

(c) In R
4, let UUU be the subspace of all vectors of the form


u1 u2 0 0

�T
, and

let VVV be the subspace of all vectors of the form


0 v2 v3 0
�T

. What are

the dimensions of UUU,VVV,UUU \VVV,UUU + VVV?

(d) If UUU \VVV = {000}, prove that dim(UUU + VVV) = dim(UUU) + dim(VVV).

6. Let AAA and BBB be m⇥ n matrices. Prove that

rank(AAA + BBB)  rank(AAA) + rank(BBB).

7. Let AAA 2R
m⇥n is an arbitrary matrix, BBB 2R

n⇥n is a square matrix. Prove that

(a) rank(AAABBB)  rank(AAA);

(b) If rank(BBB) = n, then rank(AAABBB) = rank(AAA).

8. Prove that any (n� 1) vectors in R
n cannot form a basis.

Note: this is a corollary of theorem(3.2). You should prove it by assuming

theorem(3.2) is unknown. You may check the proposition(3.2) as hint.
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Chapter 4

Midterm

4.1. Sample Exam

DURATION OF EXAMINATION: 2 hours in-class

This examination paper includes 6 pages and 6 problems. You are responsible for ensuring that

your copy of the paper is complete. Bring any discrepancy to the attention of your invigilator.

1. (30 points) Solving a linear system of equations

For a real number c, consider the linear system:

x1 + x2 + cx3 + x4 = c (4.1)

�x2 + x3 + 2x4 = 0 (4.2)

x1 + 2x2 + x3 � x4 = �c (4.3)

do the following:

(a) Write out the coefficient matrix of the system.

(b) Write out the augmented matrix for this system and calculate its row-reduced

echelon form.

(c) Write out the complete set of solutions in vector form.

(d) What is the rank of the coefficient matrix AAA? Justify your answer.
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(e) Find a basis of the subspace of solutions when c = 0.
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2. (20 points) Vector space

Find a basis for each of the following spaces.

• Space of n⇥ n skew symmetric matrices (i.e. those matrix satisfying AAA =�AAAT)

• The space of all polynomials of the form ax2 + bx + 2a + 3b, where a,b 2R.

• span{x� 1, x + 1,2x2 � 2}.
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3. (15 points) Matrix multiplications

Prove the following statements:

(a) Define the set of n⇥ n diagonol matrices to be k. Prove that for a diagonal ma-

trix DDD with distinct elements (i.e. DDDii 6= DDDjj,8i 6= j), the set {AAA 2R
n⇥n|AAADDD =

DDDAAA} is exactly k.

(b) If an n⇥ n matrix AAA satisfies AAABBB = BBBAAA for any n⇥ n matrix BBB, then AAA must

be of the form cIII, where c is a scalar.
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4. (10 points) Matrix Inverse

(a) Compute the inverse of the matrix

0

B@
5 4

4 5

1

CA .

(b) Compute the inverse of the matrix

0

B@
a b

c d

1

CA if exists. When does the inverse

of the matrix exist?
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5. (15 points) Matrix rank

(a) Suppose uuu 2R
n⇥1 satisfies kuuuk= 1. What is the rank of the matrix III � uuuuuuT?

(b) Suppose uuu 2 R
n⇥1 satisfies kuuuk = 1. Define PPP = III � uuuuuuT. What is the rank

of PPP2? What about PPP5?

(c) Suppose xxx,yyy 2R
n⇥1. What is the rank of the matrix III � xxxyyyT?
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6. (20 points)

State your answers. No justifications are required.

(a) We know a2 � b2 = (a + b)(a � b), where a,b 2 R. When AAA, BBB are square

matrices, can we represent AAA2
� BBB2 by only (AAA + BBB)(AAA� BBB)?

(b) True or False: If AAA and BBB are invertible, then AAA + BBB is also invertible.

(c) True or False: The set of all real-valued functions on R such that f (1) = 0 is a

vector space.

(d) True or False: The product of two invertible n⇥ n matrices is invertible

(e) True or False: If two matrices have the same reduced row echelon form, then

they have the same column space.

(f) True or False: If two columns of the square AAA are the same, then AAA cannot

be invertible.

(g) True or False: For an m⇥ n matrice AAA, rank(AAA) + dim(row(AAA)) = n.
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4.2. Midterm Exam

DURATION OF EXAMINATION: 2 hours in-class

This examination paper includes 6 pages and 6 problems. You are responsible for ensuring that

your copy of the paper is complete. Bring any discrepancy to the attention of your invigilator.

1. (30 points) Solving a linear system of equations

For the system

x� y + 3z = 1 (4.4)

y = �2x + 5 (4.5)

9z� x� 5y + 7 = 0 (4.6)

do the following:

(a) Write the system in the matrix form

AAAxxx = bbb for xxx =

0

BBBB@

x

y

z

1

CCCCA
.

(b) Write out the augmented matrix for this system and calculate its row-reduced

echelon form.

(c) Write out the complete set of solutions (if they exist) in vector form using

parameters if needed.

(d) Calculate the inverse of the coefficient matrix AAA you found in part (a), if it

exists, or show that AAA�1 doesn’t exist.

(e) What is the rank of matrix AAA? Justify your answer.
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2. (20 points) Vector space

Let V be the subspace of R
4 given by all solutions to the equation 2x1� x2 + 3x3 =

0.

(a) Give the set of all solutions in terms of free variables.

(b) What is the dimension of V? Justify your answer.

(c) Find a 4 by 3 matrix AAA such that the column space of AAA is equal to V.

(d) Find a 1 by 4 matrix BBB such that the null space of BBB is equal to V.
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3. (15 points) Matrix multiplications

If possible, find 3 by 3 matrices BBB such that

(a) BBBAAA = 2AAA for every AAA.

(b) BBBAAA = 2BBB for every AAA.

(c) BBBAAA has the first and last rows of AAA reversed.

(d) BBBAAA has the first and last columns of AAA reversed.
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4. (10 points) Matrix Inverse

For an m⇥ n matrix AAA, we say an n⇥m matrix CCC is a right inverse of AAA if AAACCC = IIIm,

where IIIm is the m⇥m identity matrix.

(a) Prove that AAA has a right inverse if and only if AAAxxx = bbb has at least one solution

for any bbb 2R
m. Prove that the rank of such AAA must be m.

(b) Compute a right inverse of the following matrices (if exists):

AAA =

✓
1 2 7p

◆

BBB =

0

BBBB@

1

2

7p

1

CCCCA
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5. (15 points) Matrix rank

(a) For a square matrix AAA, is rank(AAAT + AAA) = rank(AAA) always true? Justify your

answer.

(b) Prove that for any m by n matrix AAA, the null space of AAA and the null space

of AAAT AAA are the same.

(c) Prove that for any m by n matrix AAA, rank(AAAT AAA) = rank(AAA).
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6. (20 points)

State your answers. No justifications are required.

(a) If AAA = AAAT and BBB = BBBT which of these matrices are certainly symmetric?

i. AAA2
� BBB2

ii. (AAA + BBB)(AAA� BBB)

iii. AAABBBAAA

iv. AAABBBAAABBB

(b) Let AAA be a 5⇥ 8 matrix with rank equal to 5 and let bbb be any vector in R
5.

How many solutions does this system have?

(c) True or False: If two n⇥ n matrices AAA and BBB are both singular, then AAA + BBB

is also singular.

(d) True or False: The set of n⇥ n matrices with rank no more than r(r  n) is

a vector space.

(e) True or False: The set of all real-valued functions on R such that f (1) = 1 is a

vector space.
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Chapter 5

Week4

5.1. Friday

5.1.1. Linear Transformation

We start with a matrix AAA. When multiplying AAA with a vector vvv, it essentially transforms

vvv to another vector AAAvvv. Matrix multiplication L(vvv) = AAAvvv gives a linear transforma-

tion:

Definition 5.1 [linear transformation] A transformation L assigns an output T(vvv) to

each inpout vector vvv in VVV.

The transformation L(·) is siad to be a linear transformation if it satisfies

L(avvv1 + bvvv2) = aL(vvv1) + bL(vvv2)

for all vectors v1,v2 and scalars a, b. ⌅

Key Observation: If the input is vvv = 000, the output must be L(vvv) = 000.

5.1.1.1. The idea of linear transformation

Given the linear transformation L : R
n 7! R

m, let’s show that in order to study the

output, it suffices to start from the basis of our output:

Assume the basis of R
n is {e1, e2, . . . , en}, where L(ei) = ai 2R

m for i = 1, . . . ,n. The

linearity of transformation extends to the combinations of nnn vectors.

Hence given any vector xxx = x1e1 + x2e2 + · · ·+ xnen 2R
n, we can express its trans-
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formation in matrix multiplication form:

L(xxx) = L(x1e1 + x2e2 + · · ·+ xnen)

= x1L(e1) + x2L(e2) + · · ·+ xnL(en)

= x1a1 + x2a2 + · · ·+ xnan =


a1 a2 . . . an

�

2

66666664

x1

x2

. . .

xn

3

77777775

= AAAxxx

where ai := L(ei), and AAA is a m⇥ n matrix with columns a1, . . . , an.

5.1.1.2. Matrix defines linear transformation

Conversely, given m⇥ n matrix AAA, L(xxx) = AAAxxx defines a linear mapping. This is because

matrix multiplication is also a linear operator.

R Transformations have a new “language”. For example, for nonlinear transfor-

mation, if there is no matrix, we cannot talk about column space. But this

idea could be rescued. We know the column space consists of all outputs AAAvvv,

the null space consists of all inputs for which AAAvvv = 000. We could generalize

those terms into “range” and “kernel”:

Definition 5.2 [range] For a linear transformation L : V 7!W, the range (or image) of L

refers to the set of all outputs T(vvv), which is denoted as:

Range(L) = {L(xxx) : x 2 VVV}

Sometimes we also use notation Im(L) to express the same thing. ⌅

The range corresponds to the column space. If L(xxx) = AAAxxx, we have Range(L) =

C(AAA).
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Definition 5.3 [kernel] The kernel of L refers to the set of all inputs for which L(vvv) = 000,

which is denoted as:

ker(L) = {xxx : L(xxx) = 000}

⌅

Kernel corresponds to the null space. If L(xxx) = AAAxxx, we have ker(L) = N(AAA).

R For linear transformation L : VVV 7!WWW, where L(xxx) = AAAxxx. We have two rules:

L(·) :

8
><

>:

N(AAA) 7! {000}

VVV 7! col(AAA)

5.1.2. Example: differentiation
Key idea of this section:

Suppose we know L(vvv1), . . . , L(vvvn) for the basis vectors vvv1, . . . ,vvvn,Then

the linearity property produces L(vvv) for every other input vector vvv

Reason: Every vvv has a unique combination c1vvv1 + · · · + cnvvvn of the basis vector vvvi.

Suppose L is a linear transformation, then L(vvv) must be the same combination

c1L(vvv1) + · · ·+ cnL(vn) of the known outputs L(vvvi).

Derivative is a linear transformation. The derivative of the functions 1, x, x2, x3

are 0,1,2x,3x2. If we consider “taking the derivative” as a transformation, whose

inputs and outputs are functions, then we claim that the derivative transformation is

linear:

L(vvv) =
dvvv
dx

obeys the linearity rule
d

dx
(cvvv + dwww) = c

dvvv
dx

+ d
dwww
dx

If we consider 1, x, x2, x3 as vectors instead of functions, we notice they form a basis for

the space VVV := {polynomials with degree 3}. Find derivatives of these four basis tells

us all derivatives in VVV:
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⌅ Example 5.1 Given any vector vvv in VVV, it can be expressed as vvv = a + bx + cx2 + dx3.

We want to find the derivative transformation output for vvv:

L(vvv) = aL(1) + bL(x) + cL(x2) + dL(x3)

= a⇥ (0) + b⇥ (1) + c⇥ (2x) + d⇥ (3x2)

= b + 2cx + 3dx2

Can we express this linear transformation L by a matrix AAA? The answer is Yes:

The derivative transforms the space VVV of cubics to the space WWW of quadratics. The

basis for VVV is 1, x, x2, x3. The basis for WWW is 1, x, x2. It follows that The derivative matrix

is 3 by 4 :

AAA :=

2

66664

0 1 0 0

0 0 2 0

0 0 0 3

3

77775
= matrix form of derivative L.

Why do we define the derivative matrix? Because multiplying by AAA agrees with trans-

forming by L. The derivative of vvv = a + bx + cx2 + dx3 is L(vvv) = b + 2cx + 3dx2. The

same numbers b,2c,3d appear when we multiply by matrix AAA:

Take the derivative

2

66664

0 1 0 0

0 0 2 0

0 0 0 3

3

77775

2

66666664

a

b

c

d

3

77777775

=

2

66664

b

2c

3d

3

77775
.

What does the matrix

2

66666664

a

b

c

d

3

77777775

and

2

66664

b

2c

3d

3

77775
mean?

It is the coordinate vector of vvv and L(vvv). If we consider a + bx + cx2 + dx3 as a
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vector, then it’s better for us to study its corresponding coordinate vector

2

66666664

a

b

c

d

3

77777775

.

Hence, taking derivative of vvv is the same as multiplying matrix AAA by its coordinate

vector. ⌅

5.1.2.1. The inverse of the derivative.

The integral is the inverse of the derivative. . That is from the Fundamental

Theorem of Calculus. We review it from the perspective of linear algebra. The integral

transformation L�1 that takes the integral from 0 to x is also linear! Applying L�1 to

1, x, x2, which are www1,www2,www3:

Integration is L�1
Z x

0
1dx = x,

Z x

0
x dx =

1
2

x2,
Z x

0
x2 dx =

1
3

x3.

By linearity, the integral of www = B + Cx + Dx2 is L�1(www) = Bx + 1
2 Cx2 + 1

3 Dx3. The

integral of a quadratic is a cubic. The input space of L�1 is the quadratics, the output

space is the cubics. Integration takes W back to V. Integration matrix will be 4 by 3:

Take the integral

2

66666664

0 0 0

1 0 0

0 1
2 0

0 0 1
3

3

77777775

2

66664

B

C

D

3

77775
=

2

66666664

0

B
1
2 C
1
3 D

3

77777775

.

If our input is www = B + Cx + Dx2, our output integral is 0 + Bx + 1
2 Cx2 + 1

3 Dx3.
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The derivative and the integration are essentially matrix multiplication. We

have the corresponding derivative and integration matrix:

AAA =

2

66664

0 1 0 0

0 0 2 0

0 0 0 3

3

77775
AAA�1 =

2

66666664

0 0 0

1 0 0

0 1
2 0

0 0 1
3

3

77777775

I want to call this matrix AAA�1, though rectangular matrices don’t have inverses. Note

that AAA�1 is the right inverse of matrix AAA! (Do you remember the definition that shown

in mid-term?)

AAAAAA�1 =

2

66664

1 0 0

0 1 0

0 0 1

3

77775
but AAA�1AAA =

2

66666664

0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

3

77777775

.

This is reasonable. If you integrate a function and then differentiate, you get back to

the start. Hence AAAAAA�1 = III. But if you differentiate before integrating, the constant

term is lost.

The integral of the derivative of 1 is zero.

L�1L(1) = integral of zero function = 0.

Summary:. In this example, we want to take the derivative. Then we let VVV be a vector

space of polynomials with degree  3. Its basis is given by E = {1, x, x2, x3}. Any v 2 VVV

there is a unique linear combination of the basis vectors that equals to v:

v = a + bx + cx2 + dx3
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We write the coordinate vector of v w.r.t. to E:

[v]E =

2

66666664

a

b

c

d

3

77777775

Then we postmultiply AAA by [v]E to get the corresponding coordinate vector of output

space:

[L(v)]F = AAA[v]E

where F = {1, x, x2}.

Here we give the formal definition for the coordinate vector:

Definition 5.4 [coordinate vector] Let VVV be a vector space of dimension n and let

B = {v1,v2, . . . ,vn} be an ordered basis for VVV. Then for any v 2 VVV there is a unique

linear combination of the basis vectors such that

v = a1v1 + a2v2 + · · ·+ anvn

where a1, . . . ,an are scalars.

The coordinate vector of v w.r.t. to B is defined by

[v]B =

2

66664

a1
...

an

3

77775

Hence, vector v could be expressed as: v =


v1 v2 . . . vn

�
⇥ [v]B. ⌅

More specifically, the linear transformation of vectors is essentially the matrix multipli-

cation of the corresponding coordinate vectors:
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Theorem 5.1 Let E = {v1, . . . ,vn} be a basis for VVV; F = {w1, . . . ,wm} be a basis for

WWW. Given linear transformation L : VVV 7!WWW, for any vector v 2 VVV, there exists m⇥ n

matrix AAA such that

[L(v)]F = AAA[v]E

If we let WWW = VVV, then we obtain a more commonly useful corollary:

Corollary 5.1 Given linear transformation L : VVV 7! VVV. We set E = {a1, . . . ,an} to be the

basis of VVV. Then given any vector v, there exists n⇥ n matrix AAA such that

[L(v)]E = AAA[v]E

5.1.3. Basis Change

Basis Change is essentially matrix multiplication. Suppose L : VVV 7! VVV. E =

{v1, . . . ,vn} is a basis for VVV, F = {u1, . . . ,un} is another basis for VVV. Then vector u1, . . . ,un

could be expressed by vectors v1, . . . ,vn. So we set

u1 = s11v1 + s12v2 + · · ·+ s1nvn,

u2 = s21v1 + s22v2 + · · ·+ s2nvn,

. . .

un = sn1v1 + sn2v2 + · · ·+ snnvn.

We could write this system into matrix form:

(u1, . . . ,un) = (v1, . . . ,vn)

0

BBBBBBB@

s11 s12 . . . s1n

s21 s22 . . . s2n
...

... . . .
...

sn1 sn2 . . . snn

1

CCCCCCCA

.
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We set SSS = (sij). Hence we obtain:

(u1, . . . ,un) = (v1, . . . ,vn)SSS. (5.1)

You should prove it by yourself that SSS is invertible. Hence we have:

(u1, . . . ,un)SSS�1 = (v1, . . . ,vn). (5.2)

We can express linear transformation in terms of different basis. Given any

vector x 2 VVV, we want to study the relationship between L(x) and [x]F:

L(x) =


v1 v2 . . . vn

�
⇥ [L(x)]E

=


v1 v2 . . . vn

�
⇥ (AAA[x]E)  due to corollary (5.1)

=


u1 u2 . . . un

�
SSS�1
⇥ (AAA[x]E)

(5.3)

• We claim that [x]E = SSS[x]F:

For any vector x 2 VVV, we obtain:

x =


v1 v2 . . . vn

�
⇥ [x]E

=


u1 u2 . . . un

�
⇥ [x]F

=


v1 v2 . . . vn

�
⇥ SSS[x]F

Hence [x]E = SSS[x]F.

Substituting [x]E = SSS[x]F into Eq.(5.3), we obtain:

L(x) =


u1 u2 . . . un

�
SSS�1AAASSS[x]F

What do the following process mean? We know that given basis E = {v1, . . . ,vn}, per-
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forming linear transformation on any vector x is just the same as matrix multiplication:

L(x) =


v1 v2 . . . vn

�
⇥ AAA[x]E

In summary,

1. The linear transformation is essentially postmultiplying matrix for the coordiante

vector:

x =


v1 v2 . . . vn

�
⇥ [x]E =) L(x) =


v1 v2 . . . vn

�
⇥ AAA[x]E

2. If we change another basis F = {u1, . . . ,un}, we must change AAA into SSS�1AAASSS:

x =


u1 u2 . . . un

�
⇥ [x]F =) L(x) =


u1 u2 . . . un

�
⇥ SSS�1AAASSS[x]F

It suffices to define BBB := SSS�1AAASSS, The matrix BBB is said to be similar to AAA.

Definition 5.5 [Similar] Let AAA, BBB be n⇥ n matrix. If there exists invertible n⇥ n matrix

SSS such that BBB = SSS�1AAASSS, then we say that AAA is similar to BBB. ⌅

5.1.4. Determinant

The determinat of a square matrix is a single number, which contains many amazing

amount of information about the matrix. It has four major uses:

The determinant is zero if and only if the matrix has no inverse.

It can be used to calculate the area or volumn of a box. |det(AAA)| is the

volume of the parallelepiped P = {y = Âm
i=1 aiaaai | ai 2 [0,1]}:
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Figure 5.1: The parallelepiped P = {y = Â3
i=1 aiaaai | ai 2 [0,1]}, where r1,r2,r3 are

aaa1, aaa2, aaa3 on R
3

The product of all the pivots = (±1)⇥the determinant. For a 2 by 2 matrix

AAA =

2

64
a b

c d

3

75, the pivots are a and d� ( c
a )b. The product of pivots is the determinant:

Product of pivots a(d� c
a b) = ad� bc which is det AAA

Compute determinants to find AAA�1 and AAA�1bbb. (Cramer’s Rule).

5.1.4.1. The properties of the Determinant

We don’t intend to define the determinant directly by its formulas. It’s better to start

with its properties. These properties are simple, but they prepare for the formulas.

R Brackets for the matrix, straight bars for its determinant. For example,

The determinant of

2

64
a b

c d

3

75 is

�������

a b

c d

�������
= ad� bc

The determinant is written in two ways, det AAA or |AAA|.

We will introduce three basic properties, then we will show how properties 1� 3

derive other properties.
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1. The determinant of the nnn by nnn identity matrix is 1.

�������

1 0

0 1

�������
= 1 and

����������

1
. . .

1

����������

= 1.

2. The determianant changes sign when two rows are exchanged. (sign reversal)

Check:

�������

c d

a b

�������
= �

�������

a b

c d

�������
(both sides equal bc� ad).

3. The determinant is a linear function of each row separately. (all other rows

stay fixed).

multiply row 1 by any number ttt

�������

ta tb

c d

�������
= t

�������

a b

c d

�������

Add row 1 of AAA to row 1 of BBB:

�������

a1 + a2 b1 + b2

c d

�������
=

�������

a1 b1

c d

�������
+

�������

a2 b2

c d

�������

Note that this rule deos not mean det(AAA + BBB) = det AAA + det BBB.

Note that this rule does not mean det(tAAA) = tdet(AAA).

Actually, det(tAAA) = tn det AAA. This is reasonable. Imagining that expanding a

rectangle by 2, its area will increase by 4. Expand an n�dimensional box by t

and its volumn will increase by tn.

Pay special attention to property 1⇠ 3. They completely determine the det AAA. We

could stop here to find a formula for determinants. But before that we prefer to

derive other properties that follow directly from the first three:
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4. If two rows of AAA are equal, then det AAA = 000.

Check 2 by 2:

�������

a b

a b

�������
= 0.

Property 4 follows from Property 2.

Proofoutline. Exchange the two equal row. The determinant DDD is supposed to change

sign. But also the matrix is not changed, so we have �DDD = DDD =) DDD = 0. ⌅

5. Adding a constant multiple of a row to another row doesn’t change det AAA.

�������

a + lc b + ld

c d

�������
=

�������

a b

c d

�������
+

�������

lc ld

c d

�������
=

�������

a b

c d

�������
+ l

�������

c d

c d

�������
=

�������

a b

c d

�������
= det AAA

Conclusion: The determinant is not changed by the usual elimination step from AAA to

UUU. Since every row exchange reverses the sign, we have det AAA = ±detUUU.

6. If AAA is triangular, then det AAA = product of diagonal entries.

Triangular

�������

a b

0 d

�������
= ad and also

�������

a 0

c d

�������
= ad

Suppose all diagonal entries of AAA are nonzero. We do Gaussian Elimination to

convert AAA into diagonal matrix:

det

2

66666664

a11 0
a22

. . .

0 ann

3

77777775

= a11a22 . . . ann.

Factor a11 from the first row by property 3; then factor a22 from the second

row;. . . . . . . Finally the determinant is a11⇥ a22⇥ a33 . . .⇥ ann ⇥ det III = a11⇥ a22⇥

a33 . . .⇥ ann.

7. det(AAABBB) = det(AAA)det(BBB).
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Proof.

• If |BBB| is zero, it’s easy to verify that BBB is singular, then AAABBB is singular. Thus

det(AAABBB) = 0 = det(AAA)det(BBB).

• Suppose |BBB| is not zero, and AAA, BBB is n ⇥ n matrix. Consider the ratio

D(AAA) = |AAABBB|
|BBB| . Check that this ratio has properties 1,2,3. If so, D(AAA) has to

be the determinant, say, |AAA|. Thus we have |AAA| = |AAABBB|
BBB :

Property 1 (Determinant of I) If AAA = III, then the ratio becomes D(AAA) =

|BBB|
|BBB| = 1.

Property 2 (Sign reversal) When two rows of AAA are exchanged, the same

two rows of AAABBB are also exchanged. Therefore |AAABBB| changes sign and so

does the ratio |AAABBB|
BBB .

Property 3 (Linearity) When row 1 of AAA is multiplied by t, so is row 1

of AAABBB. Thus the ratio is also increased by t. Thus we still have |AAA| = |AAABBB|
BBB .

If we Add row 1 of AAA1 to row 1 of AAA2. Then row 1 of AAA1BBB also adds to row

1 of A2B. By property three, determinants add. After dividing by |BBB|, the

ratios add. Hence we still have |AAA| = |AAABBB|
BBB .

Conclusion: The ratio D(AAA) has the same three properties that defines deter-

minant, hence it equals |AAA|. Hence we obtain the product rule |AAABBB|= |AAA||BBB|.

⌅

Immediately here follows a corollary:

Corollary 5.2

det(AAA�1) =
1

det(AAA)
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8. The transpose AAAT has the same determinant as AAA.

Transpose

�������

a b

c d

�������
=

�������

a c

b d

�������
Both sides equal ad� bc.

Proof. • When AAA is singular, AAAT is also singular. Hence |AAAT
| = |AAA| = 0.

• Otherwise AAA has LU decomposition PPPAAA = LLLUUU. Transposing both siders

gives AAATPPPT = UUUTLLLT. By product rule we have

det PPPdet AAA = det LLLdetUUU and det AAAT det PPPT = detUUUT det LLLT.

– Firstly, det LLL = det LLLT = 1. (By property 6, they both have 1’s on the

diagonal).

– Secondly, detUUU = detUUUT. (By property 6, they have the same diagonal)

– Thirdly, det PPP=det PPPT. (Verify by yourself that PPPTPPP= III. Hence |PPPT
||PPP|=

1. Since permutation matrix is obtained by exchanging rows of III, the

only possible value for determinant of permuation matrix is ±1. Hence

PPP and PPPT must both equal to 1 or both equal to -1).

So LLL,,,UUU,,, PPP has the same determinants as LLLT,UUUT, PPPT, Hence we have det AAA =

det AAAT.

⌅

137



5.2. Assignment Five

1. Prove the following properties of similarity:

(a) Any square matrix AAA is similar to itself.

(b) If BBB is similar to AAA, then AAA is similar to BBB.

(c) If AAA is similar to BBB and BBB is similar to CCC, then AAA is similar to CCC.

2. Consider the linear operator

L

0

B@

2

64
x

y

3

75

1

CA =

2

64
3x

x� y

3

75

on R
2, use a similarity transformation to find the matrix representation with respect

to the basis

B =

8
><

>:

2

64
1

2

3

75 ,

2

64
2

3

3

75

9
>=

>;

3. Let R[x] be the vector space of all real polynomials in x. Determine whether the

following sets are subspaces of R[x]. Justify your answer.

(a) All polynomials f (x) of degree � 3.

(b) All polynomials f (x) satisfying f (1) + 2 f (2) = 1.

(c) All polynomials f (x) satisfying f (x) = f (1� x).

4. Let V = {a + bx + cy + dx2 + exy + f y2|a,b, c,d, e, f 2R}, where x,y are variables.

Then V is just the set of all polynomials in x and y of degree two or less. One

can show that V is a vector space in which the same way as we showed P2 is a

vector space.

Now consider the function

T : V 7! V by T( f ) =
∂ f
∂x
�

∂ f
∂y

where f denotes arbitrary vector in V.

(a) Prove that T is a linear transformation.
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(b) Find bases for kernel(T).

5. Let S be the subspace of C[a,b] spanned by ex,xex and x2ex. Let D be the differentia-

tion operator of S. Find the matrix representation of D with respect to {ex, xex, x2ex}.

6. Suppose all vectors x in the unit square 0 x1  1,0 x2  1 are transformed to

AAAxxx. (AAA is 2 by 2)

(a) What’s the shape of the transformed region (all AAAxxx)?

(b) For which matrices AAA is that region a square?

7. (a) Show the column space of AAAAAAT and AAA are the same.

(b) Show the rank of AAATAAA, AAAAAAT, AAAT, AAA are the same.
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Chapter 6

Week5

6.1. Tuesday

6.1.1. Formulas for Determinant

We want to use the 3 basic properties to derive the formula for determinant:

1. The determinant of the nnn by nnn identity matrix is 1.

�������

1 0

0 1

�������
= 1 and

����������

1
. . .

1

����������

= 1.

2. The determianant changes sign when two rows are exchanged. (sign reversal)

Check:

�������

c d

a b

�������
= �

�������

a b

c d

�������
(both sides equal bc� ad).

3. The determinant is a linear function of each row separately. (all other rows

stay fixed).

multiply row 1 by any number ttt

�������

ta tb

c d

�������
= t

�������

a b

c d

�������
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Add row 1 of AAA to row 1 of BBB:

�������

a1 + a2 b1 + b2

c d

�������
=

�������

a1 b1

c d

�������
+

�������

a2 b2

c d

�������

Although we derive the formula for det AAA is det AAA = ±’i pivotsi (product of pivots),

it is not explicit. We begin some example to show how to derive the explicit formula

for determinant.

⌅ Example 6.1 To derive the formula for determinant, let’s start with n = 2.

Given AAA =

2

64
a b

c d

3

75, our goal is to get det(AAA) = ad� bc.

We can break each row into two simpler rows:

����a b
���� =

����a 0
����+
����0 b

���� and
����c d

���� =
����c 0

����+
����0 d

����

Now apply property 3, first in row 1(with row 2 fixed) and then in row 2(with row 1 fixed):

�������

a b

c d

�������
=

�������

a 0

c d

�������
+

�������

0 b

c d

�������

=

�������

a 0

c 0

�������
+

�������

a 0

0 d

�������
+

�������

0 b

c 0

�������
+

�������

0 b

0 d

�������

The last line has 22 = 4 determinants. The first and fourth are zero since their rows are

dep. (one row is a multiple of the other row.) We left two terms to compute:

�������

a 0

0 d

�������
+

�������

0 b

c 0

�������
= ad

�������

1 0

0 1

�������
+ bc

�������

0 1

1 0

�������
= ad� bc

The permutation matrices

2

64
1 0

0 1

3

75 and

2

64
0 1

1 0

3

75 have determinant +1 or �1. ⌅

⌅ Example 6.2 Now we try n = 3. Each row splits into 3 simpler rows such as


a11 0 0
�
.
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Hence det AAA will split into 33 = 27 simple determinants. For simple determinant, if one

column has two nonzero entries, (For example,

2

66664

a11 0 0

a21 0 0

0 0 a33

3

77775
), then its determinant will

be zero.

Hence we only need to foucus on the matrix that the nonzero terms come from

defferent columns:

����������

a11 a12 a13

a21 a22 a23

a31 a32 a33

����������

=

����������

a11

a22

a33

����������

+

����������

a12

a23

a31

����������

+

����������

a13

a21

a32

����������

+

����������

a11

a23

a32

����������

+

����������

a12

a21

a33

����������

+

����������

a13

a22

a31

����������

There are 3! = 6 ways to permutate the three columns, so there leaves six determinants.

The six permutations of (1,2,3) is given by:

Column numbers = (1,2,3), (2,3,1), (3,1,2), (1,3,2), (2,1,3), (3,2,1).

The last three are odd permutations (One exchange from identity permutation (1,2,3).)

The first three are even permutations. (zero or two exchange from identity permutation

(1,2,3).) When the column number is (a, b,w), we get the entries a1a, a2b, a3w. The

permutation (a, b,w) comes with a plus or minus sign. If you don’t understand, look at
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example below:

det AAA = a11a22a33

����������

1

1

1

����������

+ a12a23a31

����������

1

1

1

����������

+ a13a21a32

����������

1

1

1

����������

+ a11a23a32

����������

1

1

1

����������

+ a12a21a33

����������

1

1

1

����������

+ a13a22a31

����������

1

1

1

����������

The first three (even) permutation matrices have det PPP = +1, the last three (odd)

permutation matrices have det PPP = �1. Hence we have:

det AAA = a11a22a33 + a12a23a31 + a13a21a32 � a11a23a32 � a12a21a33 � a13a22a31

= a11(a22a33 � a23a32) + a12(a23a31 � a21a33) + a13(a21a32 � a22a31)

⌅

6.1.1.1. n by n formula of determinant

Now we can see n by n formula. There are n! permutations of columns, so we have n!

terms for determinant.

Assuming (a, b, . . . ,w) is the permutation of (1,2, . . . ,n). The coorsponding term is

a1aa2b . . . anw det PPP, where PPP is the permutation matrix with column number a, b, . . . ,w.

The complete determinant of AAA is the sum of these n! simple determinants.

a1aa2b . . . anw is obtained by choosing one entry from every row and every column:

Definition 6.1 [Big formula for determinant]

det AAA = sum of all n! column permutations

= Â(det PPP)a1aa2b . . . anw = BIG FORMULA

where PPP is permutation matrix with column number (a, b, . . . ,w). And {a, b, . . . ,w} is a

permutation of {1,2, . . . ,n}. ⌅
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R

Complexity Analysis. However, if we want to use big formula to compute

matrix, we need to do n!(n� 1) multiplications. If we use formula det AAA =

±’ pivots, we only need to do O(n3) multiplications. Hence the letter one is

more efficient.

6.1.1.2. Verify property

We can also use the big formula to verify property 1 to property 3:

• det III = 1:

Only when (a, b, . . . ,w)=(1,2, . . . ,n), there is no zero entries for a1aa2b . . . anw.

Hence det AAA = a11a22 . . . ann = 1.

• sign reversal:

If two rows are interchanged, then all determinant of permutation matrix will

change its sign, hence the value for determinant AAA is opposite.

• The determinant is a linear function of each row separately.

If we separate out the fator a11, a12, . . . , a1a that comes from the first row, this

property is easy to check. For 3 by 3 matrix, separate the usual 6 terms of the

determinant into 3 pairs:

det AAA = a11(a22a33 � a23a32) + a12(a23a31 � a21a33) + a13(a21a32 � a22a31).

Those three quantities in parentheses are called cofactors. They are 2⇥ 2 determi-

nant coming from matrices in row 2 and 3. The first row contributes the factors

a11, a12, a13. The lower rows contribute the cofactors (a22a33 � a23a32), (a23a31 �

a21a33), (a21a32 � a22a31). Certainly det AAA depends linearly on a11, a12, a13, which

is property 3.
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6.1.2. Determinant by Cofactors

We could write the determinant in this form:

����������

a11 a12 a13

a21 a22 a23

a31 a32 a33

����������

=

����������

a11

a22 a23

a32 a33

����������

+

����������

a12

a21 a23

a31 a33

����������

+

����������

a13

a21 a22

a31 a32

����������

.

If we define AAA1j to be the submatrix obtained by removing row 1 and column j, We

could compute det AAA in this way:

The cofactors along row 1 are C1j = (�1)1+j det AAA1j j = 1,2, . . . ,n.

The cofactor expansion is det AAA = a11C11 + a12C12 + · · ·+ a1nC1n.

More generally, we can cross row i to get the determinant:

Definition 6.2 [Determinant] The determinant is the dot product of any row i of AAA

with its cofactors using other rows:

Cofactor Formula det AAA = ai1Ci1 + ai2Ci2 + · · ·+ ainCin.

Each cofactor Cij is defined as:

Cofactor Cij = (�1)i+j det AAAij

where Aij is the submatrix obtained by removing row i and column j. ⌅

Cofactors down a column. Since we have det AAA = det AAAT, we can expand the

determinant in cofactors down a column instead of across a row. Down column j the

entries are a1j to anj, the cofactors are C1j to Cnj. The determinant is given by:

Cofactors down column j: det AAA = a1jC1j + a2jC2j + · · ·+ anjCnj.

146



6.1.3. Determinant Applications

6.1.3.1. Inverse

It’s easy to check that the inverse of 2 by 2 matrix AAA is

2

64
a b

c d

3

75

�1

=
1

ad� bc

2

64
d �b

�c a

3

75 =
1

det AAA

2

64
d �b

�c a

3

75 .

We could use determinant to compute inverse! Before that let’s define cofactor ma-

trix:

Definition 6.3 [cofactor matrix] The cofactor matrix of n⇥ n matrix AAA is given by:

CCC =


Cij

�

1i,jn

where Cij is the cofactor of AAA. ⌅

Then we try to derive the inverse of matrix AAA.

For n⇥ n matrix AAA, the product of AAA and the transpose of cofactor matrix

is given by:

AAACCCT =

2

66664

a11 . . . a1n
...

. . .
...

an1 . . . ann

3

77775

2

66664

C11 . . . Cn1
...

. . .
...

C1n . . . Cnn

3

77775
=

2

66664

det AAA

det AAA

det AAA

3

77775
(6.1)

Proofoutline:

• Row 1 of AAA times the column 1 of CCCT yields the first det AAA on the right:

a11C11 + a12C12 + · · ·+ a1nC1n = det AAA

Similarly, row j of AAA times column j of CCCT yields the determinant.

• How to explain the zeros off the main diagonal in equation (6.1)? Rows of AAA are

multiplying CCCT from different columns. Why is the answer zero? For example,
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the (2,1)th entry of the result is given by

Row 2 of AAA

Row 1 of CCC
a21C11 + a22C12 + · · ·+ a2nC1n = 0. (6.2)

Explaination for Eq.(6.2): If the second row of AAA is copied into its first row, we

define this new matrix as AAA⇤. Thus the determinant of AAA⇤ is given by:

�����������������

a21 a22 . . . a2n

a21 a22 . . . a2n

a31 a32 . . . a3n
...

...
. . .

...

an1 an2 . . . ann

�����������������

=

�����������������

a21

a22 . . . a2n

a32 . . . a3n
...

. . .
...

an2 . . . ann

�����������������

+

�����������������

a22

a21 . . . a2n

a31 . . . a3n
...

. . .
...

an1 . . . ann

�����������������

+ · · ·+

�����������������

a2n

a21 a22 a2(n�1)

a31 a32 a3(n�1)
...

...
...

an1 an2 an(n�1)

�����������������

Or equivalently, we have

det AAA⇤ =

�����������������

a21 a22 . . . a2n

a21 a22 . . . a2n

a31 a32 . . . a3n
...

...
. . .

...

an1 an2 . . . ann

�����������������

= a21C11 + a22C12 + · · ·+ a2nC1n

Since AAA⇤ has two equal rows, the determinant must be zero. Hence a21C11 +

a22C12 + · · ·+ a2nC1n = 0.

Similarly, all entries off the main diagonal in Eq.(6.1) are zero.

Thus the equation (6.1) is correct:

AAACCCT =

2

66664

det AAA

det AAA

det AAA

3

77775
= det(AAA)III =) AAA�1 =

1
det AAA

CCCT.

Hence we could compute the inverse by computing many determinants of subma-
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trix:

Definition 6.4 [Inverse] The (iii, jjj)th entry of AAA�1 is the cofactor Cji (not Cji)

divided by det AAA:

Formula for AAA�1 (AAA�1)ij =
Cji

det AAA
and AAA�1 =

CCCT

det AAA
.

⌅

6.1.3.2. Cramer’s Rule

Cramer’s Rule solves AAAxxx = bbb. Assume AAA is a n⇥ n matrix that is nonsingular.

Then we can use determinant to solve this system:

Let’s start with n = 3. We could multiply AAA with a new matrix CCC1 to get BBB1:

Key idea: AAACCC1 =

2

66664

a11 a12 a13

a21 a22 a23

a31 a32 a33

3

77775

2

66664

x1 0 0

x2 1 0

x3 0 1

3

77775
=

2

66664

b1 a12 a13

b2 a22 a23

b3 a32 a33

3

77775
= BBB1

Taking determinants both sides, then we have

det(AAACCC1) = det(AAA)det(CCC1) = det(AAA)(x1) = det BBB1 =) x1 =
det BBB1

det AAA1
.

The matrix BBB1 is essentaily obtained by replacing the first column of AAA by the vector bbb.

Similarly, we could get all xj in this way. (i = 1, . . . ,n).

Definition 6.5 [Cramer’s Rule] If det AAA is not zero, AAAxxx = bbb could be solved by determi-

nants:

x1 =
det BBB1

det AAA
x2 =

det BBB2

det AAA
. . . . . . xn =

det BBBn

det AAA
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The matrix BBBj has the jth column of AAA replaced by the vector bbb. In other words,

BBBj =

2

66666664

a11 . . . b1 . . . a1n

a21 . . . b2 . . . a2n
...

. . .
...

. . .
...

an1 . . . bn . . . ann

3

77777775

j = 1, . . . ,n.

⌅

6.1.4. Orthogonality

Definition 6.6 [Orthogonal vectors] Two vectors xxx,yyy 2 R
n are orthogonal when their

inner product is zero:

hxxx,yyyi =
n

Â
i=1

xiyi = 0.

⌅

R Note that the inner product of two vectors satisfies the commutative rule. In

other words, hxxx,yyyi= hyyy, xxxi for vectors xxx and yyy. The inner product defined for

matrices may not satisfy the commutative rule. Generally, if the result of inner

product is a scalar, then inner product satisfies commutative rule.

An important case is the inner product of a vector with itself. The inner product hxxx, xxxi

gives the length of vvv squared:

Definition 6.7 [length/norm] The length(norm) kxxxk of a vector xxx 2R
n is the square

root of hxxx, xxxi:

length = kxxxk =
q
hxxx, xxxi =

q
x2

1 + · · ·+ x2
n.

⌅

6.1.4.1. Function space

We can talk about inner product between functions under the function space. For

example, if we define V = { f (t) |
R 1

0 f 2(t)dt < •}, then we can define inner product
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and norm under V:

Definition 6.8 [Inner product; norm] The inner product and the norm of f (x), g(x)

under the function space V = { f (t) |
R 1

0 f 2(t)dt < •}, are defined as:

h f , gi =
Z 1

0
f (x)g(x)dx and k f k2 =

s
Z 1

0
f 2(x)dx

⌅

Moreover, when h f , gi= 0, we say two functions are orthogonal and denote it as f ? g.

6.1.4.2. Cauchy-Schwarz Inequality

In R
2, suppose xxx =

0

B@
x1

x2

1

CA ,yyy =

0

B@
y1

y2

1

CA, then we set:

8
><

>:

x1 = kxxxkcosq

x2 = kxxxksinq

8
><

>:

y1 = kyyykcos j

y2 = kyyyksin j

The inner product of xxx and yyy is given by:

< xxx,yyy >= xxxTyyy = x1x2 + y1y2

= kxxxkkyyyk(cosq cos j + sinq sin j)

= kxxxkkyyykcos(q � j)

Since |cos(q� j)| never exceeds 1, the cosine formula gives a great inequality:

Theorem 6.1 — Cauchy Schwarz Inequality.

hxxx,yyyi  kxxxkkyyyk

holds for two vectors xxx and yyy.

151



Proof. Firstly, we want to find optimizer t⇤ such that

minkxxx� tyyyk2 = kxxx� t⇤yyyk2.

Note that

kxxx� tyyyk2 = hxxx� tyyy, xxx� tyyyi = hxxx, xxxi+ h�tyyy, xxxi+ hxxx,�tyyyi+ h�tyyy,�tyyyi

= kxxxk2
� thyyy, xxxi � thxxx,yyyi+ t2

kyyyk2

= kxxxk2
� 2thxxx,yyyi+ t2

kyyyk2

Hence the minimizer t⇤ must satisfy

D = 0 =) t⇤ =
hxxx,yyyi
kyyyk2

Hence we have

kxxx� tyyyk2
min = kxxx� t⇤yyyk2 = kxxxk2

�
hxxx,yyyi2

kyyyk2

=
kxxxk2kyyyk2 � hxxx,yyyi2

kyyyk2 � 0

=) kxxxk2
kyyyk2

� hxxx,yyyi2

Or equivalently,

|hxxx,yyyi|  kxxxkkyyyk.

⌅

R

Cauchy-Schwarz inequality also holds for functions. If we consider

functions f , g as vectors, then

Z 1

0
f (t)g(t)dt

�


Z 1

0
f 2dt

Z 1

0
g2dt
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The normalization of inner product is bounded by 1. Since |hxxx,yyyi|

kxxxkkyyyk, we have

�1
hxxx,yyyi
kxxxkkyyyk

 1

If we define hxxx,yyyi
kxxxkkyyyk := cosq, then hxxx,yyyi = kxxxkkyyykcosq, the angle q is said to

be the intersection angle between xxx and yyy.

Cauchy-Schwarz equality holds for Hilbert space, which will be discussed in other

courses.

6.1.4.3. Orthogonal for space

After defining inner product, we can discuss the orthogonality for space:

Definition 6.9 [Orthogonal subspaces] Two subspaces UUU and VVV of a vector space are

orthogonal if every vector uuu in UUU is perpendicular to every vector vvv in VVV:

Orthogonal subspaces huuu,vvvi = 0 for all uuu in UUU and all vvv in VVV.

⌅
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6.2. Thursday

6.2.1. Orthogonality
Recall that two vectors are orthogonal if their inner product is zero:

uuu ? vvv() huuu,vvvi = 0

Orthogonality among vectors has an important property:

Proposition 6.1 If nonzero vectors v1, . . . ,vk are mutually orthogonal, i.e., vi ? vj for

any i 6= j, then {v1, . . . ,vk} must be ind.

Proof. It suffices to show that

a1v1 + · · ·+ akvk = 000 =) ai = 0 for any i 2 {1,2, . . . ,k}.

• We do inner product to show a1 must be zero:

hv1,a1v1 + · · ·+ akvki = hv1,000i = 0

= a1hv1,v1i+ a2hv1,v2i+ · · ·+ akhv1,vki

= a1hv1,v1i = a1kv1k
2
2

= 0

Since v1 6= 000, we have a1 = 0.

• Similarly, we have ai = 0 for i = 1, . . . ,k.

⌅

Now we can also talk about orthogonality among spaces:

Definition 6.10 [Subspace Orthogonality] Two subspaces UUU and VVV of a vector space are
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orthogonal if every vector uuu in UUU is perpendicular to every vector vvv in VVV:

Orthogonal subspaces uuu ? vvv, 8uuu 2UUU,vvv 2 VVV.

⌅

⌅ Example 6.3 Two walls look perpendicular but they are not orthogonal subspaces! The

meeting line is in both UUU and VVV-and this line is not perpendicular to itself. Hence, two

planes (both with dimension 2 in R
3) cannot be orthogonal subspaces.

Figure 6.1: Orthogonality is impossible when dimUUU + dimVVV > dim(UUU [VVV)

⌅

R When a vector is in two orthogonal subspaces, it must be zero. It is perpen-

dicular to itself.

The reason is clear: this vector uuu 2 UUU and uuu 2 VVV, so huuu,uuui = 0. It has to be

zero vector.

If two subspaces are perpendicular, their basis must be ind.

Theorem 6.2 Assume {u1, . . . ,uk} is the basis for UUU, {v1, . . . ,vl} is the basis for VVV. If

UUU ? VVV (ui ? vj for 8i, j), then u1,u2, . . . ,uk,v1,v2, . . . ,vl must be ind.
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Proof. Suppose there exists {a1, . . . ,ak} and {b1, . . . , bl} such that

a1u1 + · · ·+ akuk + b1v1 + · · ·+ blvl = 000

then equivalently,

a1u1 + · · ·+ akuk = �(b1v1 + · · ·+ blvl).

Then we set www = a1u1 + · · ·+ akuk, obviously, www 2UUU and www 2 VVV.

Hence it must be zero (This is due to remark above). Thus we have

a1u1 + · · ·+ akuk = 000

b1v1 + · · ·+ blvl = 000.

Due to the independence, we have ai = 0 and b j = 0 for 8i, j. ⌅

Corollary 6.1 For subspaces UUU and VVV, we obtain

dim(UUU [VVV)  dim(UUU) + dim(VVV).

For subspaces UUU and VVV 2 R
n, if R

n = UUU [ VVV, and moreover, n = dim(UUU) + dim(VVV),

then we say VVV is the orthogonal complement of UUU.

Definition 6.11 [orthogonal complement] For subspaces UUU and VVV 2 R
n, if dim(UUU) +

dim(VVV) = n and UUU ? VVV, then we say VVV is the orthogonal complement of UUU. We

denote VVV as UUU?.

Moreover, VVV = UUU? iff VVV? = UUU. ⌅

⌅ Example 6.4 Suppose UUU [VVV = R
3, UUU = span{eee1, eee2}. If VVV is the orthogonal comple-

ment of UUU, then VVV = span{eee3}. ⌅

Next we study the relationship between the null space and the row space in

R
n.
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Theorem 6.3 — Fundamental theorem for linear alegbra, part 2. Given AAA 2R
m⇥n,

N(AAA) is the orthogonal complement of the row space of AAA, C(AAAT) (in R
n).

N(AAAT) is the orthogonal complement of the column space C(AAA) (in R
m).

Proof. • Firstly, we show dim(N(AAA)) + dim(C(AAAT)) = n:

We know that dim(N(AAA)) = n� r and dim(C(AAAT)) = r, where r = rank(AAA).

Hence dim(N(AAA)) + dim(C(AAAT)) = n.

• Then we show N(AAA) ? C(AAAT):

For any x 2 N(AAA), if we set AAA =

2

66666664

aT
1

aT
2
...

aT
m

3

77777775

, then we obtain:

AAAxxx =

2

66666664

aT
1

aT
2
...

aT
m

3

77777775


xxx
�
=

2

66666664

0

0
...

0

3

77777775

Hence every row has a zero product with xxx, i.e., hai, xxxi = 0 for 8i 2 {1,2, . . . ,m}.

For any y = Âm
i=1 aiai 2 C(AAAT), we obtain:

hxxx,yi = hy, xxxi = h
m

Â
i=1

aiai, xxxi

=
m

Â
i=1

aihai, xxxi = 0.

Hence xxx ? y for 8xxx 2 N(AAA) and y 2 C(AAAT).

Hence N(AAA)? = C(AAAT). Similarly, we have N(AAAT)? = C(AAA). ⌅
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Corollary 6.2 AAAxxx = bbb is solvable if and only if yyyT AAA = 000 implies yyyTbbb=0.

Proof. The following statements are equivalent:

• AAAxxx = bbb is solvable.

• bbb 2 C(AAA).

• bbb 2 N(AAAT)?

• yyyTbbb = 0 for 8y 2 N(AAAT)

• Given yyyT AAA = 000, i.e., y 2 N(AAAT), it implies yyyTbbb = 0.

⌅

The Inverse Negative Proposition is more commonly useful:

Corollary 6.3 AAAxxx = bbb has no solution if and and only if 9yyy s.t. yyyTAAA = 0 and yyyTbbb 6= 0.

We could extend this corollary into general case:

R

Theorem 6.4 AAAxxx � bbb has no solution if and only if 9yyy � 000 such that

yyyTAAA = 000 and yyyTbbb � 000.

yyyT AAA = 0 requires that there exists one linear combination of the row space to

be zero.

The complete proof for this theorem is not required in this course. We only

show the necessity case.

Necessity case. Suppose 9yyy� 000 such that yyyTAAA = 000 and yyyTbbb� 000. Assume there

exists x⇤ such that AAAx⇤ � bbb. By postmultiplying yyyT we have

yyyTAAAx⇤ � yyyTbbb > 000 =) 000 > 000.

which is a contradiction! ⌅
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⌅ Example 6.5 Given the system

x1 + x2 � 1 (6.3)

�x1 � �1 (6.4)

�x2 � 2 (6.5)

Eq.(6.3)⇥1+Eq(6.4)⇥1+Eq.(6.5)⇥1 gives

0� 2

which is a contradiction!

So the key idea of theorem (6.4) is to construct a linear combination of row space to let it

become zero. If the right hand is larger than zero, then this system has no solution. ⌅

R

Corollary 6.4 If AAA = AAAT, then N(AAAT)? = C(A) = C(AAAT) = N(AAA).

Corollary 6.5 The system AAAxxx = bbb may not have a solution, but AAATAAAxxx = AAATbbb

always have at least one solution for 8bbb.

Proof. Since AAATAAA is symmetric, we have C(AAATAAA) = C(AAAAAAT). Show by your-

self that C(AAAAAAT) = C(AAAT), hence C(AAATAAA) = C(AAAT).

For any vector bbb, we have AAATbbb 2 C(AAAT) =) AAATbbb 2 C(AAAT AAA), which means

there exists a linear combination of the columns of AAAT AAA that equals to bbb.

Or equivalently, there exists a solution to AAAT AAAxxx = AAATbbb. ⌅

Corollary 6.6 AAATAAA is invertible if and only if AAA is full column rank, i.e., columns

of AAA are ind.

Proof. We have shown that C(AAAT AAA) = C(AAAT).

Hence C(AAATAAA)? = C(AAAT)? =) N(AAAT AAA) = N(AAA).
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Thus, the following statements are equivalent:

• AAA has ind. columns

• N(AAA) = {000}

• N(AAAT AAA) = {000}

• AAAT AAA is invertible.

⌅

6.2.2. Least Squares Approximations

The linear system AAAxxx = bbb often has no solution, if so, what should we do?

We cannot always get the error eee = bbb� AAAxxx down to zero, so we want to use least

square method to minimize the error. In other words, our goal is to

min
xxx2Rn

eee2 := min
xxx
kAAAxxx� bbbk2 =

m

Â
i=1

(aT
i xxx� bi)

2

where AAA 2 R
m⇥n and bbb 2 R

m. The minimizer xxx is called the linear least squares

solution.

6.2.2.1. Least Squares by Convex Optimization

Firstly, you should know some basic calculus knowledge for matrix:

The Chian Rule. Given two vectors f (x), g(x) of appropriate size,

∂( f Tg)
∂x

=
∂ f (x)

∂x
g(x) +

∂g(x)
∂x

f (x)
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Examples of Matrix Derivative.

∂(aTxxx)
∂xxx

= a (6.6)

∂(aT AAAxxx)
∂xxx

=
∂((AAATa)Txxx)

∂xxx
= AAATa (6.7)

∂(AAAxxx)
∂xxx

= AAAT (6.8)

∂(xxxT AAAxxx)
∂xxx

= AAAxxx + AAATxxx (6.9)

Thus, in order to minimize kAAAxxx� bbbk2 = (AAAxxx� bbb)T(AAAxxx� bbb), it suffices to let its

derivative with respect to xxx to be zero. (Since kAAAxxx � bbbk2 is convex, which will be

discussed in detail in other courses.) Hence we have:

∂(AAAxxx� bbb)T(AAAxxx� bbb)
∂xxx

=
∂(AAAxxx� bbb)

∂xxx
(AAAxxx� bbb) +

∂(AAAxxx� bbb)
∂xxx

(AAAxxx� bbb)

= 2
∂(AAAxxx� bbb)

∂xxx
(AAAxxx� bbb)

= 2(
∂(AAAxxx)

∂xxx
�

∂(bbb)
∂xxx

)(AAAxxx� bbb)

= 2AAAT(AAAxxx� bbb) = 000.

Or equivalently,

AAAT AAAxxx = AAATbbb.

According to corollary (6.5), this equation always exists a solution. This equation is

called the normal equation.

Theorem 6.5 A vector xxxLS is an optimal solution to the least squares problem

min
xxx2Rn
kbbb� AAAxxxk2

2 (6.10a)

if and only if it satisfies

AAATAAAxxxLS = AAATbbb. (6.10b)
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6.2.2.2. Fit a stright line

Given a collection of data (xxxi,yi) for i = 1, . . . ,m, we can use a stright line to fit these

points: 8
>>>>>>>>><

>>>>>>>>>:

y1 = a0 + a1x1,1 + a2x1,2 + · · ·+ anx1,n + #1

y2 = a0 + a1x2,1 + a2x2,2 + · · ·+ anx2,n + #2

...

ym = a0 + a1xm,1 + a2xm,2 + · · ·+ anxm,n + #m

Our fit line is

ŷ = a0 + a1x1 + a2x2 + · · ·+ anxn

In compact matrix form, we have

2

66666664

y1

y2
...

yn

3

77777775

=

2

66666664

1 x1,1 x1,2 . . . x1,n

1 x2,1 x2,2 . . . x2,n
...

...

1 xm,1 xm,2 . . . xm,n

3

77777775

2

666666666664

a0

a1

a2
...

an

3

777777777775

+

2

66666664

#1

#2
...

#m

3

77777775

Or equivalently, we have

yyy = AAAxxx + ###

where AAA =

2

66666664

1 x1,1 x1,2 . . . x1,n

1 x2,1 x2,2 . . . x2,n
...

...

1 xm,1 xm,2 . . . xm,n

3

77777775

m⇥(n+1)

, xxx =

2

666666666664

a0

a1

a2
...

an

3

777777777775

(n+1)⇥1

, ### =

2

66666664

#1

#2
...

#m

3

77777775

m⇥1

.

Our goal is to minimize kŷyy� yyyk2 = kAAAxxx� yyyk2. Then by theorem (6.5), it suffices to

sovle AAAT AAAxxx = AAATyyy.
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Figure 6.2: The projection of bbb onto a subspace SSS := C(AAA).

6.2.3. Projections
In corollary (6.6), we know that if AAA has ind. columns, then AAAT AAA is invertible. On

this condition, the normal equation AAAT AAAxxx = AAATbbb has the unique solution xxx⇤ =

(AAAT AAA)�1 AAATbbb, which follows that the error bbb� AAAxxx⇤ is minimized. Note that AAAxxx⇤ =

AAA(AAATAAA)�1 AAATbbb is approximately equal to bbb.

• If bbb and AAAxxx⇤ are exactly in the same space, i.e., bbb 2 C(AAA), then AAAxxx⇤ = bbb. The

error is equal to zero.

• Otherwise, just as the Figure (6.2) shown, AAAxxx⇤ is the projection of bbb to subspace

C(AAA).

Definition 6.12 [Projection] Let SSS 2R
m be a non-empty closed set and bbb 2R

m be given.

Then the projection of bbb onto the set SSS is the solution to

min
zzz2SSS
kzzz� bbbk2

2,

where we use notation ProjSSS(bbb) to denote the projection of bbb onto SSS. ⌅

By definition, the projection of bbb onto the subspace C(AAA) is given by

Proj
C(AAA)(bbb) := AAAxxx⇤, where xxx⇤ = arg min

xxx2Rn
kAAAxxx� bbbk.
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Definition 6.13 [Projection matrix] Given the projection

ProjC(AAA)(bbb) := AAAxxx⇤ = AAA(AAATAAA)�1AAATbbb,

since [AAA(AAATAAA)�1 AAAT]bbb, we call the projection operator PPP := AAA(AAAT AAA)�1AAAT as the pro-

jection matrix of AAA. ⌅

Definition 6.14 [Idempotent] Let AAA be a square matrix that satisfies AAA = AAAAAA, then AAA

is called an idempotent matrix. ⌅

Let’s show that the projection matrix is idempotent:

PPP2 = AAA(AAAT AAA)�1AAAT AAA(AAAT AAA)�1AAAT

= AAA(AAAT AAA)�1(AAATAAA)(AAAT AAA)�1AAAT

= AAA(AAAT AAA)�1AAAT = PPP.

6.2.3.1. Observations

• Suppose bbb 2 C(AAA), i.e., 9xxx s.t. AAAxxx = bbb. Then the projection of bbb is exactly bbb:

PPPbbb = AAA(AAATAAA)�1AAAT(bbb)

= AAA(AAATAAA)�1AAAT(AAAxxx)

= AAA(AAATAAA)�1(AAAT AAA)xxx

= AAAxxx = bbb.

• Assume AAA has only one column, say, aaa. Then we have

xxx⇤ = (AAATAAA)�1AAATbbb =
aaaTbbb
aaaTaaa

AAAxxx⇤ = PPPbbb = AAA(AAAT AAA)�1AAAT(bbb) =
aaaTbbb
aaaTaaa
⇥ aaa =

aaaTbbb
kaaak2 ⇥ aaa
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More interestingly,

aaaTbbb
kaaak2 ⇥ aaa =

kaaakkbbbkcosq

kaaak2 ⇥ aaa = kbbbkcosq ⇥
aaa
kaaak

which is the projection of bbb onto a line span{aaa}. (Shown in figure (6.3).)

Figure 6.3: The projection of bbb onto a line aaa.

More generally, we can write the projection of bbb onto the line span{aaa} as:

Projspan{aaa}(bbb) =
haaa,bbbi
haaa, aaai

aaa

Changing an Orthogonal Basis. Note that the error bbb � Projspan{aaa}(bbb) is

perpendicular to aaa, and bbb� Projspan{aaa}(bbb) 2 span{aaa,bbb}.

If we define bbb0 = bbb � Projspan{aaa}(bbb), then it’s easy to check that span{aaa,bbb0} =

span{aaa,bbb} and aaa ? bbb0.

Hence, we convert the basis {aaa,bbb} into another basis {aaa,bbb0} such that the ele-

ments are orthogonal to each other. For general subspace we could also use this

approach to obtain an orthogonal basis, which will be discussed in next lecture.
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6.3. Friday

This lecture has two goals. The first is to see how orthogonality makes it easy to find

the projection matrix PPP and the projection Proj
C(AAA) bbb. The key idea is that Orthog-

onality makes the product AAATAAA a diagonal matrix. The second goal is to show how to

construct orthogonal basis of C(AAA). For matrix AAA =


a1 a2 . . . an

�
, the columns

may not be orthogonal. We intend to convert a1, . . . , an to orthogonal vectors, which

will be the columns of a new matrix QQQ.

6.3.1. Orthonormal basis
The vectors qqq1, . . . ,qqqn are orthogonal when their inner product hqqqi,qqqji are zero. (i 6= j.)

With one more step–each vector is just divided by its length, then the collection of

vectors become orthogonal unit vectors. Their lengths are all 1. Then this basis is

called orthonormal.

Definition 6.15 [orthonormal] The collection of vectors qqq1, . . . ,qqqn 2R
m is said to be:

• orthogonal if hqqqi,qqqji = 0 for all i, j with i 6= j

• orthonormal if kqqqik2 = 1 for all i and hqqqi,qqqji= 0 for all i, j with i 6= j, or equivalently,

hqqqi,qqqji =

8
>><

>>:

0 when i 6= j (orthogonal vectors),

1 when i = j (unit vectors: kqqqik = 1).

Moreover, if qqq1, . . . ,qqqn are orthonormal, then the basis {qqq1, . . . ,qqqn} is called orthonormal

basis. ⌅
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⌅ Example 6.6 Given a collection of unit vectors

eee1 =

0

BBBBBBB@

1

0
...

0

1

CCCCCCCA

, eee2 =

0

BBBBBBB@

0

1
...

0

1

CCCCCCCA

, . . . , eeen =

0

BBBBBBB@

0

0
...

1

1

CCCCCCCA

,

then {eee1, . . . , eeen} forms an orthonormal basis for R
n. ⌅

If we want to express vector bbb as the linear combination of arbitrary

basis (may not be orthogonal) {qqq1,qqq2, . . . ,qqqn}, what should we do?

Answer: Solve the system AAAxxx = bbb, where AAA =


qqq1 qqq2 · · · qqqn

�

What if {qqq1,qqq2, . . . ,qqqn} is an orthogonal basis? How to find solution xxx

s.t.

bbb = x1qqq1 + x2qqq2 + · · ·+ xnqqqn? (6.11)

Answer: We just do the inner product of each qqqi with bbb to get the coefficient xi:

hqqqi,bbbi = x1hqqqi,qqq1i+ x2hqqqi,qqq2i+ · · ·+ xnhqqqi,qqqni

= xihqqqi,qqqii = xi

(6.12)

By substituting Eq.(6.12) into Eq.(6.11), we could express bbb as:

bbb =
n

Â
i=1
hqqqi,bbbiqqqi.

In this case, from Eq.(6.12) we can see that if columns of AAA are orthogonal, we

could easily obtain the solution to AAAxxx = bbb:

xi = hqqqi,bbbi, i = 1,2, . . . ,n.
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Definition 6.16 [matrix with orthonormal columns] Given a collection of orthonormal

vectors qqq1, . . . ,qqqn, the matrix

QQQ =


q1 q2 . . . qn

�

is said to be a matrix with orthonormal columns.

Note that a matrix with orthonormal columns is often denoted as QQQ. ⌅

Or equivalently, a matrix QQQ is with orthonormal columns if and only if

QQQTQQQ =

0

BBBBBBB@

qqqT
1

qqqT
2

. . .

qqqT
n

1

CCCCCCCA

✓
qqq1 qqq2 . . . qqqn

◆
=

0

BBBB@

qqqT
1 qqq1

. . .

qqqT
nqqqn

1

CCCCA
= III. (6.13)

R Note that a matrix QQQ with orthonormal columns is not required to be square!

Moreover, {qqq1, . . . ,qqqn} in QQQ is not required to form a basis.

Definition 6.17 [orthogonal matrix] A matrix QQQ is said to be orthogonal if it is square

and its columns are orthonormal. ⌅

Question: Why we call it an orthogonal matrix, but not an orthonormal matrix?

Answer: Orthogonal matrix usually transform an orthogonal basis into another

orthogonal basis by matrix multiplication. This special property requires its column to

be orthonormal.

⌅ Example 6.7 If QQQ is an orthogonal matrix, while Q̂QQ is a matrix with orthonormal

columns that is not square. Do the products QQQQQQT and Q̂QQQ̂QQ
T

always be identity matrix?

Answer :

• QQQQQQT is always identity matrix. According to equation (6.13), we have QQQTQQQ = III.
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Hence QQQT is the left inverse of square matrix QQQ, which implies

QQQ�1 = QQQT =) QQQQQQT = QQQQQQ�1 = III.

Moreover, solving QQQxxx = bbb is equivalent to xxx = QQQ�1bbb = QQQTbbb, which is exactly

xxx =

2

66666664

hqqq1,bbbi

hqqq2,bbbi
...

hqqqn,bbbi

3

77777775

.

• Although Q̂TQ̂ = III, the product Q̂Q̂T will never be identity matrix for nonsquare

Q̂. We can verify it by the its rank:

Assume Q̂ 2R
m⇥n(m 6= n). Then it’s easy to verify that rank(Q̂Q̂T) = rank(Q̂).

Since Q̂ has orthonormal columns, the columns of Q̂ are independent, i.e., rank(Q̂) =

n. But rank(Q̂Q̂T) = rank(Q̂) = n 6= m = rank(IIIm).

Moreover, if Q̂ has only one column q̂, then Q̂Q̂T = q̂q̂T = rank(1) 6= rank(IIIm).

⌅

Proposition 6.2

If QQQ has orthonormal columns, then it leaves lengths unchanged, in other words,

Same length kQQQxxxk = kxxxk for every vector xxx.

Also, QQQ preserves inner products for vectors, i.e., :

hQQQxxx, QQQyyyi = hxxx,yyyi for every vectors xxx and yyy.

Proofoutline. kQQQxxxk2 = kxxxk2 because

hQQQxxx, QQQxxxi = xxxTQQQTQQQxxx = xxxT(QQQTQQQ)xxx

= xxxT IIIxxx = xxxTxxx
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Hence we have kQQQxxxk= kxxxk. Just using QQQTQQQ = III, we can derive hQQQxxx, QQQyyyi= hxxx,yyyi. ⌅

Orthogonal matrices are excellent for computations, since the inverse of matrices

could usually be converted into transpose.

When Least Squares Meet Orthogonality. In particular, if QQQ 2 R
m⇥n has or-

thonormal columns, the least square problem is easy:

Although QQQxxx = bbb may not have a solution, but the normal equation

QQQTQQQx̂ = QQQTbbb

must have the unique solution x̂ = QQQTbbb. Why? Since QQQTQQQ = III, we derive

x̂ = (QQQTQQQ)�1QQQTbbb = QQQTbbb.

6.3.1.1. Summary

Hence the least squares solution to QQQxxx = bbb is x̂ = QQQTbbb. In other words, QQQQQQTbbb⇡ bbb. The

projection matrix is PPP = QQQQQQT. Note that the projection Proj
C(QQQ)(bbb) = QQQQQQTbbb doesn’t

equal to bbb in general.

For general matrix AAA, the projection matrix is more complicated:

PPP = AAA(AAATAAA)�1AAAT.

6.3.2. Gram-Schmidt Process
“Orthogonal is good”. So our goal for this section is: Given a collection of independent

vectors, how to make them orthonormal?

We start with three independent vectors aaa,bbb, ccc in R
3. In order to construct orthonor-

mal vectors, firstly we construct three orthogonal vectors AAA, BBB,CCC. Secongly we divide

AAA, BBB,CCC by their lengths to get three orthonormal vectors qqq1 =
AAA
kAAAk ,qqq2 =

BBB
kBBBk ,qqq3 =

CCC
kCCCk .

• Firstly we set AAA = aaa.
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• The next vector BBB must be perpendicular to AAA. Look at the figure (6.4) below, We

find that BBB = bbb� ProjAAA(bbb). Or equivalently,

First Gram-Schmidt step BBB = bbb�
hAAA,bbbi
hAAA, AAAi

AAA.

Figure 6.4: Subtract projection to get BBB = bbb� ProjAAA bbb.

You can take inner product between AAA and BBB to verify that AAA and BBB are or-

thogonal in Figure (6.4). Note that BBB is not zero (otherwise aaa and bbb would be

dependent. We will show it later.)

• Then we want to construct another vector CCC. Most likely ccc is not perpendicular to

AAA and BBB. What we do is to subtract ccc off its projections onto the column space

of AAA and BBB to get CCC:

Next Gram-Schmidt step

CCC = ccc� Projspan{AAA,BBB}(ccc)

= ccc� ProjAAA(ccc)� ProjBBB(ccc)

= ccc�
hAAA, ccci
hAAA, AAAi

AAA�
hBBB, ccci
hBBB, BBBi

BBB.
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Figure 6.5: Subtract ccc off its projections onto the column space of AAA and BBB to get CCC

• Finally we get orthogonal vectors AAA, BBB,CCC. Orthonormal vectors qqq1,qqq2,qqq3 are

obtained by dividing their lengths (shown in Figure (6.6)):

Figure 6.6: Final Gram-Schmidt step

Next we show an example of Gram-Schmidt step:

⌅ Example 6.8 How to construct orthonormal vectors from

aaa =

0

BBBB@

1

0

1

1

CCCCA
, bbb =

0

BBBB@

1

0

0

1

CCCCA
, ccc =

0

BBBB@

2

1

0

1

CCCCA
?
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• Firstly we set AAA = aaa =

0

BBBB@

1

0

1

1

CCCCA
.

•

BBB = bbb� ProjAAA(bbb) = bbb�
hAAA,bbbi
hAAA, AAAi

AAA

=

0

BBBB@

1

0

0

1

CCCCA
�

0

BBBB@

1

0

1

1

CCCCA

T0

BBBB@

1

0

0

1

CCCCA
2�1

0

BBBB@

1

0

1

1

CCCCA

=

0

BBBB@

1
2

0

�
1
2

1

CCCCA

•

CCC = ccc� ProjAAA(ccc)� ProjBBB(ccc) = ccc�
hAAA, ccci
hAAA, AAAi

AAA�
hBBB, ccci
hBBB, BBBi

BBB

=

0

BBBB@

2

1

0

1

CCCCA
�

0

BBBB@

1

0

1

1

CCCCA

T0

BBBB@

2

1

0

1

CCCCA
2�1

0

BBBB@

1

0

1

1

CCCCA
�

0

BBBB@

1
2

0

�
1
2

1

CCCCA

T0

BBBB@

2

1

0

1

CCCCA
(

1
2
)�1

0

BBBB@

1
2

0

�
1
2

1

CCCCA

=

0

BBBB@

0

1

0

1

CCCCA

Hence we obtain our orthonormal vectors:

qqq1 =
AAA
kAAAk

=

0

BBBB@

1p
2

0

1p
2

1

CCCCA
, ,qqq2 =

BBB
kBBBk

=

0

BBBB@

1p
2

0

�
1p
2

1

CCCCA
,qqq3 =

CCC
kCCCk

=

0

BBBB@

0

1

0

1

CCCCA

173



And we derive the orthogonal matrix QQQ:

Q =

0

BBBB@

1p
2

1p
2

0

0 0 1

1p
2
�

1p
2

0

1

CCCCA

⌅

When will the Gram-Schmidt process “fail”? Let’s describle this process in general

case first, then we answer this question.

6.3.2.1. Gram-Schmidt process in general case

Algorithm: Gram-Schmidt Process

Input: a collection of vectors aaa1, . . . , aaan, presumably linear independent.

Firstly construct orthogonal vectors AAA1, . . . , AAAn.

AAA1 = aaa1.

To construct AAAj, j 2 {2, . . . ,n}, we compute aaaj minus its projection in the column

space spanned by {AAA1, AAA2, . . . , AAAj�1}:

AAAj = aaaj � Projspan{AAA1,AAA2,...,AAAj�1}
(aaaj)

= aaaj � ProjAAA1
(aaaj)� ProjAAA2

(aaaj)� · · ·� ProjAAAj�1
(aaaj)

= aaaj �
hAAA1, aaaji

hAAA1, AAA1i
AAA1 �

hAAA2, aaaji

hAAA2, AAA2i
AAA2 � · · ·�

hAAAj�1, aaaji

hAAAj�1, AAAj�1i
AAAj�1

Secondly, after getting AAA1, . . . , AAAn, we can construct orthonormal vectors:

qqqj =
AAAj

kAAAjk
for j = 1,2, . . . ,n.

So when do this process fail? When 9j such that AAAj = 000, we cannot continue this

process anymore:

Proposition 6.3 AAAj 6= 000 for 8j if and only if aaa1, aaa2, . . . , aaan are indendent.

Proofoutline. AAAj = 000() aaaj = Projspan{AAA1,...,AAAj�1}
(aaaj). It suffices to prove 9j s.t. AAAj = 000 if

and only if aaa1, aaa2, . . . , aaan are depependent.
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Sufficiency. Given AAAj = 000, then aaaj = Projspan AAA1,...,AAAj�1
(aaaj) 2 span{AAA1, . . . , AAAj�1}. It’s

easy to verify that span{AAA1, . . . , AAAj�1}= span{aaa1, . . . , aaaj�1}. Hence aaaj 2 span{aaa1, . . . , aaaj�1}.

Hence aaa1, . . . , aaaj are dependent. Thus aaa1, . . . , aaan are dependent.

Necessity. Given dependent vectors aaa1, . . . , aaan, obviously, aaan 2 span{aaa1, . . . , aaan�1}. It’s

easy to verify that aaan = Projspan{aaa1,...,aaan�1}
(aaan). Thus aaan = Projspan{AAA1,...,AAAn�1}

(aaan) =)

AAAn = 000. ⌅

6.3.3. The Factorization AAA = QQQRRR
We know that Gaussian Elimination leads to LU decomposition; in fact, Gram-Schmidt

process leads to QR factorization. These two decomposition methods are quite important

in Linear Algebra, let’s discuss QR factorization briefly:

Given a matrix AAA =


aaa bbb ccc

�
, we finally end with a matrix QQQ =


qqq1 qqq2 qqq3

�
. How are these two matrices related?

Answer: Since the linear combination of aaa,bbb, ccc leads to qqq1,qqq2,qqq3 (vice versa), there must

be a third matrix connecting AAA to QQQ. This third matrix is the triangular RRR such taht

AAA = QQQRRR.

Let’s discuss a specific example to show how to do QR factorization.

⌅ Example 6.9 Given AAA =


aaa bbb ccc

�
, whose columns are independent, then we can use

Gram-Schmidt process to obtain the corresponding orthonormal vectors qqq1,qqq2,qqq3 from

aaa,bbb, ccc. As a result, we can write AAA as:

AAA =


qqq1 qqq2 qqq3

�

2

66664

qqqT
1 aaa qqqT

1 bbb qqqT
1 ccc

0 qqqT
2 bbb qqqT

2 ccc

0 0 qqqT
3 ccc

3

77775
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We define RRR ,

2

66664

qqqT
1 aaa qqqT

1 bbb qqqT
1 ccc

0 qqqT
2 bbb qqqT

2 ccc

0 0 qqqT
3 ccc

3

77775
, QQQ ,


qqq1 qqq2 qqq3

�
.

Hence AAA could be factorized into:

AAA = QQQRRR

where RRR is upper triangular, QQQ is a matrix with orthonormal columns. ⌅

QR factorization holds for every matrix with independent columns:

Theorem 6.6 Every m⇥ n matrix AAA with ind. columns can be factorized as

AAA = QQQRRR

where QQQ is a matrix with orthonormal columns, RRR is an upper triangular matrix

(always square).

We omit the proof of this theorem. Now we show that the inverse of RRR always exists:

Proof. suppose AAA =


aaa1 aaa2 . . . aaan

�
, QQQ =


qqq1 qqq2 . . . qqqn

�
. Thus we derive

RRR = QQQ�1 AAA = QQQT AAA =

2

66666664

qqqT
1 aaa1 qqqT

1 aaa2 . . . qqqT
1 aaan

0 qqqT
2 aaa2 . . . qqqT

2 aaan
...

...
. . .

...

0 0 . . . qqqT
naaan

3

77777775

For every step j we have

AAAj = aaaj � Projspan{a1,...,aj�1}
(aaaj), qqqj =

AAAj

kAAAjk
.

Since hAAAj, aaaji= haaaj, aaaji � hProjspan{a1,...,aj�1}
(aaaj), aaaji= kajk

2�kProjspan{a1,...,aj�1}
(aaaj)k2 >

0, we have hqqqj, aaaji =
hAAAj,aaaji

kAAAjk
> 0. Hence the diagonal of RRR are all positive. Hence this

triangular matrix is invertible. ⌅
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Proposition 6.4 If AAA = QQQRRR, then the least squares solution is given by:

xxx = (RRRTRRR)�1RRRTQQQTbbb = RRR�1QQQTbbb.

Explain: Since we have

AAATAAAxxx = RRRTQQQTQQQRRRxxx = RRRTRRRxxx

AAATbbb = RRRTQQQTbbb

it’s equivalent to solve RRRTRRRxxx = RRRTQQQTbbb.

Sicne RRR is invertible, we solve by back substitution to get

xxx = (RRRTRRR)�1RRRTQQQTbbb = RRR�1QQQTbbb.

⌅

6.3.4. Function Space
Sometimes we may also discuss orthonormal basis and Gram-Schmidt process on

function space. There is a simple example:

⌅ Example 6.10 For subspace span{1, x, x2}⇢ C[�1,1], firstly, how to define orthogonal

for the basis {1, x, x2}?

Pre-requisite Knowledge: Inner product.

h f , gi =
Z b

a
f gdx for f , g 2 C[a,b]. k f k2 =

Z b

a
f 2 dx

If we have defined inner product, then we can talk about orthogonality for {1, x, x2}. It’s

easy to verify that

h1, xi = 0 hx, x2
i = 0 h1, x2

i =
2
3

.
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If we do the Gram-Schmidt Process similarly, we obtain:

AAA = 1, BBB = x, CCC = x2
�
h1, x2i

h1,1i
1�
hx, x2i

hx, xi
x = x2

�
1
3

where AAA, BBB,CCC are orthogonal. We can divide their length to obtain orthonormal basis:

qqq1 =
AAA
kAAAk

=
1qR 1
�1 12 dx

=
1
2

qqq2 =
BBB
kBBBk

=
xqR 1
�1 x2 dx

=
x

2/3
=

3
2

x

qqq3 =
CCC
kCCCk

=
x2 � 1

3qR 1
�1(x2 � 1

3 )
2 dx

=
x2 � 1

3
8

45
=

45x2 � 15
8

Hence {qqq1,qqq2,qqq3} is the orthonormal basis for {1, x, x2}. ⌅

⌅ Example 6.11 Consider the collection F of functions defined on [0,2p], where

F := {1,cos x, sin x, cos2x, sin2x, . . . , cosmx, sinmx, . . .}

Using various trigonometric identities, we can show that if f and g are distinct(different)

functions in F , we have
R 2p

0 f gdx = 0. For example,

hsin x, sin2xi =
Z 2p

0
sin x sin2x dx =

Z 2p

0

1
2
(cos x� cos3x)dx = 0.

And moreover, if f = g, we have
R 2p

0 f 2 dx = p. For example,

hsin5x, sin5xi =
Z 2p

0
sin2 5x dx =

Z 2p

0

1
2
(1 + cos10x)dx = p.

In conclusion, the collection of functions {1,sinmx, cosmx} for k = 1,2, . . . are orthogonal

in C[0,2p]. Note that this set is not orthonormal. ⌅

This example gives a motivation of the fourier transformation:
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6.3.5. Fourier Series
Since we have shown the orthogonality of F in Example.(6.11), our question is that

what kind of function can be written as the linear combination of functions from F .

The Fourier series of a function is its expansion into sines and cosines:

f (x) = a0 + a1 cos x + b1 sin x + a2 cos2x + b2 sin2x + . . .

where f (x) 2 C[0,2p]. So our question turns into what kind of function could be

expressed as fuourier series?

Theorem 6.7 If a function f have the finite length in its function space C[a,b], then

it could be expressed as fourier series.

But how to compute the coefficients a0is and b0js? The key is orthogonality! For example,

in order to get a1, we just do the inner product between f (x) and cos x:

Figure 6.7: Enjoy fourier series!

h f (x), cos xi = a1hcos x, cos xi+ 0 =) a1 =
h f (x), cos xi
hcos x, cos xi

=
1
p

Z 2p

0
f (x)cos x dx

Similarly we derive

am =
1
p

Z 2p

0
f (x)cosmx dx bm =

1
p

Z 2p

0
f (x)sinmx dx.
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6.4. Assignment Six

1. Find the determinant of the linear transformation T( f (t)) = f (3t� 2) from P2 to

P2.

2. Suppose that AAA is a m by n real matrix. And suppose that AAAxxx = 000 and AAATyyy = 2yyy.

Show that xxx is orthogonal to yyy.

3. State and justify whether the following three statements are True or False (give

an example in either case):

(a) QQQ�1 is an orthogonal matrix when QQQ is an orthogonal matrix.

(b) If QQQ (a m by n matrix with m > n) has orthonormal columns, then kQQQxxxk= kxxxk.

(c) If QQQ (a m by n matrix with m > n) has orthonormal columns, then kQQQTyyyk =

kyyyk.

4. Let us make P(R) into an inner product space using the inner product

hp,qi =
Z 1

�1
p(x)q(x)dx

Recall that we say a function is even if 8x we have f (�x) = f (x) and odd if 8x

we have f (�x) = � f (x).

W1 corresponds to the set of odd polynomials and W2 the set of even polynomials.

Show that W1 = W?2 .

5. Let VVV = R
3, UUU the orthogonal complement to span

8
>>>><

>>>>:

0

BBBB@

1

2

�5

1

CCCCA

9
>>>>=

>>>>;

. Find an orthonormal

basis of UUU.

6. Find the best line C + Dt to fit b = 4,2,�1,0,0 at times t = �2,�1,0,1,2.
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Chapter 7

Week6

7.1. Tuesday

7.1.1. Summary of previous weeks
In the first two weeks, we have learnt how to solve linear system of equations AAAxxx = bbb.

To understand this equation better, we learn the definition for matrices and vector

space. The columns of matrix product AAAxxx are the linear combination of columns of AAA.

7.1.1.1. Determinants

Then we learnt how to describle the quantity of a matrix–determinant. The determi-

nant of a square matrix is a single number. This number contains an amazing amount

of information about the matrix. There are three main points about determinant:

• Determinants is related to invertibility, rank, eigenvalue, PSD, . . .

• det(AAABBB) = det(AAA)det(BBB).

• The square matrix AAA is invertible if and only if det(AAA) 6= 0.

7.1.1.2. Linear Transformation

Linear transfromation is another important topic. The matrix multiplication T(vvv) = AAAvvv

is essentially a linear transformation. If we consider a vector as a point in vector space,

then the linear transformation allows movements of point in the space. It “transforms” vector

vvv to another vector AAAvvv.
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In the view of linear transformation, we can understand det(AAABBB) = det(AAA)det(BBB)

better:

det(AAA) = Volumn of AAAkkk, where kkk is a unit cube.

If we transform the unit cube kkk by AAA secondly by BBB, actually, it has the same effect

of transforming kkk directly by the matrix BBBAAA.

Figure 7.1: Transformation of a vector by AAA, then by BBB has the same effect by BBBAAA.

If we denote det(·) as the volumn of a graph, since we find that the volumn of

BBB(AAAkkk) is exactly the same as (BBBAAA)kkk, consequently det(BBB)det(AAA) = det(BBBAAA).

Moreover, det(AAA) = 0() Volumn of AAAkkk = 0() dim(AAAkkk) = 0.

Cramer’s Rule also has geometric meaning, which will not be talked in this lecture.

(In big data age, people will not use cramer’s rule frequently due to its high computing

complexity.)

Linear transformation has a matrix representation form under certain basis. How

to transform one basis into another basis? We use similar matrices as the matrix

representation, which will be studied in next lecture.

7.1.1.3. Orthogonality

Why we learn orthogonality? It has two motivations:

1. Linear independence between vectors() Angle 6= 0�.

Similarly, we are interested in the case which the angle is 90 degrees:

orthogonal() Angle = 90�
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2. Solving least squares problem more efficiently.

In pratical, suppose we are given two kinds of data, i.e., input: x =age of propel-

lant and output: y =shear strength. Our data contains S = {(x1,y1), . . . , (xn,yn)},

n = 20 samples. Our goal is to find a best line that fit the data:

Figure 7.2: The relationship between x and y.

In other words, we want to find xxx s.t.

( AAA xxx ⇡ bbb )

age
coefficient

strength
where

AAA =

2

66666664

1 x1

1 x2
...

...

1 xn

3

77777775

bbb =

2

66664

y1
...

yn

3

77775

More generally, our goal is to solve the least square problem given by:

min
xxx2Rn
kAAAxxx� bbbk2

where bbb 2R
m, AAA 2R

m⇥n.

• If bbb 2 C(AAA), this optimization problem is converted into finding the solution

to equation AAAxxx = bbb.
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• Otherwise, we want to find the least squares solution xxx⇤, which must satisfy

∂

∂xxx⇤
kAAAxxx� bbbk2 = 000 =) AAAT AAAxxx⇤ = AAATbbb. (normal equation.)

This opotimization problem also has geometric meaning. We want to find a

solution xxx⇤ such that AAAxxx⇤ best approximates the vector bbb, i.e., AAAxxx⇤ = Proj
C(AAA)(bbb).

Figure 7.3: Least square problem: find xxx such that AAAxxx = Proj
C(AAA)(bbb).

The expression of the projection Proj
C(AAA)(bbb) is given by:

Proj
C(AAA)(bbb) = AAA(AAAT AAA)�1AAATbbb.

Therefore, one least squares solution is given by:

xxx⇤ = (AAATAAA)�1AAATbbb.

When AAA has full column rank, this solution is the unique least squares solution.

(verify by yourself)

Moreover, when AAA is an orthogonal matrix, the least squares solution could be

computed more efficiently:

xxx⇤ = QQQTbbb.
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7.1.2. Eigenvalues and eigenvectors

7.1.2.1. Why do we study eigenvalues and eigenvectors?

• Motivation 1: If we consider matrices as the movements (linear transformation)

for vectors in vector space. Then roughly speaking, eigenvalues are the speed of the

movements, eigenvectors are the direction of the movements

• Motivation 2: We know that linear transformation has different matrix repre-

sentation for different basis. But which representation is simplest for a linear

transformation? This topic gives us answer to this question.

When vectors are multiplied by AAA, almost all vectors change direction. If xxx has the

same direction as AAAxxx, they are called eigenvectors.

The key equation is AAAxxx = lxxx, The number l is the eigenvalue of AAA.

Definition 7.1 [Eigenvectors and Eigenvalues] Given a matrix AAA 2R
n⇥n (or C

n⇥n), our

goalis to find a vector vvv 2 C
n with vvv 6= 000 such that

AAAvvv = lvvv, for some l 2 C (7.1)

• (7.1) is called an eigenvalue problem or eigen-equation

• Let (vvv,l) be a solution to (7.1), we call

– (vvv,l) an eigen-pair of AAA

– l an eigenvalue of AAA; vvv an eigenvector of AAA associated with l.

⌅

We illustrate an example of an eigenvalue problem:
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⌅ Example 7.1 Consider an eigenvalue problem AAAxxx = lxxx, where

AAA =

2

64
4 �2

1 1

3

75 , xxx =

2

64
2

1

3

75

We can verify that

AAAxxx =

2

64
6

3

3

75 = 3

2

64
2

1

3

75 = 3xxx

Therefore, l = 3 is the eigenvalue of AAA; xxx =

2

64
2

1

3

75 is the eigenvector of AAA associated

with l = 3. ⌅

Proposition 7.1 If (vvv,l) is an eigen-pair of AAA, then (avvv,l) is also an eigen-pair for

any a 2 C,a 6= 0.

7.1.2.2. Calculation for eigen-pairs

How to find eigen-pairs (l, xxx)? In other words, how to solve the nonlinear equation

AAAxxx = lxxx, where l and xxx are unknowns? Consider a simpler case. If we can know

the eigenvalues l, then we can solve the linear system (lIII � AAA)xxx = 000 to get the

corresponding eigenvectors.

But how to find eigenvalues? AAAxxx = lxxx has a nonzero solution()(lIII � AAA)xxx = 000

has a nonzero solution() (lIII � AAA) is singular()det(lIII � AAA) = 0.

Therefore, solving the determinant equation gives a way to find eigenvalues:

Proposition 7.2 The number l is the eigenvalue of AAA if and only if lIII � AAA is singular.

Equation for the eigenvalues det(lIII � AAA) = 0. (7.2)

Definition 7.2 [characteristic polynomial] Define PAAA(l) := det(lIII � AAA).

Then PAAA(l) = det(lIII � AAA) is called the characteristic polynomial for the matrix
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AAA; the equation det(lIII � AAA) = 0 is called the characteristic equation for the matrix

AAA; the set N(lIII � AAA) is called the eigenspace associated with l.

If PAAA(l
⇤) = 0, then we say l⇤ is the root of PAAA(l). ⌅

The roots of PAAA(l) are the eigenvalues of AAA. 8xxx 2 N(lIII � AAA) (eigenspace) is an

eigenvector associated with l.

⌅ Example 7.2 Find the eigenvalues and eigenvectors of AAA =

2

64
3 2

3 �2

3

75.

det(lIII � AAA) =

2

64
l� 3 �2

�3 l + 2

3

75 = 0.

=) (l + 3)(l� 2)� 6 = 0. =) l2
� l� 12 = 0. =) l1 = 4 l2 = �3.

Eigenvalues of AAA are l1 = 4 and l2 = �3.

In order to get eigenvectors, we solve (AAA� lIII)xxx = 000:

• For l1, (AAA� l1 III)xxx =

2

64
�1 2

3 �6

3

75 = 000.

=) xxx =

2

64
2x2

x2

3

75 = x2

2

64
2

1

3

75

Hence any a


2 1

�T
(a 6= 0) is the eigenvector of AAA associated with l1 = 4.

• For l2, similarly, we derive

xxx =

2

64
�x2

3x2

3

75 = x2

2

64
�1

3

3

75

Hence any b


�1 3

�T
(b 6= 0) is the eigenvector of AAA associated with l2 = �3.

⌅
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7.1.2.3. Possible difficulty: how to solve det(lIII � AAA) = 0?

PAAA(l) is a characteristic polynomial with degree n. Actually, we can write PAAA(l) as:

PAAA(l) = ln
� a1ln�1 + a2ln�2

� · · ·+ (�1)nan

where ai’s depend on matrix AAA.

When n increases, it’s hard to find its roots:

• When n = 2,3,4, solution to PAAA(l) = 0 has the closed form, which has been proved

in 15th century.

• However, when n � 5, the characteristic equation has no closed form solution.

Although we cannot find closed form solution for large n, we want to study whether

this characteristic polynomial with degree n has exactly n solutions. Gauss gives us

the answer:

Theorem 7.1 — Fundamental theorem of algebra. Every nonzero, single variable,

degree n polynomial with complex coefficients has exactly n complex roots. (Counted

with multiplicity.)

What’s the meaning of multiplicity? For example, the polynomial (x� 1)2 has one

root 1 with multiplicity 2.

Implication. Hence, every polynomial f (x) could be written as

f (x) = anxn + an�1xn�1 + · · ·+ a1x1 + a0

= an(x� x1)(x� x2) . . . (x� xn)

where xi’s are roots for f (x).

Moreover, Pl(AAA) has exactly n roots, i.e., AAA has n eigenvalues.(counted with

multiplicity.)

R Exact roots are almost impossible to find. But approximate roots (eigenvalues)

can be find easily by numerical algorithm.
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7.1.3. Products and Sums of Eigenvalue

The coefficient of the highest order for the characteristic polynomial is 1.

Suppose PAAA(l) = det(lIII � AAA) has n roots l1, . . . ,ln, then we obtain:

PAAA(l) = det(lIII � AAA) = (l� l1) . . . (l� ln) (7.3)

Why the coefficient for ln is 1 in equation (7.3)? If we expand det(lIII � AAA), we find

det(lIII � AAA) =

�������������

l� a11 �a12 . . . �ann

�a21 l� a22 . . . �a2n
...

...
. . .

...

�an1 . . . . . . l� ann

�������������

, (7.4)

in which the variable l only appears in diagonal. By expaning the determinant, the

coefficient of highest order is obviously 1.

The sum of eigenvalues equals to the sum of the n diagonal entries of AAA.

In (7.3), the coefficient of ln�1 is

�(l1 + l2 + · · ·+ ln)

In (7.4), ln�1 only appears among (l� a11)(l� a22) . . . (l� ann), i.e., the coefficient

of ln�1 is

�(a11 + a22 + · · ·+ ann)

Consequently, as (7.3) = (7.4), we obtain

Âli = trace = Â aii

The sum of the entries on the main diagonal is called the trace of AAA, denoted by

trace(AAA).
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The product of the eigenvalues equals to the determinant of AAA. If let l = 0 in

(7.3), then we obtain det(�AAA) = (�1)nl1l2 . . . ln. Obviously, det(�AAA) = (�1)n det(AAA).

Hence (�1)n det(AAA) = (�1)nl1l2 . . . ln =) det(AAA) = l1l2 . . . ln.

Theorem 7.2 The product of the n eigenvalues equals the determinant of AAA.

The sum of the n eigenvalues equals the sum of the n diagonal entries of AAA.

7.1.4. Application: Page Rank and Web Search
Google is the largest web search engine in the world. When you enter a keyworld, the

PageRank algorithm is used by Google to rank the search results of your keyworld.

Figure 7.4: Google interface Figure 7.5: PageRank Diagram, source: Wiki

To rank the pages with respect to its importance, the idea is to use counts of links

of other pages, i.e., if a page is referenced by many many other pages, it must be very

important.

PageRank Model. The PageRank model is given as follows:

Â
j2Li

vj

cj
= vi, i = 1, . . . ,n, (7.5)

where cj is the number of outgoing links from page j; Li is the set of pages with a

link to page i; vi is the importance score of page i. (We skip the procedure for how to

construct this model)
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⌅ Example 7.3 If we assume that there are only four pages in the world, and the diagram

below shows the reference situations:

Figure 7.6: Reference situation of these four pages

Let’s consider the i = 3 case of Eq.(7.5). The set of pages with a link to page 3 is

L3 := {2,4}

Next, we find that the number of outgoing links from page 2,4 are 2,3 respectively.

Hence we build a equation for i = 3 case:

v2

2
+

v4

3
= v3

Similarly, we could use this procedure to obtain the i = 1,2,3,4 cases of Eq.(7.5):

1
2

v2 + v3 +
1
3

v4 = v1

1
3

v4 = v2

1
2

v2 +
1
3

v4 = v3

0 = v4
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Or equailently, we write the equations above into matrix form:

2

66666664

0 1
2 1 1

3

0 0 0 1
3

0 1
2 0 1

3

0 0 0 0

3

77777775

| {z }
AAA

2

66666664

v1

v2

v3

v4

3

77777775

| {z }
vvv

=

2

66666664

v1

v2

v3

v4

3

77777775

| {z }
vvv

⌅

PageRank Problem. Our goal is to find the importance score vi, i.e., find a non-

negative vvv such that AAAvvv = vvv.

In practical, AAA is extremely large and sparse. To solve such a eigenvalue prob-

lem, we want to use the numerical method (power method). The further reading is

recommended:

K. Bryan and L. Tanya, “The 25, 000, 000, 000 eigenvector: The linear

algebra behind Google,” SIAM Review, vol. 48, no. 3, pp. 569–581, 2006.
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7.2. Thursday

7.2.1. Review

• Eigenvalue and eigenvectors: If for square matrix AAA we have

AAAxxx = lxxx

where xxx 6= 000, then we say l is the eigenvalue, xxx is the eigenvector associated with

l.

• How to compute eigenvalues and eigenvectors? To solve the eigenvalue prob-

lem for matrix AAA 2R
n⇥n, you should follow these steps:

– Compute the characteristic polynomial of lIII � AAA. The determinant is a polyno-

mial in l of degree n.

– Find the roots of this polynomial, by solving det(lIII � AAA) = 0. The n roots are

the n eigenvalues of AAA. They make AAA� lIII singular.

– For each eigenvalue l, solve (lIII � AAA)xxx = 000 to find a corresponding eigenvector

xxx.

7.2.2. Similarity

The similar matrices have the same eigenvalues:

Definition 7.3 [Similar] If there exists a nonsingular matrix SSS such that

BBB = SSS�1AAASSS,

then we say AAA is similar to BBB. ⌅

Proposition 7.3 Let AAA and BBB be n⇥ n matrices. If BBB is similar to AAA, then AAA and BBB have

the same eigenvalues.
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Proofidea. Since eigenvalues are the roots of the characteristic polynomial, so it suffices to

prove these two polynomials are the same.

Proof. The characteristic polynomial for BBB is given by

PBBB(l) = det(lIII � BBB)

= det(lIII � SSS�1AAASSS) = det(SSS�1lIIISSS� SSS�1AAASSS)

= det(SSS�1(lIII � AAA)SSS)

= det(S�1)det(lIII � AAA)det(SSS)

Since det(SSS�1)det(SSS) = 1, we obtain:

PBBB(l) = det(lIII � AAA)

= PAAA(l).

Since they have the same characteristic polynomial, the roots for characteristic polynomials

of AAA and BBB must be same. Therefore they have the same eigenvalues. ⌅

R What is invarient? In other words, what is not changed during matrix trans-

formation?

• Rank is invarient under row transformation.

• Eigenvalues is invarient undet similar transformation.

• Unluckily, similar matrices usually don’t have the same eigenvectors.

It’s easy to raise a counterexample.

By using eigenvalues, we have a new proof for det(SSS�1) = 1
det(SSS) :

Proof. Suppose det(SSS) = l1l2 . . . ln, where li’s are eigenvalues of SSS. Then there exists

xxxi such that

SSSxxxi = lixxxi

for i = 1, . . . ,n.
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Since SSS is invertible and all li’s are nonzero, we imply that:

SSSxxxi = lixxxi =) xxxi = liSSS�1xxxi =) SSS�1xxxi =
1
li

xxxi

Hence, 1
li

’s are eigenvalues of SSS�1. Since S�1 2R
n⇥n, 1

li
’s (i = 1, . . . ,n) are the only

eigenvalues of SSS�1.

Hence the determinant of SSS�1 is the product of its eigenvalues:

det(SSS�1) =
1

l1

1
l2

. . .
1

ln
=

1
det(SSS)

.

⌅

We can also use eigenvalue to proof the statement shown below:

Proposition 7.4 AAA is singular if and only if det(AAA) = 0.

Proof. Suppose det(AAA) = l1l2 . . . ln, where li’s are eigenvalues of AAA.

Thus

det(AAA) = 0() 9li = 0() 9 nonzero xxx s.t. AAAxxx = lixxx = 0xxx = 000.

Or equivalently, AAA is singular. ⌅

7.2.3. Diagonalization

Proposition (7.3) says if AAA is similar to BBB, then they have the same eigenvalues.

Question 1. What about the reverse direction?

Question 2. We all approve that the simplest form of a matrix to have eigenvalues

l1, . . . ,ln is the diagonal matrix diag(l1, . . . ,ln). Suppose AAA has eigenvalues l1, . . . ,ln,

is AAA similar to the diagonal matrix diag(l1, . . . ,ln)?

R Why the matrix diag(l1, . . . ,ln) has eigenvalues l1, . . . ,ln?
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Answer: Let’s explain it with n = 2 :

0

B@
l1

l2

1

CA

0

B@
1

0

1

CA=

0

B@
l1

0

1

CA= l1

0

B@
1

0

1

CA

0

B@
l1

l2

1

CA

0

B@
0

1

1

CA=

0

B@
0

l2

1

CA= l2

0

B@
0

1

1

CA

The case for general n is also easy to verify.

The answers to Question 1 and 2 are both No! Let’s raise a counterexample to

explain it:

⌅ Example 7.4 We give a counterexample to show that two matrices with the same

eigenvalues are not necessarily similar to each other; and AAA does not necessarily similar to

the corresponding diagonal matrix.

Given AAA =

2

64
0 1

0 0

3

75, then PAAA(l) = det(lIII � AAA) =

�������

l �1

0 l

�������
. Hence its eigenvalues

are l1 = l2 = 0.

Hence, AAA and DDD = diag(0,0) have the same eigenvalues. Then we show that AAA and

DDD are not similar:

Assume they are similar, which means there exists invertible matrix SSS such that

AAA = SSS�1DDDSSS = SSS�1

0

B@
0 0

0 0

1

CASSS = 000 =) contradiction!

⌅

Suppose AAA has eigenvalues l1, . . . ,ln, but AAA and diag(l1, . . . ,ln) may not be similar!

We are curious about what kind of matrix can be similar to a diagonal matrix:

Definition 7.4 [Diagonalizable] An n⇥ n matrix AAA is diagonalizable if AAA is similar to

a diagonal matrix, that is to say, 9 nonsingular matrix SSS and diagonal matrix DDD such that

SSS�1AAASSS = DDD (7.6)

We say SSS diagonalizes AAA. ⌅
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R Note that Eq.(7.6) can be equivalently written as AAASSS = SSSDDD, or in column-by-

column form:

AAAsssi = disssi, i = 1, . . . ,n, (7.7)

where sssi denotes the ith column of SSS, di denotes the (i, i)th entry of DDD. The

equivalent form Eq.(7.7) also implies that every (sssi,di) must be an eigen-pair

of AAA. (Proposition (7.5))

Proposition 7.5 Suppose that AAA is diagonalizable, then the column vectors of the

diagonalizing matrix SSS are eigenvectors of AAA; and the diagonal elements of DDD are the

corresponding eigenvalues of AAA.

Proposition 7.6 The diagonalizing matrix SSS is not unique.

Proof. Suppose there exists a diagonalizing matrix SSS, verify by yourself that aSSS is also

a a diagonalizing matrix for any a 6= 0. ⌅

R We know that the reverse of proposition (7.3) is not true. However, if we add

one more constraint that all eigenvalues of AAA are distinct, the reverse is true.

We will give a proof of it later.

1. If AAA is n⇥ n and A has n distinct eigenvalues, then AAA is diagonalizable. If

the eigenvalues are not distinct, then AAA may or may not be diagonalizable

depending on whether AAA has n linearly independent eigenvectors.

Why is diagonalizable good?

Theorem 7.3 — Diagonalization. A n ⇥ n matrix AAA is diagonalizable iff AAA has n

independent eigenvectors.

Proof. Necessity. For n eigen-pairs (li, xxxi) of AAA, suppose that xxxi’s are independent.

We after-multiply AAA with SSS =


xxx1 xxx2 . . . xxxn

�
. The first column of AAASSS is AAAxxx1 =

l1xxx1. Hence we obtain the result for the product AAASSS:

AAA times SSS AAASSS = AAA


xxx1 xxx2 . . . xxxn

�
=


l1xxx1 l2xxx2 . . . lnxxxn

�
. (7.8)
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Note that the right side of Eq.(7.8) is essentially the product SSSDDD:

SSS times DDD


l1xxx1 l2xxx2 . . . lnxxxn

�
=


xxx1 xxx2 . . . xxxn

�

2

66664

l1

. . .

ln

3

77775
= SSSDDD.

Hence we obtain AAASSS = SSSDDD. Since xxxi’s are independent, there exists the inverse SSS�1.

Therefore, DDD = SSS�1AAASSS.

Sufficiency. If AAA is diagonalizable, then there exists SSS and DDD such that

DDD = SSS�1AAASSS (7.9)

where SSS is nonsingular. Suppose DDD = diag(l1, . . . ,ln), and SSS =


xxx1 xxx2 . . . xxxn

�
,

where xxxi’s are independent.

The Eq.(7.9) can be equivalently written as AAASSS = SSSDDD, i.e., AAAxxxi = lixxxi for i =

1,2, . . . ,n.

Hence xxxi’s are the independent eigenvectors of AAA associated with li’s. ⌅

Diagonalizable matrix is very useful. For diagonalizable matrix AAA 2 R
n⇥n, it

follows that its eigenvectors {xxx1, . . . , xxxn} are independent, i.e., form a basis for R
n.

Then for any yyy 2R
n, there exists (c1, c2, . . . , cn) such that

yyy = c1xxx1 + c2xxx2 + · · ·+ cnxxxn

If we consider matrix AAA as representation of linear transformation, we obtain

AAAyyy = c1AAAxxx1 + · · ·+ cn AAAxxxn

= c1l1xxx1 + · · ·+ cnlnxxxn
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Hence, the linear transformation from yyy into AAAyyy is equivalent to transforming the

coordinate coefficients from (c1, . . . , cn) into (c1l1, . . . , cnln):

yyy AAA
==) AAAyyy

(c1, . . . , cn)
DDD=diag(l1,...,ln)
=========) (c1l1, . . . , cnln) = (c1, . . . , cn)

0

BBBB@

l1

. . .

ln

1

CCCCA

We are curious about whether there is an useful way to determine whether AAA is

diagonalizable.

Theorem 7.4 If l1, . . . ,lk are distinct eigenvalues of a matrix AAA 2R
n⇥n(n � k) with

the corresponding eigenvectors xxx1, . . . , xxxk, then xxx1, . . . , xxxk are linearly independent.

Proof. • Let’s start with the case k = 2. Assume that l1 6= l2 but xxx1, xxx2 are depen-

dent, i.e., 9(c1, c2) 6= 000 s.t.

c1xxx1 + c2xxx2 = 000. (7.10)

Postmultiplying AAA for Eq.(7.10) both sides results in

AAA(c1xxx1 + c2xxx2) = 000 =) c1l1xxx1 + c2l2xxx2 = 000. (7.11)

Eq.(7.10)⇥l2�Eq.(7.11) results in:

(c1l2 � c1l1)xxx = 000. =) c1(l2 � l1)xxx = 000.

Since l1 6= l2 and xxx 6= 000, we derive c2 = 0. Similarly, if we let Eq.(7.10)⇥l1�Eq.(7.11)

to cancel c2, then we get c1 = 0.

Therefore, (c1, c2) = 000 leads to a contradiction!

• How to proof this statement for general k?
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Assume there exists (c1, . . . , ck) 6= 000 s.t.

c1xxx1 + · · ·+ ckxxxk = 000 (7.12)

Then we obtain two equations from Eq.(7.12):

AAA(c1xxx1 + · · ·+ ckxxxk) = c1l1xxx1 + c2l2xxx2 + · · ·+ cklkxxxk = 000. (7.13)

lk(c1xxx1 + · · ·+ ckxxxk) = c1lkxxx1 + c2lkxxx2 + · · ·+ cklkxxxk = 000. (7.14)

We can let Eq.(7.13)�Eq.(7.14) to cancel xxxk:

c1(l1 � lk)xxx1 + · · ·+ ck(lk�1 � lk)xxxk�1 = 000. (7.15)

By repeatedly applying the trick from (7.12) to (7.15), we can show that

c1(l1 � lk) . . . (l1 � l2)xxx1 = 000 which forces c1 = 0.

Similarly every ci = 0 for i = 1, . . . ,n. Here is the contradiction!

⌅

Corollary 7.1 If all eigenvalues of AAA are distinct, then AAA is diagonalizable

7.2.4. Powers of AAA
Matrix Powers. If AAA = SSS�1DDDSSS, then AAA2 = (SSS�1DDDSSS)(SSS�1DDDSSS) = SSS�1DDD2SSS.

In general, AAAk = (SSS�1DDDSSS) . . . (SSS�1DDDSSS) = SSS�1DDDkSSS.

Eigenvalues of matrix powers. We may ask if eigenvalues of AAA are l1, . . . ,ln, then

what is the eigenvalues of AAAk? The answer is intuitive, the eigenvalues of AAAk are

lk
1, . . . ,lk

n. However, you may use the wrong way to prove this statement:

Proposition 7.7 If eigenvalues of n⇥ n matrix AAA are l1, . . . ,ln, then eigenvalues of AAAk

are lk
1, . . . ,lk

n.
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Wrong proof 1: Assume AAA = SSS�1DDDSSS, then AAAk = SSS�1DDDkSSS. Suppose DDD = diag(l1, . . . ,ln),

then DDDk = diag(lk
1, . . . ,lk

n). Hence eigenvalues of AAAk are lk
1, . . . ,lk

n.

This proof is wrong, because AAA may not be diagonalizable, which means AAA may not

have the form AAA = SSS�1DDDSSS. ⌅

Wrong proof 2: If AAAxxx = lxxx, then AAA2xxx = AAA(AAAxxx) = AAA(lxxx) = l(AAAxxx) = l2xxx.

Hence for general k, AAAkxxx = lkxxx.

This proof only states that if l is the eigenvalue of AAA, then lk is the eigenvalues of

AAAk. Unfortunately, it still cannot derive this proposition. Because it does not prove that

if l are the eigenvalues with multiplicity m, then lk are the eigenvalues of AAAk with

multiplicity m.

Let’s raise a counterexample: Let eigenvalues of AAA be l1 = 1,l2 = 1,l3 = 2; the eigen-

values of AAA2 could be 12,22,22. Hence AAA has the eigenvalues 1 with multiplicity 2; while

AAA2 has the eigenvalue 12 with multiplicity 1. So this AAA and AAA2 is a contradiction for this

proof. In other words, this proof fails to determine the multiplicity of eigenvalues. ⌅

R The proposition(7.7) could be proved using Jordan form, i.e., for any matrix

AAA there exists invertible matrix SSS such that AAA = SSS�1UUUSSS, where UUU is an upper

triangular matrix with diagonal entries l1, . . . ,ln. Then AAAk = SSS�1UUUkSSS, where

UUUk is an upper triangular matrix with diagonal entries lk
1, . . . ,lk

n. Hence the

eigenvalues of AAAk are lk
1, . . . ,lk

n.

7.2.5. Nondiagonalizable Matrices
Sometimes we face some matrices that have too few eigenvalues. (don’t count with

multiplicity)

For example, given AAA =

2

64
0 1

0 0

3

75, it’s easy to verify that its eigenvalue is l = 0 and

eigenvectors are of the form xxx =

2

64
c

0

3

75.
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This 2⇥ 2 matrix cannot be diagonalized. Why? Let’s introduce the definition for

multiplicity first:

Definition 7.5 [Multiplicity] Suppose matrix AAA 2R
n⇥n has k distinct eigenvalues li for

i = 1,2, . . . ,k.

• The algebraic multiplicity of an eigenvalue li, i 2 {1,2, . . . ,k} is defined as the

number of times that li appears as a root of the det(AAA� lIII). We denote the

algebraic multiplicity of li as mi. In other words, we denote mi as the number of

repeated eigenvalues of li.

• The geometric multiplicity of an eigenvalue li, i 2 {1,2, . . . ,k} is defined as the

maximal number of linearly independent eigenvectors associated with li. We

denote the geometric multiplicity of li as qi. Note that qi = dim(N(AAA� li III)).

⌅

Proposition 7.8 We have mi � qi for i = 1,2, . . . ,k.

The implication is that the number of repeated eigenvalues of li � the number of

linearly independent eigenvectors associated with li.

Note that mi > qi is possible, let’s raise an example:

⌅ Example 7.5

AAA =

2

66664

0 0 1

0 0 0

0 0 0

3

77775

We can verify that the roots of det(AAA � lIII) are l1 = l2 = l3 = 0. Thus we have

k = 1,m1 = 3.

However, we can also verify that

N(l� l1 III) = N(AAA) = span

8
>>>><

>>>>:

0

BBBB@

1

0

0

1

CCCCA
,

0

BBBB@

0

1

0

1

CCCCA

9
>>>>=

>>>>;
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Consequently, q1 = dim(N(AAA� l1 III)) = 2. Thus m1 > q1. ⌅

Proof for proposition. For convenience, we let l0 2 {l1, . . . ,lk} be any eigenvalue of AAA,

and we denote q = dim(N(AAA� l0 III)). We only need to show that det(AAA� lIII) has at

least q repeated roots for l = l0.

Firstly, let’s focus on real eigenvalues and real eigenvectors:

• From concepts for subspace, we can find a collection of orthonormal vectors

vvv1, . . . ,vvvq 2 N(AAA� l0 III) and a collection of vectors vvvq+1, . . . ,vvvn 2R
n such that

VVV =


vvv1 vvv2 · · · vvvn

�
is orthogonal.

Let VVV1 =


vvv1 vvv2 · · · vvvq

�
, VVV2 =


vvvq+1 vvvq+2 · · · vvvn

�
and note VVV =


VVV1 VVV2

�
.

Thus we have

VVVTAAAVVV =

2

64
VVVT

1

VVVT
2

3

75


AAAVVV1 AAAVVV2

�
=

2

64
VVVT

1 AAAVVV1 VVVT
1 AAAVVV2

VVVT
2 AAAVVV1 VVVT

2 AAAVVV2

3

75

Since AAAvvvi = l0vvvi for i = 1,2, . . . ,q, we get AAAVVV1 = l0VVV1. By also noting that

VVVT
1 VVV1 = III and VVVT

2 VVV1 = 000, we can simplify the above matrix equation into:

VVVT AAAVVV =

2

64
l0 III VVVT

1 AAAVVV2

000 VVVT
2 AAAVVV2

3

75

It follows that

det(AAA� lIII) = det(VVVT(AAA� lIII)VVV) = det(VVVTAAAVVV � lIII)

= det

0

B@
(l0 � l)III VVVT

1 AAAVVV2

000 VVVT
2 AAAVVV2 � lIII

1

CA

= (l0 � l)q det(VVVT
2 AAAVVV2 � lIII)

Here det(VVVT
2 AAAVVV2 � lIII) is a polynomial of degree of n � q. From the above

equation we see that det(AAA� lIII) has at least q repeated roots for l = l0.
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Secondly, the complex eigenvalues and eigenvectors could be proved by extending

orthogonal matrix into unitary matrix.

The proof is complete. ⌅

Proposition 7.9 A matrix is not diagonalizable if and only if there exists an eigen-

value such that its corresponding algebraic multiplicity is strictly larger than the

corresponding geometric multiplicity.

Proof. The following statements are equivalent:

• The matrix AAA 2 ⇥ is not diagonalizble

• Any n eigenvectors of AAA cannot be independent.

• The sum of the dimensions of all eigenspace of AAA is strictly less than n, i.e., the

sum of the algebraic multiplicity of all eigenvalues of AAA

• There exists an eigenvalue such that the corresponding geometric multiplicity is

strictly less than the corresponding algebraic multiplicity.

⌅
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7.3. Friday

7.3.1. Review
• Diagonalization: Suppose the matrix AAA 2R

n⇥n is diagonalizable, it’s equivalent

to say it has n independent eigenvectors. These n independent eigenvectors form

a basis for R
n. (⇤)

• If all eigenvalues of AAA are distinct, then (⇤) holds.

7.3.2. Fibonacci Numbers
We show a famous example, where the eigenvalues tell how to find the formula for

Fibonacci Numbers.

Every new Fibonacci number come from two previous ones.

Fibonacci Number: 0,1,1,2,3,5,8,13, . . .

Fibonacci Equation: FFFk+2 = FFFk+1 + FFFk, FFF0 = 0, FFF1 = 1.

How to compute FFF100 without computing FFF2 to FFF99?. The key is to begin with

a matrix equation uuuk+1 = AAAuuuk. We put two Fibonacci number into a vector uuuk, then

you will see the matrix AAA:

Define uuuk :=

2

64
FFFk+1

FFFk

3

75 . The rule

8
><

>:

FFFk+2 = FFFk+1 + FFFk

FFF0 = 0, FFF1 = 1
implies that

uuuk+1 =

2

64
1 1

1 0

3

75uuuk, uuu0 =

2

64
1

0

3

75 .

Every step we mutliply uuu0 by AAA. After 100 steps we obtain uuu100 = AAA100uuu0:

uuu100 =

2

64
FFF101

FFF100

3

75 = AAA100uuu0 = AAA100

2

64
1

0

3

75 .
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How to compute the matrix powers AAA100? Diagonalizing AAA is possible. It’s easy to

verify that the matrix AAA =

2

64
1 1

1 0

3

75 can be decomposed into AAA = SSSDDDSSS�1, where

DDD = diag(l1,l2), SSS =

2

64
l1 l2

1 1

3

75 ,

0

B@l1,

2

64
l1

1

3

75

1

CA ,

0

B@l2,

2

64
l2

1

3

75

1

CA are two eigen-pairs of AAA,

with l1 =
1+
p

5
2 ,l2 =

1�
p

5
2 .

If follows that AAA100 = SSSDDD100SSS�1. Hence we can compute uuu100:

uuu100 = AAA100uuu0 = SSSDDD100SSS�1uuu0 = SSS

0

B@
l100

1

l100
2

1

CASSS�1uuu0

=

2

64
l1 l2

1 1

3

75

0

B@
l100

1

l100
2

1

CA

2

64
l1 l2

1 1

3

75

�12

64
1

0

3

75 =

2

64
FFF101

FFF100

3

75

After messy computation, we obtain FFF100:

FFF100 =
1
p

5

h
l100

1 � l100
2

i
=

1
p

5

2

4
 

1 +
p

5
2

!100

�

 
1�
p

5
2

!100
3

5

Another way to compute FFF100. As uuuk+1 = AAAuuuk, we apply a trick to simplify uuu0 at

first:

We set SSS =


xxx1 xxx2

�
, where xxx1 =

2

64
l1

1

3

75 , xxx2 =

2

64
l2

1

3

75 . It follows that

uuu0 =

2

64
1

0

3

75 =
1

l1 � l2

0

B@

2

64
l1

1

3

75�

2

64
l2

1

3

75

1

CA =) uuu0 =
xxx1 � xxx2

l1 � l2
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Then we multiply uuu0 by AAA100 to get uuu100:

uuu100 = AAA100uuu0 =
AAA100xxx1 � AAA100xxx2

l1 � l2

=
AAA99(AAAxxx1)� AAA99(AAAxxx2)

l1 � l2
=

l1AAA99xxx1 � l2AAA99xxx2

l1 � l2
=

l2
1AAA98xxx1 � l2

2AAA98xxx2

l1 � l2
= . . .

=
l100

1 xxx1 � l100
2 xxx2

l1 � l2

After simplification, finally we obtain the same result.

7.3.3. Imaginary Eigenvalues
The eigenvalues might not be real numbers sometimes.

⌅ Example 7.6 Consider the rotation matrix given by KKK =

2

64
0 �1

1 0

3

75. It rotates our

vector by 90�:

KKK

0

B@
cosq

sinq

1

CA =

0

B@
�sinq

cosq

1

CA .

Figure 7.7: Rotate a vector by 90�.

This rotation matrix exists eigenvector and eigenvalue, i.e., 9vvv 6= 000 and l s.t.

KKKvvv = lvvv.

207



However, the equation above means the rotaion matrix doesn’t change the direction of vvv. In

geometric meaning it rotates vector vvv by 90�. It seems a contradiction. This phenomenon

will not happen unless we go to imaginary eigenvectors. Let’s compute eigenvalues

and eigenvectors for KKK first:

PKKK(l) =

�������

l 1

�1 l

�������
= l2 + 1 =) l1 = i, l2 = �i.

(l1 III � KKK)xxx =

0

B@
i 1

�1 i

1

CA

0

B@
x1

x2

1

CA = 000 =) xxx = a

0

B@
1

�i

1

CA .

(l2 III � KKK)xxx =

0

B@
�i 1

�1 �i

1

CA

0

B@
x1

x2

1

CA = 000 =) xxx = b

0

B@
1

i

1

CA .

Moverover, we can diagonalize KKK:

DDD = SSS�1KKKSSS =

0

B@
i

�i

1

CA where SSS =

2

64
1 1

�i i

3

75 .

⌅

R For motion in vector space, eigenvalues are “speed” and eigenvectors are

“directions” under the basis SSS =


xxx1 xxx2 . . . xxxn

�
.

vvv = c1xxx1 + · · ·+ cnxxxn
postmultiply AAA
========) AAAvvv = c1l1xxx1 + · · ·+ cnlnxxxn.

✓
c1 . . . cn

◆
rightmultiply DDD = diag(l1, . . . ,ln)
==================)

✓
c1l1 . . . cnln

◆
.

7.3.4. Complex Numbers and vectors
From Example(7.6) we can see that even for a real matrix, its eigenvaluesmay be

complex numbers.
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Definition 7.6 [Complex Numbers] A complex number xxx 2 C could be written as

xxx = a + bi,

where i2 = �1.

Its complex conjugate is defined as x̄xx = a� bi.

Its modulus is defined as |xxx| =
p

a2 + b2 =
p

xxxx̄xx. ⌅

Figure 7.8: The number z = a + bi corrsponds to the vector (a,b).

Definition 7.7 [Length (norm) for complex] Given a complex-valued n-dimension column

vector

z =

2

66666664

z1

z2
...

zn

3

77777775

2 C
n,

its length (norm) is defined as

kzk =
q
|z1|2 + |z2|2 + · · ·+ |zn|2 =

q
hz,zi =

p
z1z̄1 + z2z̄2 + · · ·+ znz̄n.

⌅
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Before introducing the definition of inner product for complex, let’s introduce the

Hermitian transpose for a complex-valued vector:

Definition 7.8 [Hermitian transpose] Given zzz 2 C
n, we use zzzH denote its Hermitian

transpose:

zzz =

2

66664

z1
...

zn

3

77775
=) zzzH = z̄zzT =


z̄1 . . . z̄n

�
.

where z̄i denotes the complex conjugate of zi. ⌅

Definition 7.9 [Inner product] The inner product of complex-valued vectors zzz and www is

defined as

hzzz,wwwi = wwwHzzz =


w̄ww111 . . . w̄wwnnn

�

2

66664

zzz111
...

zzznnn

3

77775
= w̄ww111zzz111 + · · ·+ w̄wwnnnzzznnn.

⌅

R Note that with complex-valued vectors, wwwHzzz is different from zzzHwww. The

order of the vectors is now important! In fact, zzzHwww = z̄zz111www111 + · · ·+ z̄zznnnwwwnnn is

the complex conjugate of wwwHzzz.

Definition 7.10 [Orthogonal] Two complex-valued vectors are orthogonal if their inner

product is zero:

zzz ? www =) hzzz,wwwi = wwwHzzz = 0

⌅

⌅ Example 7.7 Given complex-valued vectors zzz =

0

B@
1

i

1

CA and www =

0

B@
�i

1

1

CA, although we

have zzzTwww = 0, these two vectors are not perpendicular.
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This is because hzzz,wwwi = wwwHzzz =


i 1
�
2

64
1

i

3

75 = 2i 6= 0. ⌅

⌅ Example 7.8 The inner product of uuu =

2

64
1

i

3

75 and vvv =

2

64
i

1

3

75 is

huuu,vvvi =

�i 1

�
2

64
1

i

3

75 = 0.

Although these vectors (1, i) and (i,1) don’t look perpendicular, actually they are! ⌅

Proposition 7.10 — Conjugate symmetry.

For two vectors zzz and www 2 C
n, we have hzzz,wwwi = hwww,zzzi.

Verify:

hzzz,wwwi = wwwHzzz = w̄wwTzzz = w̄ww111zzz111 + · · ·+ w̄wwnnnzzznnn

hwww,zzzi = zzzHwww = z̄zzTwww = z̄zz111www111 + · · ·+ z̄zznnnwwwnnn

Since we have wwwvvv = w̄wwv̄vv and www + vvv = w̄ww + v̄vv, it’s easy to find that

w̄ww111zzz111 + · · ·+ w̄wwnnnzzznnn = www111z̄zz111 + · · ·+ wwwnnnz̄zznnn. = z̄zz111www111 + · · ·+ z̄zznnnwwwnnn.

Hence hzzz,wwwi = hwww,zzzi. ⌅

Proposition 7.11 — Sesquilinear. For two vectors zzz and www 2 C
n, we have

hazzz,wwwi = ahzzz,wwwi (7.16)

hzzz, bwwwi = b̄hzzz,wwwi (7.17)

for scalars a and b.
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Verify:

hazzz,wwwi = wwwH(azzz)

= a(wwwHzzz)

= ahzzz,wwwi.

To show the equation (7.17), due to the conjugate symmetry, we derive

hzzz, bwwwi = hbwww,zzzi

Since hbwww,zzzi = bhwww,zzzi = bhzzz,wwwi, we obtain

hzzz, bwwwi = bhzzz,wwwi = b̄hzzz,wwwi.

⌅

7.3.4.1. Hermitian transpose for matrix

Similarly, the Hermitian transpose of a complex-valued matrix AAA is given by

AAAH := ĀAAT

The rules for Hermitian transpose usually comes from transpose. For example, the

Hermitian transpose for matrics has the property

• (AAABBB)H = BBBHAAAH.

• (AAAH)H = AAA.

• (AAA + BBB)H = AAAH + BBBH.

The rules for Hermitian transpose of complex-valued vectors might be slightly different

from the transpose of real-valued vectors:
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R
n

C
n

hxxx,yyyi = xxxTyyy hzzz,wwwi = wwwHzzz

xxxTyyy = yyyTxxx zzzHwww = wwwHzzz

kxxxk2 = xxxTxxx kzzzk2 = zzzHzzz

xxx ? yyy() xxxTyyy = 0 zzz ? www() wwwHzzz = 0

R What aspects of eigenvalues/eigenvectors are not nice?

• Some matrix are non-diagonalizable. (or equivalently, eigenvectors aren’t

independent.)

• Eigenvalues can be complex even for a real-valued matrix.

We are curious about what kind of matrix has all real eigenvalues? Let’s focus on

real-valued matrix first. The answer is the real-valued symmetric matrix.

You should remember the proposition(7.12) below carefully, they are very impor-

tant!

Proposition 7.12 For a real symmetric matrix AAA,

• All eigenvalues are real numbers.

• The eigenvectors associated with distinct eigenvalues are orthogonal.

• AAA is diagonalizable. More general, all eigenvectors of AAA are orthogonal!

Before the proof, let’s introduce a useful formula: hAAAxxx,yyyi = hxxx, AAAHyyyi.

Verify: hAAAxxx,yyyi = yyyHAAAxxx = (AAAHyyy)Hxxx = hxxx, AAAHyyyi

Proof. • For the first part, given any eigen-pair (l, xxx), we we obtain

hAAAxxx, xxxi = hxxx, AAAHxxxi

– For the LHS, hAAAxxx, xxxi = hlxxx, xxxi = lhxxx, xxxi.
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– For the RHS, since AAA is a real symmetric matrix, we have

AAAH = ĀAAT
= AAAT = AAA =) hxxx, AAAHxxxi = hxxx, AAAxxxi

Moreover, hxxx, AAAxxxi = hxxx,lxxxi = l̄hxxx, xxxi. Hence, hxxx, AAAHxxxi = l̄hxxx, xxxi.

Finally we have lhxxx, xxxi = l̄hxxx, xxxi. Since xxx 6= 000, hxxx, xxxi 6= 0. Hence l = l̄, i.e, l is

real.

• For the second part, suppose xxx1 and xxx2 are two eigenvectors corresponding to

two distinct eigenvalues l1 and l2 respectively. Our goal is to show xxx1 ? xxx2. We

find that

hAAAxxx1, xxx2i = hxxx1, AAAHxxx2i

– For LHS, hAAAxxx1, xxx2i = hl1xxx1, xxx2i = l1hxxx1, xxx2i.

– For RHS, hxxx1, AAAHxxx2i = hxxx1, AAAxxx2i = hxxx1,l2xxx2i = l̄2hxxx1, xxx2i. From part one

we derive that hxxx1, AAAHxxx2i = l2hxxx1, xxx2i.

Hence l1hxxx1, xxx2i = l2hxxx1, xxx2i.

Since l1 6= l2, we obtain hxxx1, xxx2i = 0, i.e., xxx1 ? xxx2.

• The proof for the third part is not required.

⌅

7.3.5. Spectral Theorem
We have a stronger version of the third part of proposition(7.12):

Theorem 7.5 — Spectral Theorem. Any real symmetric matrix AAA has the factoriza-

tion

AAA = QQQLQQQT, (7.18)

where L 2R
n⇥n is diagonal matrix, QQQ 2R

n⇥n is orthogonal.

Proof. From proposition (7.12) we know that AAA is diagonalizable, i.e., there exists invert-
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ible matrix QQQ and diagonal matrix L such that

AAA = QQQLQQQ�1

From proposition(7.12), since all eigenvalues of AAA are real, L is a real matrix.

Since all eigenvectors xxx1, . . . , xxxn are orthogonal, from proposition(7.5), matrix QQQ =
xxx1 . . . xxxn

�
, we imply QQQ is orthogonal. ⌅

R

1. Since AAA = QQQLQQQT = QQQLQQQ�1, AAA could be diagonalized by an orthogonal

matrix.

2. Suppose QQQ =


q1 . . . qn

�
, L = diag(l1, . . . ,ln), then AAA could be rewrit-

ten as:

AAA =


q1 . . . qn

�

2

66664

l1

. . .

ln

3

77775

2

66664

qT
1
...

qT
n

3

77775

Or equivalently,

AAA = l1q1qT
1 + l2q2qT

2 + · · ·+ lnqnqT
n (7.19)

Note that each term qiqT
i is the projection matrix for qi. Hence spectral

theorem says that a real symmetric matrix is a linear combination of

projection matrices.

⌅ Example 7.9 If we write AAA as a linear combination of projection matrices, we can have

a deep understanding for the linear transformation AAAxxx:

AAA =
n

Â
j=1

ljqjqT
j =) AAAxxx =

n

Â
j=1

ljqjqT
j xxx =

n

Â
j=1

lj(qjqT
j xxx).
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For the case n = 2, it’s clear to find that

xxx = c1q1 + c2q2 =) AAAxxx = l1c1q1 + l2c2q2

Showing in graph, we have

Figure 7.9: Linear transformation of AAA.

⌅

R The formula

AAA =
n

Â
j=1

ljqjqT
j or AAA = QQQLQQQT

are called the eigen-decomposition or eigenvalue decomposition of AAA.

{l1, . . . ,ln} are called the spectum of AAA.

Also, we can extend our result from real symmetric matrix into complex-valued.

7.3.6. Hermitian matrix
Definition 7.11 [Symmetric and Hermitian]

• Recall that a square matrix AAA is said to be symmetric if aij = aji for all i, j, or

equivalently, if AAAT = AAA

• For complex-valued case, a square matrix AAA is said to be Hermitian if aij = āji for

all i, j, or equivalently, if AAAH = AAA.
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we denote the set of all n⇥ n real symmetric matrices by S
n; and we denote the set of all

n⇥ n complex Hermitian matrices by H
n. ⌅

Example: MMM =

2

64
3 2� i

2 + i 4

3

75 2H
2 since MMM = MMMH.

If MMM is a real matrix, then MMM = MMMH
() MMM = MMMT. So if the real matrix is a

Hermitian matrix, it is equivalent to say it is real symmetric matrix.

Hermitian matrix has many interesting properties:

Proposition 7.13 If MMM 2H
n, then xxxHMMMxxx 2R for any complex-valued vectors xxx.

Proof. We set a := xxxHMMMxxx. Since a is a scalar (easy to check), we obtain aT = a.

It follows that ā = aH = (xxxHMMMxxx)H = xxxHMMMxxx = a. Hence a is real. ⌅

Proposition 7.14 If MMM 2H
n, then hxxx, MMMyyyi = hMMMxxx,yyyi.

Proof. By definition,

hxxx, MMMyyyi = (MMMyyy)Hxxx = yyyHMMMHxxx = yyyHMMMxxx = hMMMxxx,yyyi.

⌅

We have the general orthogonal matrices for complex-valued matrices:

Definition 7.12 [Unitary] A complex-valued matrix having orthonormal columns is said

to be unitary. In other words, UUU is unitary if UUUHUUU = III. ⌅

The spectral theorem can also apply for Hermitian matrix:

Theorem 7.6 — Spectral Theorem. Any Hermitian matrix MMM can be factorized into

MMM = UUULUUUH

where L is a real diagonal matrix, UUU is a complex-valued unitary matrix.

R What good points does Hermitian matrix have?
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• It is diagonalizable.

• Its eigenvectors form the orthogonal basis.

• Its eigenvalues are all real.
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7.4. Assignment Seven

1. Here is a wrong “proof” that the eigenvalues of all real matrices are real:

AAAxxx = lxxx gives xxxTAAAxxx = lxxxTxxx =) l =
xxxT AAAxxx
xxxTxxx

2R.

Find the flaw in this reasoning: a hidden assumption that is not justified.

2. Let AAA be an n⇥ n matrix and let l be an eigenvalue of AAA whose eigenspace has

dimension k, where 1 < k < n. Any basis {xxx1, . . . , xxxk} for the eigenspace can be

extended to a basis {xxx1, . . . , xxxn} for R
n. Let XXX =


xxx1 · · · xxxn

�T
and BBB = XXX�1AAAXXX.

(a) Show that BBB is of the form 2

64
lIII BBB12

000 BBB22

3

75

where III is the k⇥ k identity matrix

(b) Show that l is an eigenvalue of AAA with multiplicity at least k.

3. Let xxx,yyy be nonzero vectors in R
n, n � 2, and let AAA = xxxyyyT. Show that

(a) l = 0 is an eigenvalue of AAA with n� 1 linearly independent eigenvectors.

Moreover, due to the conclusion of question 2, 0 is an eigenvalue of AAA with

multiplicity at least n� 1.

(b) The remaining eigenvalue of AAA is

ln = trace(AAA) = xxxTyyy

and xxx is an eigenvector belonging to ln.

(c) If ln = xxxTyyy 6= 0, then AAA is diagonalizable.

4. Suppose an n⇥ n matrix AAA has n distinct eigenvalues l1, . . . ,ln. Consider the

matrix BBB = (AAA� l1 III) . . . (AAA� ln III). Prove that BBB must be a zero matrix.

Hint: How to do eigendecomposition for AAA� li III?

5. Let AAA and BBB be n⇥ n matrices. Show that

(a) If l is a nonzero eigenvalue of AAABBB, then it is also an eigenvalue of BBBAAA.
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(b) If l = 0 is an eigenvalue of AAABBB, then l = 0 is also an eigenvalue of BBBAAA.

6. (a) The sequence ak is defined as

a0 = 4, a1 = 5, ak+1 = 3ak � 2ak�1,k = 1,2, . . .

What is the general formula for ak?

(b) The sequence bk is defined as

b0 = a,b1 = b,bk+1 = 4bk � 4bk�1,k = 1,2, . . .

What is the general formula for bk?

Hint: Prove the corresponding matrix is similar to

2

64
2 1

0 2

3

75 .

In order to compute 2

64
2 1

0 2

3

75

k

,

you need to use the fact that

Given sequence pk+1 = 2pk + 2k =) pk = (p0 +
k
2
)⇥ 2k.

7. State and justify whether the following three statements are True or False:

(a) If AAA is real symmetric matrix, then any 2 linearly independent eigenvectors

of AAA are perpendicular.

(b) Any n by n complex matrix with n real eigenvalues and n orthonormal

eigenvectors is a Hermitian matrix.

(c) If AAA is diagonalizable. then eAAA is diagonalizable.

(We define eAAA = III + AAA + 1
2! AAA2 + . . . )

(d) If AAA is Hermitian and AAA is invertible, then AAA�1 is also Hermitian.
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8. (a) For a complex AAA, is the left nullspace N(AAAT) orthogonal to C(AAA) under the

old unconjugated inner product xxxTyyy or new conjugated inner product xxxHyyy?

What about N(AAAH) and C(AAA)?

(b) For a real vector subspace V, the intersection of V and V? is only the single

point {000}. Now suppose V is a complex vector subspace. If we define V?

as the set of vector xxx with xxxTvvv = 0 for all vvv 2 V. Give an example of a V

that intersects V? at a nonzero vector. What about if we use xxxHvvv = 0? Does

V ever intersect V? at a nonzero vector using the conjugated definition of

orthogonality?
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Chapter 8

Week7

8.1. Tuesday

8.1.1. Quadratic form
The graphs of the following equations are easy to plot:

x2 + y2 = 1 =) Circle. (8.1)

x2

2
+

y2

5
= 1 =) Elipse. (8.2)

x2

2
�

y2

5
= 1 =) Hyperbola. (8.3)

x2 = ay

y2 = ax

9
>=

>;
=) Parabola. (8.4)

Figure 8.1: graph for quadratic form equations of two variables

The equations (8.1)� (8.4) is the quadratic form equations of two variables. Now we

give the general form for quadratic equations:
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Definition 8.1 [Quadratic form] The formula of quadratic form is given by

xxxTAAAxxx

where AAA 2 S
n and xxx 2R

n.

Moreover, sometimes we write xxxT AAAxxx as:

xxxT AAAxxx =
n

Â
i,j=1

xixjaij

where xi is the ith entry of xxx and aij are (i, j)th entry of AAA. ⌅

Moverover, we say an equation is the conic section of quadratic form if it can be

written as

xxxTAAAxxx = 1.

You may be confused why the quadratic form requires the symmetric constraint.

Now we give the reason:

• It is easy to verify xxxTAAAxxx = xxxT AAATxxx.

• Hence given any matrix AAA, we always have

xxxT

 
AAA + AAAT

2

!
xxx =

1
2

xxxT AAAxxx +
1
2

xxxT AAATxxx

=
1
2

xxxT AAAxxx +
1
2

xxxT AAAxxx

= xxxTAAAxxx.

Note that
⇣

AAA+AAAT

2

⌘
is symmetric! Hence given any AAA, since xxxT AAAxxx = xxxT

⇣
AAA+AAAT

2

⌘
xxx, it

suffices to consider a symmetric matrix.

⌅ Example 8.1 Given the equation 3x2 + 2xy + 3y2 = 1, how we transform it into the

conic section of quadratic form? How can we determine its shape in view of matirx?
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Actually, It can be written as

✓
x y

◆
0

B@
3 1

1 3

1

CA

0

B@
x

y

1

CA = 1. conic section of quadratic form. (8.5)

We could obatin a simpler version of the conic section of quadratic form, i.e., the

middle matrix should be diagonal. We define AAA =

0

B@
3 1

1 3

1

CA . Since AAA 2 S
2, it admits the

eigenvalue decomposition:

AAA = QQQLQQQT

where L =

0

B@
l1

l2

1

CA, QQQ =


xxx1 xxx2

�
.

Thus we convert equation (8.5) into

✓
x y

◆
QQQLQQQT

0

B@
x

y

1

CA = 1 =) x̃xxTLx̃xx = 1. (8.6)

where x̃xx = QQQT

0

B@
x

y

1

CA =

0

B@
x̃1

x̃2

1

CA.

Then how to determine the shape of this equation? We just do matrix multiplication of

Eq.(8.6) to obtain:

l1 x̃2
1 + l2 x̃2

2 = 1.

After computation, we find l1,l2 > 0. Hence this equation is an elipse. ⌅

8.1.2. Convex Optimization Preliminaries

Now we recall how to compute derivative for matrix:

∂( f Tg)
∂x

=
∂ f (x)

∂x
g(x) +

∂g(x)
∂x

f (x)
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Examples of matrix derivatives:

∂(aTxxx)
∂xxx

= a

∂(aT AAAxxx)
∂xxx

=
∂((AAATa)Txxx)

∂xxx
= AAATa

∂(AAAxxx)
∂xxx

= AAAT

∂(xxxT AAAxxx)
∂xxx

= AAAxxx + AAATxxx

⌅ Example 8.2

Given f (xxx) = 1
2 xxxT AAAxxx + bbbTxxx. We want to do the optimization:

min
xxx2Rn

f (xxx)

How to find the optimal solution? The direct idea is to take the first order derivative:

∂ f
∂xxx

=
1
2

∂(xxxT AAAxxx)
∂xxx

+
∂(bbbTxxx)

xxx

=
1
2
(AAAxxx + AAATxxx) + bbb.

Since AAA is symmetric, we obtain

∂ f
∂xxx

= AAAxxx + bbb.

If xxx⇤ is an optimal solution, then it must satisfy:

r f (xxx⇤) =
∂ f (xxx⇤)

∂xxx
= 000 =) AAAxxx⇤ + bbb = 000.

There may follow these cases:

• If equation AAAxxx + bbb = 000 has no solution, then f (xxx) is unbounded. (We omit the

proof of this statement)
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• If equation AAAxxx + bbb = 000 has a solution xxx⇤, it doesn’t mean xxx⇤ is an optimal solution.

(Note that the reverse is true.)

Let’s raise a counterexample: if we set

AAA =

2

64
1 0

0 �1

3

75 , bbb = 000, xxx =

0

B@
x1

x2

1

CA ,

then f (xxx) = 1
2 (x2

1 � x2
2). One solution to AAAxxx + bbb = 000 is xxx⇤ =

0

B@
0

0

1

CA.

Obviously, xxx⇤ is not a optimal solution. If x1 = 0, x2!•, then f (xxx)!�•!

⌅

8.1.2.1. Second optimality condition

If xxx⇤ is a optimal solution to f (xxx), what else condition should xxx⇤ satisfy?

Let’s take f (xxx) = 1
2 xxxTAAAxxx + bbbTxxx as an example, we want to find xxx⇤ s.t.

min f (xxx) = f (xxx⇤).

Firstly, we write f (xxx) into its taylor expansion:

f (xxx) = f (xxx⇤) + hr f (xxx⇤), xxx� xxx⇤i+
1
2
(xxx� xxx⇤)T

r
2 f (xxx⇤)(xxx� xxx⇤). (8.7)

Note that r2 f (xxx⇤) is the Hessian matrix of f (xxx⇤), which is defined as

r
2 f (xxx⇤) :=


∂2 f (xxx⇤)
∂xi∂xj

�
=r(r f (xxx⇤)).

We compute 5 f (xxx) and 52 f (xxx):

5 f (xxx) =
1
2
(AAAxxx + AAATxxx) + bbb.

5
2 f (xxx) =5


1
2
(AAAxxx + AAATxxx) + bbb

�
=

1
2
5 (AAAxxx) +

1
2
5 (AAATxxx) =

1
2
(AAA + AAAT).
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If assume AAA is symmetric, then we have r f (xxx) = AAAxxx + bbb and r2 f (xxx) = AAA.

Since the optimal solution xxx⇤ satisfies 5 f (xxx⇤) = 000, we deive

h5 f (xxx⇤), xxx� xxx⇤i = 0.

Then substituting it into Eq.(8.7), we obtain:

f (xxx) = f (xxx⇤) +
1
2
(xxx� xxx⇤)T

5
2 f (xxx⇤)(xxx� xxx⇤).

Or equivalently, f (xxx)� f (xxx⇤) = 1
2 (xxx� xxx⇤)T AAA(xxx� xxx⇤).

Since xxx⇤ is optimal that minimize f (xxx), LHS = f (xxx)� f (xxx⇤) � 0 for 8xxx. It follows

that
1
2
(xxx� xxx⇤)TAAA(xxx� xxx⇤) � 0, for 8xxx.

Or equivalently,

xxxTAAAxxx � 0 for 8xxx.

Our conclusion is that if there exists a optimal solution for f (xxx), then the matrix AAA

should satisfy xxxTAAAxxx � 0 for 8xxx. We have a specific name for such AAA.

R The Hessian matrix r2 f (xxx) is the second order derivative of f (xxx). In scalar

case we know that the second optimality condition to minimize the function

f (x) is to let its second order derivative no less than zero. In vector case, the

second optimality condition is r2 f (xxx) ⌫ 0, where ⌫ 0 denotes the positive

semi-definite.

8.1.3. Positive Definite Matrices
Definition 8.2 [Positive-definite] A matrix AAA 2 S

n is said to be

• positive-semi-definite (PSD) if xxxTAAAxxx � 0 for 8xxx. We denote it as AAA ⌫ 0.

• positive-definite (PD) if xxxTAAAxxx > 0 for 8xxx 6= 000. We denote it as AAA � 0.

228



• indefinite if there exist some xxx and yyy s.t.

xxxTAAAxxx < 0 < yyyTAAAyyy.

⌅

Theorem 8.1 Given a matrix AAA 2 S
n, the following statements are equivalent:

1. AAA is PD.

2. All eigenvalues of AAA are positive.

3. All n upper left square submatrices AAA1. . . . , AAAn all have positive determinants.

4. AAA could be factorized as RRRTRRR, where RRR is nonsingular.

You may be confused about the “upper left submatrices”. They are the 1 by 1, 2 by

2,. . . ,n by n submatrices of AAA on the upper left. The n by n submatrix is exactly AAA.

Before we geive a detailed proof, let’s show how to test some matrices for positive

definiteness by using this theorem:

⌅ Example 8.3 Test these matrices AAA and BBB for positive definiteness:

AAA =

2

66666664

1

2

2

2

3

77777775

and BBB =

2

66666664

1 �1

�1 2 �1

�1 2 �1

�1 2

3

77777775

• For matrix AAA, its eigenvalues are {1,2,2,2}. So all eigenvalues of AAA are positive, AAA

is PD. Moverover, we can test its positive definiteness by definition:

xxxTAAAxxx = x2
1 + 2x2

2 + 2x2
3 + 2x2

4 > 0.

for 8xxx =

✓
x1 x2 x3 x4

◆T
6= 000.
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• For matrix BBB, all upper left square submatrices are given by

BBB1 =


1
�

BBB2 =

2

64
1 �1

�1 2

3

75 BBB3 =

2

66664

1 �1

�1 2 �1

�1 2

3

77775
BBB4 =

2

66666664

1 �1

�1 2 �1

�1 2 �1

�1 2

3

77777775

After messy computation, we obtain

det(BBB1) = 1 det(BBB2) = 1 det(BBB3) = 1 det(BBB4) = 1.

Hence all upper left square determinants are positive, BBB is PD.

⌅

Then we begin to give a proof for this theorem:

Proof. • (1) =) (2) : Given any eigen-pair (l, xxx) of AAA, we have

AAAxxx = lxxx, for 8xxx 6= 000.

By postmutliplying xxxT both sides, we obtain:

xxxTAAAxxx = lxxxTxxx = lkxxxk2 =) l =
xxxT AAAxxx
kxxxk2 > 0.

• (2) =) (1) : Assume all eigenvalues li > 0 for i = 1,2, . . . ,n. Our goal is to show

xxxTAAAxxx > 0 for 8xxx 6= 000.

Since AAA 2 S
n, it admits the eigen-decomposition:

AAA = QQQLQQQT QQQ is orthogonal matrix.

It follows that

xxxTAAAxxx = xxxTQQQLQQQTxxx = (QQQTxxx)TL(QQQTxxx).
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By setting x̃xx = QQQTxxx =


x̃1 . . . x̃n

�
, xxxT AAAxxx can be rewritten as

xxxT AAAxxx = x̃xxTLx̃xx =
n

Â
i=1

li x̃i
2
� 0.

Then we aruge for Ân
i=1 li x̃i

2
6= 0. It suffices to show kx̃xxk 6= 0.

You can verify by yourself that kQQQTxxxk = kxxxk. Thus we obtain:

kx̃xxk := kQQQTxxxk = kxxxk 6= 0.

• (1) =) (3) : We only to show det(AAAk) > 0 for any upper left matrices AAAk.

Given any nonzero vector x̃xx =

0

BBBBBBB@

x1

x2
...

xk

1

CCCCCCCA

2R
k, we construct xxx =

0

B@
x̃xx

000

1

CA 2R
n.

Since AAA � 0, we find

xxxT AAAxxx =

✓
x̃xxT 000

◆
AAA

0

B@
x̃xx

000

1

CA

= x̃xxTAAAkx̃xx > 0.

Since x̃xx is arbitrary nonzero vector in R
k, we derive AAAk � 0. By (2) of this theorem,

all eigenvalues of AAAk are positive.

Thus det(AAAk) = product of all eigenvalues of AAAk > 0.

• (3) =) (4) :

– We want to show that all pivots of AAA are positive first:
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We do row transform to convert AAA into upper triangular matrix ÃAA:

2

66664

⇥ ⇥ ⇥

⇥ ⇥ ⇥

⇥ ⇥ ⇥

3

77775
=)

2

66664

⇥ ⇥ ⇥

0 ⇥ ⇥

0 0 ⇥

3

77775

During row transformation, the determinant for the correponding upper left

submatrices AAAi doesn’t change. In other words, we obtain

det(ÃAAi) = det(AAAi) for i = 1, . . . ,n.

Moreover, ÃAAi always contains ÃAAi�1 on its upper left side:

ÃAAi =

2

64
ÃAAi�1 BBB

000 ãii

3

75

Note that ÃAAi’s are also upper triangular matrices. The determinant of an

upper triangular matrix is the product of its diagonal entries. Hence we

obtain

det(ÃAAi) = ãii det(ÃAAi�1) for i = 2, . . . ,n.

It follows that

ãii =
det(ÃAAi)

det(ÃAAi�1)
=

det(AAAi)
det(AAAi�1)

for i = 2, . . . ,n.

Due to (3) of this theorem, ãii > 0 for i = 2, . . . ,n. Also, ˜a11 = det(ÃAA1) =

det(AAA1) > 0.

In conclusion, all pivots ãii > 0 for i = 1, . . . ,n.

– Then we apply the LDU composition for AAA. Since AAA 2 S
n, we obtain

AAA = LLLDDDLLLT

where DDD = diag(d1, . . . ,dn). The diagonal entries of DDD are pivots of AAA. LLL is a
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lower triangular matrix with 1’s on the diagonal entries.

Since all pivots of AAA are positive, we define
p

DDD := diag(
p

d1, . . . ,
p

dn).

Hence we rewrite AAA as:

AAA = LLL

0

BBBB@

d1

. . .

dn

1

CCCCA
LLLT = LLL

p

DDD
p

DDDLLLT = (
p

DDDLLLT)T(
p

DDDLLLT).

We define RRR :=
p

DDDLLLT. Since
p

DDD and LLLT are nonsingular, DDD is nonsingular.

Hence AAA = RRRTRRR, where RRR is a nonsingular matrix.

• (4) =) (1) : Suppose AAA = RRRTRRR, where RRR is nonsingular. Then for any xxx 2 R
n,

we have

xxxTAAAxxx = xxxTRRRTRRRxxx = kRRRxxxk2
� 0.

Then it suffices to show that if xxx 6= 000, then kRRRxxxk 6= 0.:

Since RRR is nonsinguar, when xxx 6= 000, we obtain RRRxxx 6= 000. Hence kRRRxxxk 6= 0.

⌅

Is there any quick ways to determine the positive definiteness of a matrix? The

answer is yes. Let’s introduce some definitions first:

Definition 8.3 [Submatrix] If AAA is a n⇥ n matrix, then a submatrix of AAA is obtained by

keeping some collection of rows and columns. ⌅

⌅ Example 8.4 For matrix AAA =

2

66666664

1 �1

�1 2 �1

�1 2 �1

�1 2

3

77777775

, if we keep the (1,3,4)th row and
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(1,2)th column of AAA, our submatrix is denoted as

AAA(1,3,4),(1,2) =

2

66664

1 �1

0 �1

0 0

3

77775

⌅

Definition 8.4 [principal submatrix] If AAA is a n⇥ n matrix, then a principal submatrix of

AAA is obtained by keeping the same collection of rows and columns. For example, if we

want to keep the (5,7)th row of AAA, in order to construct a principal submatrix, we must

keep the (5,7)th column of AAA as well. ⌅

⌅ Example 8.5 If AAA =

2

66666664

1 �1

�1 2 �1

�1 2 �1

�1 2

3

77777775

, then if we keep the (1,3,4)th row of AAA,

in order to construct a principal submatrix, we have to keep (1,3,4)th column of AAA as well.

Our principal submatrix is denoted as

AAA(1,3,4),(1,3,4) =

2

66664

1 0 0

0 2 �1

0 �1 2

3

77775

⌅

Definition 8.5 [leading principal submatrix] If AAA is a n ⇥ n matrix, then a leading

principal submatrix of AAA is obtained by keeping the first k rows and columns of AAA, where

k 2 {1,2, . . . ,n}. ⌅

Note that the leading principal submatrix is just the upper left submatrix we have

mentioned before.
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Corollary 8.1 Suppose AAA 2 S
n, if AAA � 0, then all principal submatrices of AAA are PD as

well.

Proof. Our goal is to show that AAAa,a � 0, where a contains the first k elements of

{1, . . . ,n}.

For any xxxa 2R
|a|, it suffices to show xxxT

a AAAa,axxxa > 0. Here |a| denotes the number of

elements in set a.

We construct xxx 2R
n s.t. the ith entry of xxx is

xxxi =

8
><

>:

(xxxa)i i 2 a

0 i /2 a

It’s obvious that

xxxTAAAxxx =
n

Â
i,j=1

xxxixxxj AAAij

= Â
i,j2a

(xxxa)i(xxxa)j(AAAa,a)ij

= xxxT
a AAAa,axxxa > 0.

⌅

How to use this corollary to test the positive definiteness?

For example, given AAA =

2

66664

2 �1 1

�1 0 0

1 0 1

3

77775
, immediately we find one principal matrix is

AAA2,2 = 0. Hence it is not PD.

Also, there are many equivalent statements related to PSD. The proof is similar to

the PSD case, so you may complete the proof by yourself.

Theorem 8.2 Let AAA 2 S
n, the following statements are equivalent:

1. AAA is PSD.

2. All eigenvalues of AAA are nonnegative.

235



3. AAA could be factorized as RRRTRRR, where RRR is square.

R Is AAA ⌫ 0 equivalent to AAAij � 0 for all i, j? No. Let’s raise a counterexample:

AAA =

2

64
1 �0.5

�0.5 1

3

75 ⌫ 0.

PSD has many interesting properties. Before we introduce one, let’s extend the

definiton of inner product into matrix form:

Definition 8.6 [Frobenius inner product] For two matrices AAA 2 R
m⇥n and BBB 2 R

m⇥n,

the Frobenius inner product is given by

hAAA, BBBi =
n

Â
i,j=1

AAAijBBBij

Or equivalently, hAAA, BBBi = trace(BBBT AAA). ⌅

Proposition 8.1 Given two matrices AAA, BBB 2 S
n, if AAA ⌫ 0, BBB ⌫ 0, then hAAA, BBBi � 0.

Proof. Since AAA ⌫ 0, there exists square matrix RRR =


rrr1 . . . rrrn

�
s.t.

AAA = RRRRRRT =
n

Â
k=1

rrrkrrrT
k

Hence our inner product is given by

hAAA, BBBi = h
n

Â
k=1

rrrkrrrT
k , BBBi

=
n

Â
k=1
hrrrkrrrT

k , BBBi

=
n

Â
k=1

(
n

Â
i,j=1

BBBijRRRkiRRRkj)

=
n

Â
k=1

rrrT
k BBBrrrk

Since BBB ⌫ 0, we derive hAAA, BBBi = Ân
k=1 rrrT

k BBBrrrk � 0. ⌅
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8.2. Thursday

Three ways for matrix decomposition are significant in linear alegbra:

8
>>>>><

>>>>>:

LU (from Gaussian elimination)

QR (from Orthogonalization)

SVD (from eigenvalues and eigenvectors)

We have learnt the first two decomposition. And the third way is increasingly significant

in the information age.

In the last lecture we learnt that any real symmetric matrix adimits diagonalization,

i.e., eigendecomposition. However, can we get some universal decomposition, i.e., Is

there any decomposition that can be applied to all matrices?

The anwer is yes. The key idea behind is to do symmetrization. We have to consider

AAAAAAT and AAAT AAA.

8.2.1. SVD: Singular Value Decomposition

Theorem 8.3 — SVD. Given any matrix AAA 2R
m⇥n, there exists a 3-tuple (UUU,S,VVV) 2

R
m⇥m ⇥R

m⇥n ⇥R
n⇥n such that

AAA = UUUSVVVT,

where UUU,VVV are orthogonal, and S takes the form

Sij =

8
><

>:

si, i = j

0, i 6= j
,

with s1 � s2 � · · · � sp � 0 and with p = min{m,n}.

R

• If VVV = UUU, this decomposition is exactly eigen-decomposition.
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• Specifically speaking,

– UUU 2R
m⇥m such that its columns are eigenvectors of AAAAAAT

– VVV 2R
n⇥n such that its columns are eigenvectors of AAAT AAA

– S 2R
m⇥n looks like a diagonal matrix, i.e., it has the form

S =

0

BBBBBBBBBBBBBB@

s1

. . .

sn

0 . . . 0
...

. . .
...

0 . . . 0

1

CCCCCCCCCCCCCCA

if m � n

S =

0

BBBB@

s1 0 . . . 0
. . .

...
. . .

...

sm 0 . . . 0

1

CCCCA
if m < n.

with si =
p

li for i = 1,2, . . . ,min{m,n}, where li’s are eigenvalues of AAAAAAT

(if m < n) or AAAT AAA. (if m � n))

Definition 8.7 [SVD] The above decomposition is called the singular value

decomposition (SVD)

• si is called the ith singular value

• The columns of UUU and VVV, uuui and vvvi are called the ith left and right

singular vectors, respectively.

• (si,uuui) are the eigen-pairs of AAAAAAT; (si,vvvi) are the eigen-pairs of AAATAAA for

i = 1,2, . . . ,min{m,n}.

• The following notations may be used to denote the singular values of AAA:

smax(AAA) � s1(AAA) � s2(AAA) � · · · � sp(AAA) = smin(AAA)

⌅
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The proof for the SVD decomposition is constructive. To see the insights of the proof,

let’s study the case m = n first, then we extend the proof for general case:

Proposition 8.2 SVD always exists for any real square nonsingular matrix.

Proof. For AAA 2 R
n⇥n, you may verify that AAAAAAT is PD, thus it admits the eigen-

decomposition:

AAAAAAT = UUUSUUUT, with l1 � · · · � ln > 0. (8.8)

We define S := diag(
p

l1, . . . ,
p

lm) and VVV := AAATUUUS�1.

You may verify that UUUSVVVT = AAA and VVVTVVV = III, i.e., VVV is orthogonal. The proof is

complete. ⌅

Proposition 8.3 SVD always exists for any real matrix.

Proof. • Firstly, consider the matrix product AAAAAAT. Since AAAAAAT
2 S

m and AAA ⌫ 0, we

can decompose AAAAAAT as

AAAAAAT = UUUSUUUT =


UUU1 UUU2

�
2

64
S̃ 000

000 000

3

75


UUUT
1 UUUT

2

�
= UUU1S̃UUUT

1 (8.9)

where:

– we assume that the eigenvalues are ordered, i.e.,

l1 � · · · � lr > 0, and lr+1 = · · · = lp = 0

with r being the number of nonzero eigenvalues

– UUU 2 R
m⇥m denotes an orthogonal matrix, and its columns are the corre-

sponding eigenvectors

– We partition UUU as

UUU =


UUU1 UUU2

�
, UUU1 2R

m⇥r,UUU2 2R
m⇥(m�r),

and S̃ = diag(l1, . . . ,lr).
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• Secondly, we show that

UUUT
2 AAA = 0 (8.10)

Since UUU is orthogonal, we obtain:

UUUTUUU =

2

64
UUUT

1

UUUT
2

3

75


UUU1 UUU2

�
=

2

64
UUUT

1 UUU1 UUUT
1 UUU2

UUUT
2 UUU1 UUUT

2 UUU2

3

75 = III =) UUUT
2 UUU1 = 000.

Substituting Eq.(8.9) into UUUT
2 AAA(UUUT

2 AAA)T, we obtain:

UUUT
2 AAA(UUUT

2 AAA)T = (UUUT
2 UUU1)S̃UUUT

1 UUU2 = 000 (8.11)

By Eq.(8.11) and the simple result that BBBBBBT = 000 implies BBB = 000 (write BBB into

column vectors form to verify it), we conclude that UUU2AAA = 000

• Thirdly, we construct the following matrices:

bS = S̃1/2 = diag(
p

l1, . . . ,
p

lr), VVV1 = AAATUUU1bS
�1
2R

n⇥r.

Combining it with Eq.(8.9), we can verify that VVVT
1 VVV1 = III. Furthermore, there

exists a matrix VVV2 2R
n⇥(n�r) such that VVV =


VVV1 VVV2

�
is orthogonal. Moreover,

we can verify that

UUUT
1 AAAVVV1 = bS, UUUT

1 AAAVVV2 = 000 (8.12)

• Fourthly, consider the matrix product UUUT AAAVVV. From Eq.(8.12) and Eq.(8.10), we

have

UUUT AAAVVV =

2

64
UUUT

1 AAAVVV1 UUUT
1 AAAVVV2

UUUT
2 AAAVVV1 UUUT

2 AAAVVV2

3

75

=

2

64
bS 000

000 000

3

75 := S

By multiplying the above equation on the left by UUU and on the right by VVVT, we
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obtain the desired result A = UUUSVVVT. The proof is complete.

⌅

8.2.2. Remark on SVD decomposition

8.2.2.1. Remark 1: Different Ways of Writing out SVD

Definition 8.8 [Paritioned form of SVD] let r be the number of nonzero singular values,

and note that s1 � · · · � sr > 0,sr+1 = · · · = sp = 0. Then from the standard form, we

derive the partitioned form of SVD:

AAA =


UUU1 UUU2

�
2

64
S̃ 000

000 000

3

75

2

64
VVVT

1

VVVT
2

3

75 (8.13)

where:

• S̃ = diag(s1, . . . ,sr)

• UUU1 =


uuu1 · · · uuur

�
2R

m⇥r,UUU2 =


uuur+1 · · · uuum

�
2R

m⇥(m�r)

• VVV1 =


vvv1 · · · vvvr

�
2R

n⇥r,VVV2 =


vvvr+1 · · · vvvn

�
2R

n⇥(n�r)

Note that UUU1,UUU2,VVV1,VVV2 are semi-orthogonal, i.e., they all have orthonormal columns. ⌅

Definition 8.9 [Thin SVD] We can re-write Eq.(8.13) as the thin form of SVD:

AAA = UUU1S̃VVVT
1 (8.14)

⌅

Definition 8.10 [Outer-product form] By expanding the Eq.(8.14), we derive the outer-

product form of SVD:

AAA =
p

Â
i=1

siuuuivvvT
i =

r

Â
i=1

siuuuivvvT
i (8.15)
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⌅

8.2.2.2. Remark 2: SVD and Eigen-decomposition

The eigenvalues for AAAT AAA and AAAAAAT are the same for first p terms.

Proposition 8.4 Suppose AAA admits the SVD AAA = UUUSVVVT, then we have:

AAAAAAT = UUUDDD1UUUT, DDD1 = SST = diag(s2
1 , . . . ,s2

p , 0, . . . ,0| {z }
m� p zeros

) (8.16)

AAATAAA = VVVDDD2VVVT, DDD2 = STS = diag(s2
1 , . . . ,s2

p , 0, . . . ,0| {z }
n� p zeros

) (8.17)

Proof. Just apply the SVD form and the orthogonality of UUU and VVV. ⌅

8.2.2.3. Remark 3: SVD and Subspace

We are curious about how many singular values of AAA are nonzero.

Proposition 8.5 The following properties hold:

1. C(AAA) = C(UUU1),C(AAA)? = C(UUU2);

2. C(AAAT) = C(VVV1),C(AAAT)? =N (AAA) = C(VVV2);

3. rank(AAA) = r, i.e., the number of nonzero singular values.

Proof. The above properties are easily seen to be true using SVD. Also, you should

apply the definition for column space and null space. You should verify these properties

by yourself.

C(AAA) = {yyy 2R
m
| yyy = AAAxxx, xxx 2R

n
} (8.18a)

N (AAA) = {xxx 2R
n
| AAAxxx = 000} (8.18b)

For the third part of proposition(8.5), since rank(AAA) = dim(C(AAA)) = dim(C(UUU1)), and

UUU1 has r orthonormal columns, we derive that dim(C(UUU1)) = r = rank(AAA). ⌅

For the SVD decomposition

AAA = UUUSVVVT,
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we can convert it into the following two forms:

AAAVVV = UUUSVVVTVVV = UUUS

AAA = UUUSVVVT =) AAAT = VVVSUUUT =) AAATUUU = VVVSUUUTUUU = VVVS.

If we write it into vector forms, we obtain:

8
><

>:

AAAvvvj = sjuuuj

AAATuuuj = sjvvvj

, j = 1,2, . . . ,r. (8.19)

The columns of UUU (uuuj) are called the left singular vector of AAA; the columns of VVV (vvvj)

are called the right singular vector of AAA; sj is called the singular value.

We can easily understand the proposition(8.5) and Eq.(8.19) by the following graph:

Figure 8.2: The fundamental spaces and the action of AAA.

Explanation:

• When {vvv1, . . . ,vvvr} are multiplied by AAA, they are converted into {s1uuu1, . . . ,sruuur};

when {vvvr+1, . . . ,vvvn} are multiplied by AAA, they are converted into 000.

• The first r columns of VVV forms the basis for the row space of AAA, i.e., C(VVV1) =

C(AAAT).

• The last n� r columns of VVV forms the basis for the null space of AAA, i.e., C(VVV2) =
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N (AAA).

• The first r columns of UUU forms the basis for the column space of AAA, i.e., C(UUU1) =

C(AAA).

• The last m � r columns of UUU forms the basis for the null space of AAAT, i.e.,

C(UUU2) =N (AAAT)

Recall the outer-product form of SVD,

AAA = s1uuu1vvvT
1 + · · ·+ sruuurvvvT

r

where r = rank(AAA) = number of nonzero singular values, which is the third meaning

for the rank:

R Up till now, rank(AAA) has three meanings:

• rank(AAA) = dim(row(AAA))

• rank(AAA) = dim(col(AAA))

• rank(AAA) = number of nonzero singular values of AAA.

R However, rank(AAA) 6= number of nonzero eigenvalues. Let me raise a coun-

terexample:

AAA =

2

64
0 1

0 0

3

75

then eigenvalues are l1 = l2 = 0, and rank(AAA) = 1.

R Also, note that many properties can be easily proved by thin or outer-product

form of SVD. For example, rank(AAATAAA) = rank(AAA). If you have no ideas of a

proof in exam, you may try SVD.
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8.2.2.4. Compact SVD

Due to the outer-product form of SVD, i.e., any matrix with rank r can be factorized

into

AAA = UUUSVVVT

=


uuu1 . . . uuur

�

0

BBBB@

s1

. . .

sr

1

CCCCA

2

66664

vvvT
1
...

vvvT
r

3

77775
,

we obtain the following corollary:

Corollary 8.2 Every rank r matrix can be written as the sum of r rank 1 matrices.

Moreover, these matrices could be perpendicular!

What’s the meaning of perpendicular?

Definition 8.11 [perpendicular for matrix] For two real n⇥ n matrix AAA and BBB, they are

said to be perpendicular (orthogonal) if the inner product between AAA and BBB is zero:

hAAA, BBBi = trace(BBBTAAA) =
n

Â
i,j=1

AAAijBij = 0.

⌅

Decompose AAA := Âr
i=1 siuuuivvvT

i . If we set AAAi = uuuivvvT
i si, let’s show AAAi’s are perpendicular:

hAAAi, AAAji = trace(AAAT
j AAAi)

= trace(sisjvvvjuuuT
j uuuivvvT

i ) = sisj trace(vvvjuuuT
j uuuivvvT

i )

= sisj trace(vvvj(uuuT
j uuui)vvvT

i ) = sisj trace(vvvj000vvvT
i )

= 0.

How many rank 1 matrices do we need to pick to construct matrix AAA? In fact, this
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number has no upper bound. For example, if we obtain

AAA = uuu1vvvT
1 + uuu2vvvT

2

Then we can always decompose any rank 1 matrix into 2 rank 1 matrices:

AAA = uuu1vvvT
1 +

1
2

uuu2vvvT
2 +

1
2

uuu2vvvT
2 .

But this number has a lower bound, that is rank. In other words, rank(AAA) = smallest

number of rank 1 matrices with sum AAA.

8.2.3. Best Low-Rank Approximation
Given matrix AAA. What is the best rank k approximation? In other words, given matrix

AAA 2R
m⇥n, what is the optimal solution for the optimization:

min
ZZZ

kAAA� ZZZk2
F

s.t. rank(ZZZ) = k

ZZZ 2R
m⇥n

Firstly let’s introduce the definition for Frobenius norm:

Definition 8.12 [Frobenius norm] The Frobenius norm for m⇥ n matrix AAA is given by

kAAAkF =
q
hAAA, AAAi =

q
trace(AAAT AAA).

⌅

Theorem 8.4 Suppose the SVD for AAA 2R
m⇥n is given by

AAA = s1uuu1vvvT
1 + · · ·+ sruuurvvvT

r .
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with s1 � s2 � · · · � 0.

Then the best rank k(k  r) approximation of AAA is

AAAk = s1uuu1vvvT
1 + · · ·+ skuuukvvvT

k .

For example, s1uuu1vvvT
1 is the best rank 1 approximation of AAA.

8.2.3.1. Analogy with least square problem

For least squares problem, the key is to do approximation for bbb 2R
m. In other words,

we just do a projection from bbb to the plane {AAAxxx|xxx 2R
n}:

Figure 8.3: Least square problem: find xxx such that AAAxxx = Proj
C(AAA)(bbb).

R For the least squares problem

min
xxx

kAAAxxx� bbbk2

s.t. xxx 2R
n

with AAA 2 R
m⇥n and bbb 2 R

m, the key is to do the projection of bbb onto C(AAA),

thus it suffices to solve the equality

AAAxxx = Proj
C(AAA)(bbb).
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Similarly, the beast rank k approximation could be viewed as a projction from AAA

with rank r to the “plane” that contains all rank k matrices:

Figure 8.4: Best rank k approximation: find the projection from matrix AAA with rank r
onto the plane that contains all rank k matrices

R Similarly, for the best rank k approximation problem

min
ZZZ

kAAA� ZZZk2
F

s.t. rank(ZZZ) = k

ZZZ 2R
m⇥n

with AAA 2R
m⇥n, the key is to do the projection of AAA onto the set M = {MMM 2

R
m⇥n | rank(MMM) = k}, thus it suffices to solve the equality

ZZZ = Proj
M
(AAA).

For some non-convex optimization problems, this idea is very useful. The
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further reading is recommended:

Jain, Prateek, and P. Kar. "Non-convex Optimization for Ma-

chine Learning." Foundations & Trends R� in Machine Learning

10.3-4(2017):142-336.
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8.3. Assignment Eight

1. Let AAA be an n⇥ n matrix. Show that AAAT AAA and AAAAAAT are similar.

2. Let AAA be m⇥ n (m� n) matrix with singular value decomposition UUUSVVVT. Let S+

denote the n⇥m matrix

0

BBBB@

1
s1

0 . . . 0
. . .

...
. . .

...

1
sn

0 . . . 0

1

CCCCA

And we define AAA+ = VVVS+UUUT

(a) Show that

AAAAAA+ =

2

64
IIIn 000

000 000

3

75 and AAA+AAA = IIIn.

(Note that AAA+ is called the pseudo-inverse of AAA.)

(b) If rank(AAA) = n, Show that x̂xx = AAA+bbb satisfies the normal equation AAAT AAAxxx =

AAATbbb.

3. Suppose AAA 2R
m⇥n(m � n) has an SVD

AAA = s1uuu1vvvT
1 + · · ·+ snuuunvvvT

n

where s1 � s2 � · · · � sn � 0.

(a) Prove that kAAAk2
F = Ân

i=1 s2
i .

(b) Let AAAk be the best rank-k approximation of AAA, what is kAAA� AAAkkF?

4. Suppose the maximal singular value of AAA 2R
m⇥n is s1, prove

s1 = max
xxx,yyy

xxxTAAAyyy

where xxx 2R
m,yyy 2R

n,kxxxk = kyyyk = 1.

5. Let AAA be a symmetric positive definite n⇥ n matrix. Show that AAA can be factored

into a product QQQQQQT, where QQQ is an n⇥ n matrix whose columns are mutually
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orthogonal.
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Chapter 9

Final Exam

9.1. Sample Exam

DURATION OF EXAMINATION: 2 hours in-class

This examination paper includes 6 pages and 6 problems. You are responsible for ensuring that

your copy of the paper is complete. Bring any discrepancy to the attention of your invigilator.

1. (20 points) Matrix representation for linear transformation

Let D be defined as (differentiate operator):

D( f ) =
d f
dx

Consider the space span{sin x, cos x, sin2x, cos2x}.

(a) Write down a matrix representation of T with respect to the basis {sin x, cos x, sin2x, cos2x}.

(b) If a polynomial f (x) satisfies

T( f ) = l f ,

we say f is an eigenvector of T.

Find 4 linearly independent eigenvectors of D2. In other words, find fk such

that

D2( fk) = lk fk
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for k = 1,2,3,4.
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2. (20 points) Least Square Method

(a) Find the least squares fit line y = C + Dx to the following 3 data points:

(b) Let AAA be a matrix with linearly independent columns and consider the projection

matrix PPP = AAA(AAAT AAA)�1AAAT. What are the possible eigenvalues for PPP? Give

your reasons.
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3. (20 points)

True or False. No justifications are required.

(a) For real symmetric matrix AAA, if AAA � 0, then AAA�1 exists and AAA�1
� 0.

(b) If AAA is a matrix, (Note that AAA may not be real) then any element of the kernel

of AAA is perpendicular to any element of the image of AAAT.

(c) The only m⇥ n matrix of rank 0 is 000.

(d) Let AAA be real square matrix. If xxx is in N(AAA) and yyy is in C(AAAT), then xxxyyyT = 0.

(e) If AAA and BBB are diagonalizable matrices, then

2

64
AAA 000

000 BBB

3

75 is diagonalizable.
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4. (20 points) SVD decomposition

(a) Find the limiting values of yk and zk (k!•):

8
><

>:

yk+1 = 0.8yk + 0.3zk,

zk+1 = 0.2yk + 0.7zk,

And y0 = 0,z0 = 5.

Hint: Show that

2

64
0.8 0.3

0.2 0.7

3

75 is similar to

2

64
0.5 0

0 1

3

75 .

(b) Find the SVD of the matrix

0

B@
0.5 0

0 1

1

CA .
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5. (15+5 points) Eigenvalues and Eigenvectors

Given a real symmetric matrix AAA, the Rayleigh quotient R(xxx) is defined as

R(xxx) =
xxxTAAAxxx
xxxTxxx

for xxx 6= 000.

Suppose the eigenvalues of AAA are l1  l2  · · ·  ln.

(a) Prove that the minimum eigenvalue l1 is the minimal value of R(xxx).

i.e. l1 = min
xxx2Rn�{000}

R(xxx).

(b) Suppose xxx1 is the eigenvector associated with l1, i.e. AAAxxx1 = l1xxx1.

Prove that l2 = min
yyyTxxx1=0

R(yyy).

(c) (bonus question)

Suppose vvv 2R
n is an arbitrary given vector.

Prove that l2 � min
yyyTvvv=0

R(yyy).
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6. (10 points) Positive semi-definite

Definition 9.1 [diagonal dominant]

A matrix MMM 2R
n⇥n is called diagonal dominant if for 8i 2 {1,2, . . . ,n},

|MMMii| �Â
j 6=i

|MMMij|.

It is called strictly diagonal dominant if for 8i 2 {1,2, . . . ,n},

|MMMii| > Â
j 6=i

|MMMij|.

⌅

Prove the following statements:

(a) ZZZ =

0

BBBB@

5 1 4

1 5 3

4 3 7

1

CCCCA
is positive semi-definite.

(b) If MMM is symmetric and diagonal dominant, then MMM ⌫ 0.
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9.2. Final Exam

DURATION OF EXAMINATION: 2 hours and 35 minutes in-class

This examination paper includes 6 pages and 6 problems. You are responsible for ensuring that

your copy of the paper is complete. Bring any discrepancy to the attention of your invigilator.

1. (20 points) Matrix representation for linear transformation

(a) Let T be the transformation

T : {polynomials of degree  4} 7! {polynomials of degree  4}

T(p) = (x� 2)
dp
dx

Show that T is a linear transformation and write down a matrix representation

of T with respect to basis {1, x, x2, x3, x4} for the input and output space.

(b) If a polynomial f (x) satisfies

T( f ) = l f ,

we say f is an eigenvector of T. Find two linearly independent eigenvectors of

T.
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2. (20 points) Least Square Method

(a) Find the projection of zzz =

2

66664

1

0

1

3

77775
onto the column space of

2

66664

1 �1

1 �1

�2 4

3

77775
.

(b) Let A : R
2⇥1 7!R

2⇥2 be a mapping defined as

A

2

64
a

b

3

75 =

2

64
a + b a� b

�2a + 4b 0

3

75 ,8a,b 2R.

Define k = {AAAxxx|xxx 2R
2⇥1}.

Find the best approximation of BBB =

2

64
1 2

7 1

3

75 in the space k.

Hint: Consider

2

64
1 2

7 1

3

75 and

2

64
a + b a� b

�2a + 4b 0

3

75 as R
4⇥1 vector.

Then you only need to find the best approximation of

0

BBBBBBB@

1

2

7

1

1

CCCCCCCA

onto the set {AAAxxx|xxx 2

R
2⇥1}, where AAA =

2

66666664

1 1

1 �1

�2 4

0 0

3

77777775

.
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3. (20 points)

True or False. No justifications are required.

(a) If all the entries of a square matrix AAA are positive, then AAA�1 exist.

(b) If QQQ is an orthogonal matrix, then det(QQQ) = ±1.

(c) If AAA is a negative definite matrix, then its singular values have the same

absolute values as its eigenvalues.

Hint: Note that AAA is said to be negative definite when �AAA is positive definite.

(d) If AAA is an n⇥ n matrix with characteristic polynomial pAAA(t) = tn, then AAA = 000.

(e) If AAA is the sum of 5 rank one matrices, then rank(AAA)  5.
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4. (20 points) SVD decomposition

The question is about the matrix

AAA =

2

64
0 �1

4 0

3

75

(a) Find its eigenvalues and eigenvectors, write the vector uuu =

2

64
2

0

3

75 as a combi-

nation of those eigenvectors.

(b) Do the SVD decomposition to derive AAA = UUUSVVVT in two steps:

• First, compute VVV and S using the matrix AAATAAA.

• Second, find the (orthonormal) columns of UUU.
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5. (15+5 points) Eigenvalues and Eigenvectors

(a) Suppose AAA, BBB 2R
n⇥n can can be diagonalized by the same matrix, prove that

AAABBB = BBBAAA.

Hint: Note that AAA is said to be diagonalized by SSS if SSS�1AAASSS is diagonal.

(b) Suppose AAA, BBB 2 R
n⇥n satisfy AAABBB = BBBAAA, and both AAA and BBB are diagonaliz-

able. AAA has n distinct eigenvalues. Prove that AAA, BBB can can be diagonalized by

the same matrix.

Hint: Suppose AAA has eigenvectors vvv1, . . . ,vvvn. You can express BBBvvvi as linear combi-

nation of vvv1, . . . ,vvvn. Then you can express AAA(BBBvvvi) and BBB(AAAvvvi). Finally compute

AAA(BBBvvvi)� BBB(AAAvvvi) to derive something.

(c) (bonus question)

Prove part (b) without the assumption that AAA has n distinct eigenvalues. (i.e.

AAA might have repeated eigenvalues)

Hint: Since AAA is diagonalizable, there exists QQQ such that QQQ�1AAAQQQ = DDD, where

DDD is diagonal. Then you should express DDD. Then you compute QQQ�1BBBQQQ = CCC, i.e.

partition CCC in the same way of DDD. Next you should show us that CCC is block diagonal.

Then you construct diagonal matrix TTT⇤ that diagonalize CCC. Finally you construct

PPP that diagonalize both AAA and BBB.
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6. (10 points) Positive definite

Suppose AAA, BBB 2R
n⇥n, where AAA =


aij

�n

i,j=1
, BBB =


bij

�n

i,j=1
.

Define the Hadamard product AAA � BBB as an n⇥ n matrix with entries


AAA � BBB

�

ij
= aijbij.

For example, if AAA =

2

64
1 2

3 7

3

75 , BBB =

2

64
0 p

1 e

3

75 , then AAA � BBB =

2

64
0 2p

3 7e

3

75 .

Prove the following statements:

(a) rank(AAA � BBB)  rank(AAA) rank(BBB);

Hint: Extend Hadamard product into vector. Then it’s easy to verify that (AAA � BBB) �

CCC = AAA � CCC + BBB � CCC and (uuu1vvvT
1 ) � (uuu2 � vvvT

2 ) = (uuu1 � uuu2)⇥ (vvv1 � vvv2)T. Then you

can do SVD decomposition for AAA and BBB (vector form, related to rank.) Then you

can express AAA � BBB as the sum of some matrices with rank 1.

(b) If AAA ⌫ 0, BBB ⌫ 0 and AAA, BBB are symmetric matrix, prove that

AAA � BBB ⌫ 0.

Hint: Note that AAA = RRRTRRR, where RRR is square. Then you should express RRRTRRR into

vector form. Similarly, you can express BBB into vector form. Then you compute

AAA � BBB and show it is PSD by definition.
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Chapter 10

Solution

10.1. Assignment Solutions

10.1.1. Solution to Assignment One
1. Solution. Firstly we do the elimination shown as below:

2

66664

a 2 3

a a 4

a a a

3

77775
=)

2

66664

a 2 3

0 a� 2 1

0 a� 2 a� 3

3

77775
=)

2

66664

a 2 3

0 a� 2 1

0 0 a� 4

3

77775

Here in order to give three pivots we need to let the diagonal be nonzero, which

is to say:

a = 0 or a� 2 = 0 or a� 4 = 0

=) a = 0 or a = 2 or a = 4

⌅

2. let’s solve this problem by answering the following questions first.

(a) The other solution is given by:(m1x + m2X,m1y + m2Y,m1z + m2Z), where

m1 + m2 = 1.

(b) They also meet the line that passes these two points

(c) In R
n space we can also ensure every point on the line that determined by

the two solutions is also a solution.

Then let’s proof the begining statement rigorously:
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Proof. Assume the system of equation is given by

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

. . .

am1x1 + am2x2 + · · ·+ amnxn = bm (10.1)

where it contains two solutions (y1,y2, . . . ,yn) and (z1,z2, . . . ,zn). Let’s show that

every point on the line that determined by the two solutions is also a solution. In

other words, once the system has two solutions, it will contain infinitely many

solutions.

Any point on the line that determined by the two solutions is given by

(m1y1 + m2z1, . . . ,m1yn + m2zn), where m1 + m2 = 1

And then we show that this point is also a solution to this system:

for the ith linear equation it satisfies that

8
><

>:

ai1y1 + ai2y2 + · · ·+ ainyn = bi

ai1z1 + ai2z2 + · · ·+ ainzn = bi

Hence we set xj = m1yj + m2zj for j = 1,2, . . . ,n. Then we obtain:

ai1x1 + ai2x2 + · · ·+ ainxn

= ai1(m1y1 + m2z1) + ai2(m1y2 + m2z2) + · · ·+ ain(m1yn + m2zn)

= m1(ai1y1 + ai2y2 + · · ·+ ainyn) + m2(ai1z1 + ai2z2 + · · ·+ ainzn)

= m1bi + m2bi = (m1 + m2)bi = bi.

where i = 1,2, . . . ,m

Since the choice of point on the line was arbitrary, we see that every point on

the line determined by the two solutions is also a solution, so there are infinitely
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many solutions to the system ⌅

3. Solution. (a) We begin to do the elimination for the system:

2

66664

1 4 �2 1

1 7 �6 6

0 3 q t

3

77775
Add (�1)⇥ row 1 to row 2
==============)

2

66664

1 4 �2 1

0 3 �4 5

0 3 q t

3

77775

Add (�1)⇥ row 2 to row 3
==============)

2

66664

1 4 �2 1

0 3 �4 5

0 0 q + 4 t� 5

3

77775

In order to make this system singular we need to make the third row has no

pivot. =) q + 4 = 0 =) q = �4. In order to give infinitely many solutions

we have to let the third equation satisfies 0 = 0. =) t� 5 = 0 =) t = 5.

(b) When z = 1, the second equation 3y� 4z = 5 gives y = 3;

the third equation x + 4y� 2z = 1 gives x = �9.

⌅

4. Solution. (a)

AAA =

2

64
0 1

�1 0

3

75 =) AAA2 =

2

64
0 1

�1 0

3

75

2

64
0 1

�1 0

3

75 =

2

64
�1 0

0 �1

3

75

(b)

BBB =

2

64
0 1

0 0

3

75 =) BBB2 =

2

64
0 1

0 0

3

75

2

64
0 1

0 0

3

75 =

2

64
0 0

0 0

3

75 = 000

(c)

CCC =

2

64
0 1

1 0

3

75 ; DDD =

2

64
0 1

�1 0

3

75 =) CCCDDD =

2

64
0 1

1 0

3

75

2

64
0 1

�1 0

3

75=

2

64
�1 0

0 1

3

75=�DDDCCC
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(d)

EEE =

2

64
1 1

�1 �1

3

75 ; FFF =

2

64
�1 �1

1 1

3

75 =) EEEFFF =

2

64
0 0

0 0

3

75 = 000

⌅

5. Proof. We assume AAA is a m⇥ n matrix,BBB is a n⇥ p matrix,CCC is a p⇥ q matrix

which is given by:

AAA :=


aij

�
, BBB :=


bij

�
,CCC :=


cij

�
.

And we also define:

AAABBB := DDD :=


dij

�
, BBBCCC := EEE :=


eij

�
.

Obviously, AAABBB and BBBCCC are well-defined and they are all m⇥ q matrix.

•According to the definition for multiplication, dij = Ân
k=1 aikbkj. We define

(AAABBB)CCC := HHH =


hij

�
, thus

hij =
p

Â
l=1

dilclj =
p

Â
l=1

(
n

Â
k=1

aikbkl)clj =
n

Â
k=1

p

Â
l=1

aikbklclj

where i = 1,2, . . . ,m and i = 1,2, . . . ,q.

•On the other hand, eij = Âp
l=1 bilclj. We define AAA(BBBCCC) := GGG =


gij

�
, thus

gij =
n

Â
k=1

aikekj =
n

Â
k=1

(
p

Â
l=1

bklclj)aik =
n

Â
k=1

p

Â
l=1

aikbklclj

where i = 1,2, . . . ,m and i = 1,2, . . . ,q.

Hence we have hij = gij, i = 1,2, . . . ,m and i = 1,2, . . . ,q. Hence we have HHH =

GGG =) (AAABBB)CCC = AAA(BBBCCC). ⌅

6. Solution.

For matrix AAA =

2

66664

4 0 4

6 6 �8

�9 5 �8

3

77775
, we can split AAA into blocks AAA =

2

66664

4 0 4

6 6 �8

�9 5 �8

3

77775
=
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2

64
A1 A2

A3 A4

3

75, where A1 =

2

64
4 0

6 6

3

75 , A2 =

2

64
4

�8

3

75 , A3 =


�9 5

�
, A4 =


�8
�

.

For matrix BBB =

2

66664

8 �3 �7

3 �7 �4

4 �4 1

3

77775
, we can split BBB into blocks BBB =

2

66664

8 �3 �7

3 �7 �4

4 �4 1

3

77775
=

2

64
B1 B2

B3 B4

3

75, where B1 =

2

64
8 �3

3 �7

3

75 , B2 =

2

64
�7

�4

3

75 , B3 =


4 �4

�
, B4 =


1
�

.

We let CCC = AAABBB =

2

64
C1 C2

C3 C4

3

75 ,we can find C1,C2,C3,C4 in two different ways, if we

get the same answers, we can verify the block multiplication succeeds.

(a) Multiply AAA times BBB to find CCC =

2

66664

48 �28 �24

34 �28 �74

�89 24 35

3

77775
,

Hence C1 =

2

64
48 �28

34 �28

3

75 ,C2 =

2

64
�24

�74

3

75 ,C3 =


�89 24

�
,C4 =


35
�

.

(b) On the other hand, we have

2

64
A1 A2

A3 A4

3

75

2

64
B1 B2

B3 B4

3

75=

2

64
A1B1 + A2B3 A1B2 + A2B4

A3B1 + A4B3 A3B2 + A4B4

3

75

Hence we find C1 = A1B1 + A2B3 =

2

64
4 0

6 6

3

75

2

64
8 �3

3 �7

3

75 +

2

64
4

�8

3

75


4 �4
�
=

2

64
48 �28

34 �28

3

75 .

Similarly, we have

C2 = A1B2 + A2B4 =

2

64
�24

�74

3

75

C3 = A3B1 + A4B3 =


�89 24

�

C4 = A3B2 + A4B4 =


35
�

.

⌅
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7. Solution.

AAA =

2

66666664

a a a a

a b b b

a b c c

a b c d

3

77777775

EEE41EEE31EEE21=====)

2

66666664

a a a a

0 b� a b� a b� a

0 b� a c� a c� a

0 b� a c� a d� a

3

77777775

EEE42EEE32===)

2

66666664

a a a a

0 b� a b� a b� a

0 0 c� b c� b

0 0 c� b d� b

3

77777775

EEE43==)

2

66666664

a a a a

0 b� a b� a b� a

0 0 c� b c� b

0 0 0 d� c

3

77777775

= UUU

=) EEE43EEE42EEE32EEE41EEE31EEE21AAA = UUU =) AAA = EEE�1
21 EEE�1

31 EEE�1
41 EEE�1

32 EEE�1
42 EEE�1

43 UUU

=) AAA =

2

66666664

a a a a

a b b b

a b c c

a b c d

3

77777775

=

2

66666664

1 0 0 0

1 1 0 0

1 1 1 0

1 1 1 1

3

77777775

2

66666664

a a a a

0 b� a b� a b� a

0 0 c� b c� b

0 0 0 d� c

3

77777775

=) LLL =

2

66666664

1 0 0 0

1 1 0 0

1 1 1 0

1 1 1 1

3

77777775

; UUU =

2

66666664

a a a a

0 b� a b� a b� a

0 0 c� b c� b

0 0 0 d� c

3

77777775

In order to get four pivots, we need to let the diagonal entries of UUU to be nonzero.

=) a 6= 0 a 6= b b 6= c c 6= d

⌅
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10.1.2. Solution to Assignment Two
1. Proof. Sufficiency.

If MMM is invertible, then there exists matrix NNN such that MMMNNN = NNNMMM = III.

=) (AAABBBCCC)NNN = III, NNN(AAABBBCCC) = III. =) AAA(BBBCCCNNN) = III, (NNNAAABBB)CCC = III.

=) BBBCCCNNN is the right inverse of AAA, NNNAAABBB is the left inverse of CCC.

Hence AAA and CCC is invertible.

Moreover, (AAABBBCCC)NNN = III =) (AAABBB)CCCNNN = III. Hence CCCNNN is the right inverse of AAABBB.

Hence AAABBB is invertible. Hence there exists (AAABBB)�1 such that ((AAABBB)�1)(AAABBB) = III.

=) ((AAABBB)�1 AAA)BBB = III. Hence (AAABBB)�1AAA is the left inverse of BBB.

Hence BBB is invertible.

Necessity.

If AAA, BBB,CCC is invertible, then there exist AAA�1, BBB�1,CCC�1 such that

AAAAAA�1 = III, BBBBBB�1 = III,CCCCCC�1 = III.

=) AAABBBCCC(CCC�1BBB�1AAA�1) = AAABBB(CCCCCC�1)(BBB�1AAA�1) = AAABBBIII(BBB�1AAA�1)

= AAABBB(BBB�1AAA�1) = AAA(BBBBBB�1)AAA�1 = AAAIIIAAA�1

= AAAAAA�1 = III.

Hence CCC�1BBB�1AAA�1 is the right inverse of AAABBBCCC. Hence AAABBBCCC is invertible. ⌅

⌅

⌅

2. Solution. The inverse are respectively given by

2

64
III 000

�CCC III

3

75 ,

2

64
AAA�1 000

�DDD�1CCCAAA�1 DDD�1

3

75 ,

2

64
�DDD III

III 000

3

75 .
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• 2

64
III 000

CCC III

3

75

2

64
III 000

�CCC III

3

75 =

2

64
III III + 000(�CCC) III000 + 000III

CCCIII + III(�CCC) CCC000 + III III

3

75 =

2

64
III 000

000 III

3

75

Hence

2

64
III 000

�CCC III

3

75 is the right inverse of

2

64
III 000

CCC III

3

75, hence

2

64
III 000

�CCC III

3

75 is the

inverse of

2

64
III 000

CCC III

3

75.

•

2

64
AAA 000

CCC DDD

3

75

2

64
AAA�1 000

�DDD�1CCCAAA�1 DDD�1

3

75=

2

64
AAAAAA�1 + 000(�DDD�1CCCAAA�1) AAA000 + 000DDD�1

CCCAAA�1 + DDD(�DDD�1CCCAAA�1) CCC000 + DDDDDD�1

3

75=

2

64
III 000

000 III

3

75

Hence

2

64
AAA�1 000

�DDD�1CCCAAA�1 DDD�1

3

75 is the right inverse of

2

64
AAA 000

CCC DDD

3

75, hence

2

64
AAA�1 000

�DDD�1CCCAAA�1 DDD�1

3

75

is the inverse of

2

64
AAA 000

CCC DDD

3

75.

• 2

64
000 III

III DDD

3

75

2

64
�DDD III

III 000

3

75 =

2

64
000(�DDD) + III III 000III + III000

III(�DDD) + DDDIII III III + DDD000

3

75 =

2

64
III 000

000 III

3

75

Hence

2

64
�DDD III

III 000

3

75 is the right inverse of

2

64
000 III

III DDD

3

75, hence

2

64
�DDD III

III 000

3

75 is the

inverse of

2

64
000 III

III DDD

3

75.

⌅

274



3. Solution. Firstly, we do Elimination for this matrix:

2

66664

2 c c

c c c

8 7 c

3

77775

EEE31=

2

66666664

1 0 0

�4 1 0

0 0 1

3

77777775

===========)

EEE21=

2

66666664

1 0 0

0 1 0

�
c
2 0 1

3

77777775

2

66664

2 c c

0 c� c2

2 c� c2

2

0 7� 4c �3c

3

77775

Notice that c � c2

2 6= 0, otherwise the second row has no nonzero entries, the

Gaussian Elimination cannot continue.

EEE32=

2

66666664

1 0 0

0 1 0

0 4c�7
c�c2/2 1

3

77777775

=============)

2

66664

2 c c

0 c� c2

2 c� c2

2

0 0 c� 7

3

77775

In order to continue the Gaussian Elimination, we have to let three pivots not

equal to zero, hence we have c� c2

2 6= 0, c� 7 6= 0.

Hence c 6= 0, c 6= 2, c 6= 7. ⌅

4. Solution.

(a) True, because if the whole row has no nonzero entries, the pivot in this row

doesn’t exist, the Gaussian Elimination cannot continue, hence there doesn’t

exist the inverse.

(b) False, for example, for matrix AAA =

2

64
1 1

1 1

3

75, if we do elimination, we obtain

2

64
1 1

1 1

3

75 =)

2

64
1 1

0 0

3

75

so we cannot continue Gaussian Elimination as the second row has no pivot,
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hence AAA is not invertible.

(c) True, if AAA is invertible, we have AAAAAA�1 = III. Hence AAA is the left inverse of

AAA�1. Hence AAA is the inverse of AAA�1.

(d) True, if AAAT is invertible, there exists BBB such that BBBAAAT = III.

=) (BBBAAAT)T = (AAAT)T(BBB)T = AAABBBT = III

Hence BBBT is the right inverse of AAA. Hence BBB is the inverse of AAA.

⌅
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10.1.3. Solution to Assignment Three
1. Solution. (a)

MMMMMM�1 = (III � uuuvvvT)(III +
uuuvvvT

1� vvvTuuu
)

= III +
uuuvvvT

1� vvvTuuu
� uuuvvvT

�
uuuvvvTuuuvvvT

1� vvvTuuu

= III +
uuu⇥ vvvT � (uuuvvvTuuu)⇥ vvvT

1� vvvTuuu
� uuuvvvT

= III +
uuu⇥ (1� vvvTuuu)⇥ vvvT

1� vvvTuuu
� uuuvvvT

= III + uuuvvvT
� uuuvvvT = III

(10.2)

(b)

MMMMMM�1 = (AAA� uuuvvvT)(AAA�1 +
AAA�1uuuvvvT AAA�1

1� vvvT AAA�1uuu
)

= III +
AAAAAA�1uuuvvvT AAA�1

1� vvvTAAA�1uuu
� uuuvvvTAAA�1

�
uuuvvvTAAA�1uuuvvvT AAA�1

1� vvvTAAA�1uuu

= III +
IIIuuuvvvT AAA�1

1� vvvT AAA�1uuu
� uuuvvvTAAA�1

�
uuuvvvTAAA�1uuuvvvT AAA�1

1� vvvTAAA�1uuu

= III +
uuuvvvTAAA�1

� uuuvvvT AAA�1uuuvvvTAAA�1

1� vvvT AAA�1uuu
� uuuvvvTAAA�1

= III +
(uuu� uuuvvvTAAA�1uuu)vvvT AAA�1

1� vvvTAAA�1uuu
� uuuvvvT AAA�1

= III +
uuu(1� vvvT AAA�1uuu)vvvTAAA�1

1� vvvTAAA�1uuu
� uuuvvvT AAA�1 note 1� vvvT AAA�1uuu is scalar

= III + uuuvvvT AAA�1
� uuuvvvTAAA�1 = III.

(10.3)
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(c)

MMMMMM�1 = (IIIn �UUUVVV)(IIIn + UUU(IIIm �VVVUUU)�1VVV)

= IIIn + UUU(IIIm �VVVUUU)�1VVV �UUUVVV �UUUVVVUUU(IIIm �VVVUUU)�1VVV

= IIIn + UUU ⇥ (IIIm �VVVUUU)�1VVV � (UUUVVVUUU)⇥ (IIIm �VVVUUU)�1VVV �UUUVVV

= IIIn + (UUU �UUUVVVUUU)(IIIm �VVVUUU)�1VVV �UUUVVV

= IIIn + (UUUIIIm �UUUVVVUUU)(IIIm �VVVUUU)�1VVV �UUUVVV

= IIIn + UUU(IIIm �VVVUUU)(IIIm �VVVUUU)�1VVV �UUUVVV

= IIIn + UUUVVV �UUUVVV = IIIn.

(10.4)

(d)

MMMMMM�1 = (AAA�UUUWWW�1VVV)(AAA�1 + AAA�1UUU(WWW �VVVAAA�1UUU)�1VVVAAA�1)

= IIIn + UUU(WWW �VVVAAA�1UUU)�1VVVAAA�1
�UUUWWW�1VVVAAA�1

�UUUWWW�1VVVAAA�1UUU(WWW �VVVAAA�1UUU)�1VVVAAA�1

= IIIn + UUU{(WWW �VVVAAA�1UUU)�1
�WWW�1

�WWW�1VVVAAA�1UUU(WWW �VVVAAA�1UUU)�1
}VVVAAA�1

= IIIn + UUU{IIIm(WWW �VVVAAA�1UUU)�1
�WWW�1(WWW �VVVAAA�1UUU)(WWW �VVVAAA�1UUU)�1

�WWW�1VVVAAA�1UUU(WWW �VVVAAA�1UUU)�1
}VVVAAA�1

= IIIn + UUU(IIIm �WWW�1(WWW �VVVAAA�1UUU)�WWW�1VVVAAA�1UUU)(WWW �VVVAAA�1UUU)�1VVVAAA�1

= IIIn + UUU(IIIm � IIIm + WWW�1VVVAAA�1UUU �WWW�1VVVAAA�1UUU)(WWW �VVVAAA�1UUU)�1VVVAAA�1

= IIIn + UUU ⇥ 000⇥ (WWW �VVVAAA�1UUU)�1VVVAAA�1 = IIIn

(10.5)

⌅

2. Solution. (a) AAA2
� BBB2 is symmetric. The reason is that

(AAA2
� BBB2)T = (AAAAAA)T

� (BBBBBB)T = AAAT AAAT
� BBBTBBBT = AAAAAA� BBBBBB = AAA2

� BBB2.

(b) (AAA + BBB)(AAA� BBB) may not be symmetric. Let me raise a counterexample to
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explain it:

Suppose AAA =

2

64
1 7

7 0

3

75, BBB =

2

64
2 5

5 1

3

75. Then AAA + BBB =

2

64
3 12

12 1

3

75 , AAA � BBB =

2

64
�1 2

2 �1

3

75. The product (AAA + BBB)(AAA� BBB) is given by:

(AAA + BBB)(AAA� BBB) =

2

64
21 �6

�10 23

3

75

which is obviously not symmetric.

(c) AAABBBAAA is symmetric. The reason is that

(AAABBBAAA)T = AAATBBBT AAAT = AAABBBAAA

(d) AAABBBAAABBB may not be symmetric, let me raise a counterexample to explain it:

Suppose AAA =

2

64
1 7

7 0

3

75, BBB =

2

64
2 5

5 1

3

75. Then the product AAABBBAAABBB is given by:

AAABBBAAABBB =

2

64
1537 864

1008 1393

3

75

which is obviously not symmetric.

⌅

3. Solution. Starting from AAA = LLLDDDUUU, then AAA = LLL(UUUT)�1 ⇥ (UUUTDDDUUU).

• LLL(UUUT)�1 is lower triangular with unit diagonals.

Reason: UUU is upper triangular, hence UUUT is lower triangular, its inverse

(UUUT)�1 is also lower triangular. And LLL is also lower triangular. Hence the

product LLL(UUUT)�1 remains lower triangular. Since LLL and UUU has unit diagonals,

their transformation LLL(UUUT)�1 also has unit diagonals.
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• UUUTDDDUUU is symmetric. The reason is that

(UUUTDDDUUU)T = UUUTDDDT(UUUT)T = UUUTDDDUUU

In conclusion, here lists a new factorization of AAA into triangular times symmetric.

⌅

4. Solution. (a)

AAAXXX + BBB = CCC =) AAAXXX = CCC� BBB =) XXX = AAA�1(CCC� BBB).

Since AAA =

2

64
5 3

3 2

3

75, we obtain AAA1 = 1
10�9

2

64
2 �3

�3 5

3

75 =

2

64
2 �3

�3 5

3

75.

=) XXX = AAA�1(CCC� BBB) =

2

64
2 �3

�3 5

3

75

2

64
4� 6 �2� 2

�6� 2 3� 4

3

75 =

2

64
20 �5

�34 7

3

75 .

(b)

XXXAAA + BBB = CCC =) XXXAAA = CCC� BBB =) XXX = (CCC� BBB)AAA�1.

Hence the solution is given by

XXX = (CCC� BBB)AAA�1 =

2

64
�2 �4

�8 �1

3

75

2

64
2 �3

�3 5

3

75 =

2

64
8 �14

�13 19

3

75 .

(c)

AAAXXX + BBB = XXX =) (AAA� III)XXX = �BBB =) XXX = �(AAA� III)�1BBB

Hence the soluion is given by

XXX =�(AAA� III)�1BBB=�

2

64
5� 1 3

3 2� 1

3

75

�12

64
6 2

2 4

3

75=�
1

4� 9

2

64
1 �3

�3 4

3

75

2

64
6 2

2 4

3

75=

2

64
0 �2

�2 2

3

75 .

(d)

XXXAAA + CCC = XXX =) XXX(AAA� III) = �CCC =) XXX = �CCC(AAA� III)�1

280



Hence the solution is given by

XXX = �CCC(AAA� III)�1 = �

2

64
4 �2

�6 3

3

75

2

64
�0.2 0.6

0.6 �0.8

3

75 =

2

64
2 �4

�3 6

3

75 .

⌅

5. Solution. Firstly, we show tjj = ujjrjj for j = 1, . . . ,n:

tjj =
n

Â
k=1

ujkrkj

= Â
k=1,j<k

ujkrkj + ujjrjj + Â
k=1,j>k

ujkrkj

= Â
k=1,j<k

ujk ⇥ 0 + ujjrjj + Â
k=1,j>k

0⇥ rkj

= ujjrjj

Secondly, we show that tij = 0 if i > j for i, j 2 {1,2, . . . ,n} :

tij =
n

Â
k=1

uikrkj

=
n

Â
k=1,k<i

uikrkj + uiirij +
n

Â
k=1,k>i

uikrkj

=
n

Â
k=1,k<i

0⇥ rkj + uii ⇥ 0 +
n

Â
k=1,k>i

uik ⇥ 0

= 0

Hence tij = 0 for i < j. Hence TTT is upper triangular. ⌅

6. Solution. (a)

AAA =

2

66666666664

0 1 0 1 0

1 0 1 1 0

0 1 0 0 0

1 1 0 0 1

0 0 0 1 0

3

77777777775
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(b)

AAA2 =

2

66666666664

2 1 1 1 1

1 3 0 1 1

1 0 1 1 0

1 1 1 3 0

1 1 0 0 1

3

77777777775

It tells us that there are 2 walks of length 2 that from v1 to v1; 1 walk of

length 2 that from v1 to v2; 1 walk of length 2 that from v1 to v3; 1 walk of

length 2 that from v1 to v4; 1 walk of length 2 that from v1 to v5.

(c)

AAA3 =

2

66666666664

2 4 1 4 1

4 2 3 5 1

1 3 0 1 1

4 5 1 2 3

1 1 1 3 0

3

77777777775

There are a23 = 3 walks of length 3 from v2 to v3. There are 1 + 1 + 5 = 7

walks of length 3 from v2 to v4.

⌅
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10.1.4. Solution to Assignment Four
1. Solution. (a)

2

66664

1 2 3 1 �3

2 5 5 4 9

3 7 8 5 6

3

77775
Add (�2)⇥Row 1 to Row 2
===============)
Add (�3)⇥Row 1 to Row 3

2

66664

1 2 3 1 �3

0 1 �1 2 15

0 1 �1 2 15

3

77775
Add (�1)⇥Row 2 to Row 3
===============)

2

66664

1 2 3 1 �3

0 1 �1 2 15

0 0 0 0 0

3

77775
Add (�2)⇥Row 2 to Row 1
===============)

2

66664

1 0 5 �3 �33

0 1 �1 2 15

0 0 0 0 0

3

77775
(rref)

(b) We write AAAxxx = bbb in argumented matrix form:

2

66664

1 2 3 1 �3 1

2 5 5 4 9 1

3 7 8 5 6 2

3

77775

We convert AAA into UUU(rref):

2

66664

1 0 5 �3 �33 3

0 1 �1 2 15 �1

0 0 0 0 0 0

3

77775

Hence we only need to solve

8
><

>:

x1 + 5x3 � 3x4 � 33x5 = 3

x2 � x3 + 2x4 + 15x5 = �1
=)

8
><

>:

x1 = 3� 5x3 + 3x4 + 33x5

x2 = �1 + x3 � 2x4 � 15x5

283



Hence all solutions is given by

xxx =

0

BBBBBBBBBB@

x1

x2

x3

x4

x5

1

CCCCCCCCCCA

=

0

BBBBBBBBBB@

3� 5x3 + 3x4 + 33x5

�1 + x3 � 2x4 � 15x5

x3

x4

x5

1

CCCCCCCCCCA

=

0

BBBBBBBBBB@

3

�1

0

0

0

1

CCCCCCCCCCA

+ x3

0

BBBBBBBBBB@

�5

1

1

0

0

1

CCCCCCCCCCA

+ x4

0

BBBBBBBBBB@

3

�2

0

1

0

1

CCCCCCCCCCA

+ x5

0

BBBBBBBBBB@

33

�15

0

0

1

1

CCCCCCCCCCA

where x3, x4, x5 can be taken arbitrarily.

(c) We write AAAxxx = bbb in argumented matrix form:

2

66664

1 2 3 1 �3 b1

2 5 5 4 9 b2

3 7 8 5 6 b3

3

77775

We convert AAA into UUU(rref):

2

66664

1 0 5 �3 �33 4b1 � b2

0 1 �1 2 15 �2b1 + b2

0 0 0 0 0 �b1 � b2 + b3

3

77775

• When �b1 � b2 + b3 6= 0, there is no solution.

• When �b1 � b2 + b3 = 0, we only need to solve

8
><

>:

x1 + 5x3 � 3x4 � 33x5 = 5b1 � 2b2

x2 � x3 + 2x4 + 15x5 = �2b1 + b2

=)

8
><

>:

x1 = 4b1 � b2 � 5x3 + 3x4 + 33x5

x2 = �2b1 + b2 + x3 � 2x4 � 15x5
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Hence all solutions is given by

xxx =

0

BBBBBBBBBB@

x1

x2

x3

x4

x5

1

CCCCCCCCCCA

=

0

BBBBBBBBBB@

4b1 � b2 � 5x3 + 3x4 + 33x5

�2b1 + b2 + x3 � 2x4 � 15x5

x3

x4

x5

1

CCCCCCCCCCA

=

0

BBBBBBBBBB@

4b1 � b2

�2b1 + b2

0

0

0

1

CCCCCCCCCCA

+ x3

0

BBBBBBBBBB@

�5

1

1

0

0

1

CCCCCCCCCCA

+ x4

0

BBBBBBBBBB@

3

�2

0

1

0

1

CCCCCCCCCCA

+ x5

0

BBBBBBBBBB@

33

�15

0

0

1

1

CCCCCCCCCCA

⌅

2. Proof. (a) We set v1 =

0

BBBB@

1

�2

2

1

CCCCA
,v2 =

0

BBBB@

2

�2

4

1

CCCCA
,v3 =

0

BBBB@

�3

3

6

1

CCCCA
. Then we claim that

dim(span{v1,v2,v3}) = 3. Hence we only need to show that v1,v2,v3 forms

the basis for span{v1,v2,v3}. Hence we only need to show they are ind.

Thus we only need to show AAAxxx =


v1 v2 v3

�
x = 000 has unique solution.

Thus we only need to show AAA =


v1 v2 v3

�
is invertible:

AAA=

2

66664

1 2 �3

�2 �2 3

2 4 6

3

77775
Add 2⇥Row 1 to Row 2

===============)
Add (�2)⇥Row 1 to Row 3

2

66664

1 2 �3

0 2 �3

0 0 12

3

77775

Row 2⇥ 1
2=====)

Row 3⇥ 1
12

2

66664

1 2 �3

0 1 �
3
2

0 0 1

3

77775
(rref)

Hence rank(AAA) = 3. Thus AAA is full rank, which means AAA is invertible.

(b) We do elimination to convert AAA into its rref form:

2

66664

1 �2 3 2

�1 2 �2 �1

2 �4 5 3

3

77775
Add 1⇥Row 1 to Row 2

===============)
Add (�2)⇥Row 1 to Row 3

2

66664

1 �2 3 2

0 0 1 1

0 0 �1 �1

3

77775

Add 1⇥Row 2 to Row 3
===============)
Add (�3)⇥Row 2 to Row 3

2

66664

1 �2 0 �1

0 0 1 1

0 0 0 0

3

77775
(rref)

Hence rank(AAA) = dim(col(AAA)) = 2. Hence dimension of col(AAA) is 2.
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(c) We convert BBB into rref:

BBB =

2

66664

1 3 2

2 1 4

4 7 8

3

77775
=) RRR =

2

66664

1 0 2

0 1 0

0 0 0

3

77775
(rref)

Thus we only need to compute the solution to UUUxxx = 000.

If x3 = 1, then x1 = �2, x2 = 0.

Hence the basis for N(RRR) is

0

BBBB@

�2

0

1

1

CCCCA
. Hence dim(N(BBB)) = dim(N(RRR)) = 1.

(d) The linear combination of (x� 2)(x + 2), x2(x4 � 2), x6 � 8 is given by:

m1(x� 2)(x+ 2)+m2x2(x4
� 2)+m3(x6

� 8) = (m2 +m3)x6 +(m1� 2m2)x2 +(�4m1� 8m3)

where m1,m2,m3 2R.

• Firstly we show {x4� 4, x6� 8} span the space span{(x� 2)(x+ 2), x2(x4�

2), x6 � 8}:

Given any vector

(m2 +m3)x6 +(m1� 2m2)x2 +(�4m1� 8m3)2 span{(x� 2)(x+ 2), x2(x4
� 2), x6

� 8}

for 8m1,m2,m3 2R,

we construct a1 = m2 + m3, a2 = m1 � 2m2. Then the linear combination

of x6 � 8 and x4 � 4 with coefficient a1, a2 is exactly

a2(x4
� 4) + a1(x6

� 8) = (m2 + m3)x6 + (m1� 2m2)x2 + (�4m1� 8m3)

Hence

(m2 + m3)x6 + (m1 � 2m2)x2 + (�4m1 � 8m3) 2 span{x4
� 4, x6

� 8}
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=) span{(x� 2)(x + 2), x2(x4
� 2), x6

� 8} ⇢ span{x4
� 4, x6

� 8}

Conversely, by setting m1 = 2a1 + a2,m2 = a1,m3 = 0 we can show

span{x4 � 4, x6 � 8} ⇢ span{(x� 2)(x + 2), x2(x4 � 2), x6 � 8}.

Hence span{x4 � 4, x6 � 8} = span{(x� 2)(x + 2), x2(x4 � 2), x6 � 8}

Then we show x4 � 4, x6 � 8 are ind.:

Given a1(x4
� 4) + a2(x6

� 8) = 0 =) a2x6 + a1x4 + (�4a1 � 8a2) = 0

=)

8
>>>>><

>>>>>:

a2 = 0

a1 = 0

�4a1 � 8a2 = 0

=)

8
><

>:

a1 = 0

a2 = 0

Hence x4 � 4, x6 � 8 are ind. They form the basis for the space span{(x�

2)(x + 2), x2(x4 � 2), x6 � 8}.

Hence dim(span{(x� 2)(x + 2), x2(x4 � 2), x6 � 8}) = 2.

(e) Firstly, it’s easy to verify that 5 and cos2 x are ind.

Next, let’s show span{5,cos2 x} = span{5,cos2x, cos2 x}:

Any linear combination of {5,cos2x, cos2 x} is given by:

5m1 + m2 cos2x + m3 cos2 x = (2m2 + m3)cos2 x + (5m1 �m2)

where m1,m2,m3 2R.

Any linear combination of {5,cos2 x} is given by:

5n1 + n2 cos2 x

where n1,n2 2R.

• if we construct n1 = m1 �
1
5 m2,n2 = 2m2 + m3, then it means any linear

combination of {5,cos2x, cos2 x} can be expressed in form of {5,cos2 x}.

Hence span{5,cos2x, cos2 x} ⇢ {5,cos2 x}.

• if wr construct m1 = n1 +
1
10 n2,m2 = 1

2 n2,m3 = 0, then it means any linear
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combination of {5,cos2 x} can be expressed in form of {5,cos2x, cos2 x}.

Hence span{5,cos2 x} ⇢ {5,cos2x, cos2 x}.

Hence span{5,cos2 x}= {5,cos2x, cos2 x}. {5,cos2 x} is the basis for span{5,cos2x, cos2 x}.

Hence dim(span{5,cos2x, cos2 x}) = 2.

⌅

3. Solution. (a) It can have no or infinitely many solutions.

Since r < m and r < n, matrix AAA is not full rank. When reducing AAA into rref,

there must exist row that contains all zero entries. For its augmented matrix

which is rref, when the right hand side is zero for the zero row in the left, it

has infinitely many solutions; when the right hand side is nonzero for the

zero rwo in the left, it has no solutions.

(b) It has infinitely many solutions.

Since r = m and r < n, AAA is full rank. Hence AAAxxx = bbb has at least one solutions.

Since dim(N(AAA)) = n � r > 0, there exists infinitely many solutions for

AAAxxx = 000. Sicne xxxcomplete = xxxp + xxxspecial, AAAxxx = bbb has infinitely many solutions.

(c) It has no or unique solution.

Since r < m and r = n, the rref of AAA must be of the form RRR =

2

64
III

000

3

75. If ddd has

nonzero entries for the zero rows in the left side equation, then RRRxxx = ddd(And

the orignal AAAxxx = bbb) has no solution. If ddd has all zero entries for the zero

rows in the left side equation, then RRRxxx = ddd(And the orignal AAAxxx = bbb) has

unique solution.

⌅

4. Proof. (a) For any given ind. vectors v1,v2, . . . ,vn, suppose v is the any vector in

VVV.

• Let’s show v1,v2, . . . ,vn,v must be dep:

It suffices to show c1v1 + · · ·+ cnvn + cn+1v = 000 has nontrival solution
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for c1, . . . , cn+1 2R.

() AAAxxx = 000 has nontrival solution, where AAA =


v1 . . . vn v

�

which is obviously true since AAA is a n⇥ n + 1 matrix (n < n + 1)

• Hence there exists (c1, c2, . . . , cn+1) 6= (0,0, . . . ,0) such that

c1v1 + · · ·+ cnvn + cn+1v = 000

If cn+1 = 0, then we have (c1, c2, . . . , cn) 6= (0,0, . . . ,0) such that

c1v1 + · · ·+ cnvn = 000,

which contradicts that v1, . . . ,vn are ind.

Hence cn+1 6= 0. Then any v 2 VVV could be expressed as:

v = �
c1

cn+1
v1 �

c2

cn+1
v2 � · · ·�

cn

cn+1
vn

which means v1,v2, . . . ,vn spans VVV. And they are ind.

So they form a basis for VVV.

(b) Suppose v1 . . . ,vn spans VVV. We assume that they are dep. Hence there exists

(c1, c2, . . . , cn) 6= (0,0, . . . ,0) such that

c1v1 + c2v2 + · · ·+ cnvn = 000

WLOG, we set cn 6= 0. Hence we could express vn as:

vn = �
c1

cn
v1 �

c2

cn
v2 � · · ·�

cn�1

cn
vn�1

• We claim that v1,v2, . . . ,vn�1 still spans VVV:

For any vector v 2 VVV, since v1, . . . ,vn spans VVV, v could be expressed in
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form of v1, . . . ,vn:

v = m1v1 + · · ·+ mnvn

where m1, . . . ,mn 2R.

Hence it could also be expressed in form of v1, . . . ,vn�1:

v = m1v1 + · · ·+ mn(�
c1

cn
v1 �

c2

cn
v2 � · · ·�

cn�1

cn
vn�1)

= (m1 �
mnc1

cn
)v1 + (m2 �

mnc2

cn
)v2 � · · ·� (mn�1 �

mncn�1

cn
)vn�1

Hence v1.v2, . . . ,vn�1 still spans VVV.

• If v�1,v2, . . . ,vn still dep, we continue eliminating vectors until we get

ind. vectors, say, v1,v2, . . . ,vk. Hence dim(VVV) = k < n. which contradicts

dim(VVV) = n.

⌅

5. Proof. (a) Suppose u1 + v1 is one vector in UUU + VVV s.t. u1 2UUU,v1 2 VVV; u2 + v2 is

one vector in UUU + VVV s.t. u2 2UUU,v2 2 VVV.

Hence we claim addition and scalar multiplication is still closed under

UUU + VVV :

(u1 + v1) + (u2 + v2) = (u1 + u2) + (v1 + v2) c(u1 + v1) = cu1 + cv1

where c is a scalar.

• Since u1,u2 2UUU, u1 + u2 2UUU. Similarly, v1 + v2 2 VVV.

Hence (u1 + u2) + (v1 + v2) = (u1 + v1) + (u2 + v2) 2UUU + VVV.

• Since u1 2UUU, cu1 2UUU. Similarly, cv1 2UUU.

Hence cu1 + cv1 = c(u1 + v1) 2UUU + VVV

Hence addition and scalar multiplication is still closed under UUU + VVV. Hence

UUU + VVV is still a subspace of W.

(b) If w1,w2 2UUU \\\VVV, then w1,w2 2UUU and w1,w2 2 VVV. Thus the linear combin-
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tation of w1,w2 is still in UUU and VVV:

a1w1 + a2w2 2UUU a1w1 + a2w2 2 VVV

where a1, a2 is a scalar.

Hence a1w1 + a2w2 2UUU \\\VVV. Hence UUU \\\VVV is also a subspace of WWW.

(c) dim(UUU) = 2. The set {eee1, eee2} is a basis for UUU.

dim(VVV) = 2. The set {eee2, eee3} is a basis for VVV.

dim(UUU \\\VVV) = 1. The set {eee2} is a basis for UUU \\\VVV.

dim(UUU + VVV) = 3. The set {eee1, eee2, eee3} is a basis for UUU + VVV.

(d) Let UUU and VVV be subspaces of R
n such that UUU \\\VVV = {000}.

If either UUU = {0} or UUU = {0} the result is obvious.

Assume that both subspaces are nontrivial with dim(UUU) = m > 0 and

dim(VVV) = n > 0.

Let {u1, ...,um} be a basis for UUU and let {v1, ...,vn} be a basis for VVV. These

vectors u1,u2, . . . ,um,v1,v2, . . . ,vn spans UUU + VVV.

• We claim that these vectors form a basis for UUU + VVV. It suffices to show

they are ind:

If we have the condition

c1u1 + c2u2 + · · ·+ cmum + cm+1v1 + · · ·+ cm+nvn = 000

where c1, . . . , cm+n are scalars,

if we set uuu = c1u1 + c2u2 + · · ·+ cmum and vvv = cm+1v1 + · · ·+ cm+nvn,

then we have

uuu + vvv = 000

Hence uuu = �vvv. Then uuu,vvv 2UUU and uuu,vvv 2 VVV. Hence uuu,vvv 2UUU \\\VVV.
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Hence uuu,vvv = 000 since UUU \\\VVV = {000}. Thus we have

c1u1 + c2u2 + · · ·+ cmum = 000

cm+1v1 + cm+2v2 + · · ·+ cm+nvn = 000

By the independence of u1, . . . ,um and the independence of v1, . . . ,vn it

follows that

c1 = c2 = · · · = cm+n = 0

• Thus {u1,u2, . . . ,um,v1,v2, . . . ,vn} form a basis for UUU + VVV.

Hence dim(UUU + VVV) = m + n.

⌅

6. Proof. For any vector yyy 2 range(AAA + BBB), there exists vector xxx such that

(AAA + BBB)xxx = yyy

Also, we can express yyy as sum of vectors in range of AAA and BBB:

yyy = (AAA + BBB)xxx = AAAxxx + BBBxxx

Hence we obtain

range(AAA + BBB) ⇢ range(AAA) + range(BBB)

Assume one basis for range(AAA) is {a1, . . . , as}; BBB =


B1 . . . Bn

�
one basis for

range(BBB) is {b1, . . . ,bt}. Thus we obtain:

dim(range(AAA) + range(BBB)) = dim(a1, . . . , as,b1, . . . ,bt)

 s + t

= dim(range(AAA)) + dim(range(BBB))

= rank(AAA) + rank(BBB)
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Hence we have

rank(AAA + BBB) = dim(range(AAA + BBB))

 dim(range(AAA) + range(BBB))

 rank(AAA) + rank(BBB)

⌅

7. Proof. (a) We assume AAA =


A1 . . . An

�
, BBB =


B1 . . . Bn

�T
.

Hence AAABBB could be expressed as:

AAABBB = A1B1 + · · ·+ AnBn

which means every column of AAABBB is a linear combination of columns of

AAA. Assume one basis for col(AAA) is a1, . . . , as. Then {a1, . . . , as} can also span

col(AAABBB).

Hence rank(AAABBB) = dim(col(AAABBB))  dim(col(AAA)) = rank(AAA)

(b) We use the conclusion of part(a) to derive this statement:

If rank(BBB) = n, then BBB is invertible, AAA = AAABBBBBB�1.

Since product AAABBB is a m ⇥ n matrix, BBB�1 is a n ⇥ n matrix, by part(a),

rank(AAABBBBBB�1)  rank(AAABBB).

In conclusion,

rank(AAA) = rank(AAABBBBBB�1)  rank(AAABBB)  rank(AAA)

The equality must be satisfied, hence we have rank(AAABBB) = rank(AAA).

⌅

8. Proof. We assume {v1, . . . ,vn�1} form a basis for R
n.

It is equivalent to AAAxxx = bbb must have a solution 8bbb2R
n and AAA=


v1 . . . vn�1

�
.

However, since AAA is n⇥ (n� 1) matrix, the number of equations is greater than

number of unknowns, this system may not have a solution, which forms a

contradiction! ⌅
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10.1.5. Solution to Assignment Five
1. Proof. (a) For square matrix AAA, there exists identity matrix III, such that AAA =

III�1 AAAIII. Hence AAA is similar to itself.

(b) If BBB is similar to AAA, then there exists invertible matrix SSS1 such that BBB =

SSS�1
1 AAASSS1. Hence we obtain:

SSS1BBB = AAASSS1 =) AAA = SSS1BBBSSS�1
1

If we set SSS2 = SSS�1
1 , then we have

AAA = SSS�1
2 BBBSSS2

Thus AAA is simialr to BBB.

(c) Since AAA is similar to BBB, BBB is similar to CCC, there exists invertible matrices

SSS1,SSS2 such that

AAA = SSS�1
1 BBBSSS1 and BBB = SSS�1

2 CCCSSS2

It follows that
AAA = SSS�1

1 (SSS�1
2 CCCSSS2)SSS1

= (SSS�1
1 SSS�1

2 )CCC(SSS2SSS1)

= (SSS2SSS1)
�1CCC(SSS2SSS1)

If we set SSS3 = SSS2SSS1, since SSS1,SSS2 are invertible, then SSS3 is invertible.

Hence AAA = SSS�1
3 CCCSSS3. Thus AAA is simialr to CCC.

⌅

2. Solution. Obviously, L is a linear operator defined by L(xxx) = AAAxxx, where

AAA =

0

B@
3 0

1 �1

1

CA

We set SSS =


b1 b2

�
, where b1,b2 are the ordered vector in basis BBB.

We use similartiy transformation to compute the matrix representation DDD with
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respect to basis B:

DDD = SSS�1AAASSS

=

2

64
1 2

2 3

3

75

�10

B@
3 0

1 �1

1

CA

2

64
1 2

2 3

3

75 =

2

64
�11 �20

7 13

3

75

⌅

3. Solution. (a) No, since the zero function f (x) ⌘ 0 does not belong to this set.

(b) No, since the zero function f (x) ⌘ 0 does not belong to this set.

(c) Yes.

• Firstly this set belongs to R[x].

• Secondly, given zero function f (x) ⌘ 0, for any x 2R, we have f (x) =

0 = f (1� x). Hence this set contains zero function f (x) ⌘ 0.

• Thirdly, given two function f , g in this set, we have

f (x) = f (1� x) and g(x) = g(1� x) for all x 2R.

Then we set any linear combination of f and g to be T = a1 f + a2g,

where a1,a2 are scalars.

For any x 2R, we have

T(x) = a1 f (x) + a2g(x)

= a1 f (1� x) + a2g(1� x)

= T(1� x)

Hence T = a1 f + a2g also belongs to this set.

In conclusion, this set is subspace of R[x].

⌅
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4. Proof. (a) Given f , g 2 VVV, we have

T(a1 f + a2g) =
∂

∂x
(a1 f + a2g)�

∂

∂y
(a1 f + a2g)

= a1
∂ f
∂x

+ a2
∂g
∂x
� a1

∂ f
∂y
� a2

∂g
∂y

= a1(
∂ f
∂x
�

∂ f
∂y

) + a2(
∂ f
∂x
�

∂ f
∂y

)

= a1T( f ) + a2T(g)

where a1,a2 are scalars. It immediately follows that T is a transformation.

(b) Given any f = a + bx + cy + dx2 + exy + f y2 2 VVV, f 2 ker T if and only if

∂
∂x f � ∂

∂y f = 0. Thus f 2 ker T if and only if b+ 2dx + ey� (c+ ex + 2 f y) = 0.

Hence f 2 ker T if and only if

b� c = 0

2d� e = 0

e� 2 f = 0

The general solution is given by

0

BBBBBBBBBBBBBB@

a

b

c

d

e

f

1

CCCCCCCCCCCCCCA

= m1

0

BBBBBBBBBBBBBB@

1

0

0

0

0

0

1

CCCCCCCCCCCCCCA

+ m2

0

BBBBBBBBBBBBBB@

0

1

1

0

0

0

1

CCCCCCCCCCCCCCA

+ m3

0

BBBBBBBBBBBBBB@

0

0

0

1

2

1

1

CCCCCCCCCCCCCCA

where m1,m2,m3 2R.

Therefore, f 2 ker T if and only if for any m1,m2,m3 2R,

f = m1 + m2x + m2y + m3x2 + 2m3xy + m3y2

= m1 ⇥ 1 + m2(x + y) + m3(x2 + 2xy + y2)
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Obviously, the set {1, x + y, x2 + 2xy + y2} is ind. and it spans ker T by the

above argument. Hence {1, x + y, x2 + 2xy + y2} is a basis for ker T.

⌅

5. Solution.

D(ex) = 1 · ex + 0 · xex + 0 · x2ex

D(xex) = 1 · ex + 1 · xex + 0 · x2ex

D(x2ex) = 0 · ex + 2 · xex + 1 · x2ex

Thus, the matrix representation of D with respect to {ex, xex, x2ex} is given by

AAA =

2

66664

1 1 0

0 1 2

0 0 1

3

77775
.

⌅

6. Solution. (a) The transformed region will be a parallelogram.

In order to find the shape we only need to focus on the corner point

O(0,0), A(1,0), B(1,1),C(0,1). Suppose the matrix AAA is

2

64
a b

c d

3

75. By matrix

multiplication we find OABC is transformed into O1A1B1C1 such that

O1 = (0,0) A1 = (a, c) B1 = (a + c,b + d) C1 = (b,d)

Since vector
��!
O1B1 =

���!
O1A1 +

��!
O1C1, we find area O1A1B1C1 is a parallelo-

gram.

(b) In order to get a square, we have to let the inner product of two adjacent

sides of the parallelogram to be zero:

���!
O1A1 · · ·

��!
O1C1 = ab + cd = 0.
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And then we have to let all sides to have the same length:

|
���!
O1 A1|

2 = |
��!
O1C1|

2 =) a2 + c2 = b2 + d2

Finally we derive b = ±c, a = ⌥d. Hence when matrix AAA is of this form:

AAA = b

2

64
0 1

1 0

3

75+ d

2

64
�1 0

0 1

3

75 or AAA = b

2

64
0 1

�1 0

3

75+ d

2

64
1 0

0 1

3

75

where b,d 2R, it will transform the unit square into another square.

⌅

7. Proof. (a) • Firstly we show col(AAAAAAT) ⇢ col(AAA):

For any bbb 2 col(AAAAAAT), there exists xxx0 such that AAAAAATxxx0 = bbb, which

implies AAA(AAATxxx0) = bbb. Hence there exists vector (AAATxxx0) such that

AAA(AAATxxx0) = bbb

Hence bbb 2 col(AAA). Hence col(AAAAAAT) ⇢ col(AAA).

• In part b we will show rank(AAAAAAT) = rank(AAA). Hence dim(col(AAAAAAT)) =

dim(col(AAA)).

• We assume dim(col(AAAAAAT)) = dim(col(AAA)) = n, the basis for col(AAA)

is {v1,v2, . . . ,vn}. Thus since col(AAAAAAT) ⇢ col(AAA), basis {v1,v2, . . . ,vn}

must span col(AAAAAAT). Since dim(col(AAAAAAT)) = n, {v1,v2, . . . ,vn} must be

the basis for col(AAAAAAT).

• Since col(AAAAAAT) and col(AAA) have the same basis, we obtain col(AAAAAAT) =

col(AAA).

(b) • Firstly, we show N(AAA) ⇢ N(AAAT AAA):

For any xxx0 2 N(AAA), we have AAAxxx0 = 000. Thus by postmultiplying AAAT we

have AAAT AAAxxx0 = 000. Hence xxx0 2 N(AAAT AAA).

• Then we show N(AAAT AAA) ⇢ N(AAA):

For any xxx0 2 N(AAATAAA), we have AAAT AAAxxx0 = 000. Thus by postmultiplying xxxT
0
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we have xxxT
0 AAAT AAAxxx0 = 000, which implies kAAAxxx0k

2 = xxxT
0 AAATAAAxxx0 = 000. Hence

AAAxxx0 = 000. Hence xxx0 2 N(AAA).

Hence we obtain N(AAA) ⇢ N(AAAT AAA) and N(AAAT AAA) ⇢ N(AAA), which implies

N(AAA) = N(AAATAAA).

If we assume AAA is m⇥ n matrix, then rank(AAAT AAA) + dim(N(AAAT AAA)) = n =

rank(AAA) + dim(N(AAA)).

• Since dim(N(AAAT AAA)) = dim(N(AAA)), we obtain rank(AAAT AAA) = rank(AAA).

• Similarly, we obtain rank(AAAAAAT) = rank(AAAT) by changing AAA into AAAT.

• Obviously, rank(AAAT) = dim(row(AAAT)) = dim(col(AAA)) = rank(AAA).

In conclusion, rank(AAAAAAT) = rank(AAAT) = rank(AAA) = rank(AAAT AAA).

⌅
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10.1.6. Solution to Assignment Six
1. Solution. One basis for P2 is {t2, t,1}. And we obtain:

T(t2) = (3t� 2)2 = 9t2
� 6t + 4⇥ 1

T(t) = 3t� 2 = 0t2 + 3t + (�2)⇥ 1

T(1) = 1 = ot2 + 0t + 1⇥ 1

Hence the matrix representation is given by:

AAA =

2

66664

9 �6 4

0 3 �2

0 0 1

3

77775

We croos the column 1 to compute determinant:

det(AAA) = 9

�������

3 �2

0 1

�������
= 27.

⌅

2. Proof. We only need to show xxxTyyy = 0:

By postmultiplying xxxT for AAATyyy = 2yyy both sides we obtain:

xxxTAAATyyy = 2xxxTyyy

Or equivalently,

(AAAxxx)Tyyy = 2xxxTyyy =) 000Tyyy = 2xxxTyyy =) xxxTyyy = 0.

⌅

3. Solution. (a) True.
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Reason: Assume QQQ is a n⇥ n matrix s.t.

QQQ =


q1 q2 . . . qn

�

Then the product of QQQTQQQ is

QQQTQQQ =

2

66666664

qT
1

qT
2
...

qT
n

3

77777775


q1 q2 . . . qn

�
=

2

66666664

qT
1 q1 qT

1 q2 . . . qT
1 qn

qT
2 q1 qT

2 q2 . . . qT
2 qn

...
...

. . .
...

qT
nq1 qT

nq2 . . . qT
nqn

3

77777775

Due to the orthonormality of q1, . . . ,qn, we obtain:

QQQTQQQ = IIIn.

Hence QQQ�1 = QQQT. If we define QQQ�1 =


q⇤1 q⇤2 . . . q⇤n

�
, then we obtain:

(QQQ�1)TQQQ�1 =

2

66666664

(q⇤1)
T

(q⇤2)
T

...

(q⇤n)T

3

77777775


q⇤1 q⇤2 . . . q⇤n

�
=

2

66666664

(q⇤1)
Tq⇤1 (q⇤1)

Tq⇤2 . . . (q⇤1)
Tq⇤n

(q⇤2)
Tq⇤1 (q⇤2)

Tq⇤2 . . . (q⇤2)
Tq⇤n

...
...

. . .
...

(q⇤n)Tq⇤1 (q⇤n)Tq⇤2 . . . (q⇤n)Tq⇤n

3

77777775

= III

Hence for columns q⇤1,q⇤2, . . . ,q⇤n we have:

hqqq⇤i ,qqq⇤j i =

8
>><

>>:

0 when i 6= j (orthogonal vectors),

1 when i = j (unit vectors: kqqq⇤i k = 1).

for i, j 2 {1,2, . . . ,n}.

By definition, q⇤1,q⇤2, . . . ,q⇤n are orthonormal. Hence QQQ�1 is a orthogonal

matrix.
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Example:

QQQ =

2

64
1 0

0 1

3

75 =) QQQ�1 =

2

64
1 0

0 1

3

75

which is obviously orthonormal.

(b) True.

Reason: Assume QQQ =


q1 q2 . . . qn

�
, where qi 2R

m for i = 1, . . . ,n.

• Firstly we show QQQTQQQ = III:

QQQTQQQ =

2

66666664

qT
1

qT
2
...

qT
n

3

77777775


q1 q2 . . . qn

�
=

2

66666664

qT
1 q1

qT
2 q2

. . .

qT
nqn

3

77777775

= IIIn.

• Hence we derive

kQQQxxxk2 = xxxTQQQTQQQxxx

= xxxT(QQQTQQQ)xxx = xxxT IIIxxx

= xxxTxxx

= kxxxk2

Hence kQQQxxxk = kxxxk.

Example:

If QQQ =

2

64
1

0

3

75

2⇥1

, then for any xxx =


aaa

�
(aaa is a row vector),

kQQQxxxk = k

2

64
aaa

000

3

75k =
q
|haaa,aaai|+ 0002 =

q
|haaa,aaai| (10.6)

kxxxk =
q
|haaa,aaai|. (10.7)
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Hence we obtain kQQQxxxk = kxxxk for 8xxx.

(c) False.

Example:

QQQ =

2

66664

1 0

0 0

0 1

3

77775
,yyy =

2

66664

0

1

0

3

77775
, then note that

QQQTyyy =

2

64
1 0 0

0 0 1

3

75

2

66664

0

1

0

3

77775
=

2

64
0

0

3

75 .

Thus kQQQTyyyk = 0 6= 1 = kyyyk.

⌅

4. Solution. • Firstly we show WWW1 ⇢WWW?2 :

For 8p 2WWW1,8q 2WWW2, we only need to show hp,qi = 0 :

– For 8 f 2WWW2, we have

Z 1

�1
f (x)dx =

Z 0

�1
f (x)dx +

Z 1

0
f (x)dx

=
Z 0

�1
� f (�x)dx +

Z 1

0
f (x)dx

=
Z 0

�1
f (�x)d(�x) +

Z 1

0
f (x)dx

=
Z 0

1
f (x)d(x) +

Z 1

0
f (x)dx

= 0.

– And the product pq 2WWW2, this is because:

(pq)(x) = p(x)q(x) = p(�x)� q(�x)

= �p(�x)q(�x)

= �(pq)(�x).
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Hence the inner product hp,qi is given by:

hp,qi =
Z 1

�1
p(x)q(x)dx =

Z 1

�1
(pq)(x)dx = 0

Hence WWW1 ?WWW2 =)WWW1 ⇢WWW?2 .

• Then we show WWW?2 ⇢WWW1:

Suppose p⇤ /2WWW1, then we want to show hp⇤,qi 6= 0 for some q 2WWW2:

– We decompose p⇤ into

p⇤(x) = p1(x) + p2(x)

where p1(x) = p⇤(x)+p⇤(�x)
2 and p2(x) = p⇤(x)�p⇤(�x)

2 . Since we have

p1(�x) =
p⇤(�x) + p⇤(x)

2
= p1(x)

p2(�x) =
p⇤(�x)� p⇤(x)

2
= �p2(x),

we derive p1(x) 2WWW1, p2(x) 2WWW2. (p⇤ /2WWW1 =) p2 6= 0.)

– Thus the inner product for hp⇤, p2i is positive:

hp⇤, p2i = hp1 + p2, p2i

= hp1, p2i+ hp2, p2i

= 0 +
Z 1

�1
p2

2(x)dx > 0.

Hence given 8p⇤ /2WWW1, there exists q = p2 2WWW2 s.t. hp⇤,qi 6= 0.

Thus p⇤ /2WWW?2 =) WWW?2 ⇢WWW1.

Hence we obtain WWW1 = WWW?2 . ⌅

5. Solution. • Firstly we find a basis for UUU:
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The space span

8
>>>><

>>>>:

2

66664

1

2

�5

3

77775

9
>>>>=

>>>>;

is the row space for matrix

AAA =


1 2 �5

�

Hence UUU = (C(AAA))? = N(AAA). We only need to find the basis for N(AAA):

AAAxxx = 000 =) x1 + 2x2 � 5x3 = 0.

Hence the solution to AAAxxx = 000 is

0

BBBB@

x1

x2

x3

1

CCCCA
=

0

BBBB@

�2x2 + 5x3

x2

x3

1

CCCCA
= x2

0

BBBB@

�2

1

0

1

CCCCA
+ x3

0

BBBB@

5

0

1

1

CCCCA

where x2, x3 are arbitrary scalars.

Hence UUU is spanned by

8
>>>><

>>>>:

0

BBBB@

�2

1

0

1

CCCCA
,

0

BBBB@

5

0

1

1

CCCCA

9
>>>>=

>>>>;

. And obviously,

0

BBBB@

�2

1

0

1

CCCCA
and

0

BBBB@

5

0

1

1

CCCCA

are ind.

Hence one basis for UUU is

8
>>>><

>>>>:

0

BBBB@

�2

1

0

1

CCCCA
,

0

BBBB@

5

0

1

1

CCCCA

9
>>>>=

>>>>;

.

• Let’s do Gram-Schmidt Process to convert this basis into orthonormal:

We set aaa =

2

66664

�2

1

0

3

77775
and bbb =

2

66664

5

0

1

3

77775
.

– Then we set AAA =

2

66664

�2

1

0

3

77775
.
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– Next step, we compute

BBB = bbb� ProjAAA(bbb) = bbb�
hAAA,bbbi
hAAA, AAAi

AAA

=

0

BBBB@

5

0

1

1

CCCCA
�
�10

5

0

BBBB@

�2

1

0

1

CCCCA

=

0

BBBB@

1

2

1

1

CCCCA

– Then we convert orthogonal sets {AAA, BBB} into orthonormal:

qqq1 :=
AAA
kAAAk

=

0

BBBB@

�
2p
5

1p
5

0

1

CCCCA
qqq2 :=

BBB
kBBBk

=

0

BBBB@

1p
6

2p
6

1p
6

1

CCCCA

In conclusion, one orthonormal basis for UUU is

8
>>>><

>>>>:

0

BBBB@

�
2p
5

1p
5

0

1

CCCCA
,

0

BBBB@

1p
6

2p
6

1p
6

1

CCCCA

9
>>>>=

>>>>;

. ⌅

6. Solution. We only need to find least squares solution xxx⇤ to AAAxxx = bbb, where

AAA =

2

66666666664

1 �2

1 �1

1 0

1 1

1 2

3

77777777775

xxx =

2

64
C

D

3

75 bbb =

2

66666666664

4

2

�1

0

0

3

77777777775

.

Take on trust that we only need to solve AAATAAAxxx = AAATbbb.
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• But before that, let’s do QR factorization for AAA:

Define AAA :=


aaa1 aaa2

�
haaa1, aaa2i = 0 =) Columns of AAA are orthogonal.

So we obtain orthonormal vectors:

qqq1 :=
aaa1

kaaa1k
=

2

66666666664

1p
5

1p
5

1p
5

1p
5

1p
5

3

77777777775

qqq2 =
aaa2

kaaa2k
=

2

66666666664

�
2p
10

�
1p
10

0

1p
10
2p
10

3

77777777775

Thus the factor is given by

QQQ =


qqq1 qqq2

�
RRR = QQQT AAA =

2

64
qqqT

1 aaa1 qqqT
1 aaa2

0 qqqT
2 aaa2

3

75 =

2

64

p
5 0

0
p

10

3

75 .

• Hence we could compute the least squares solution more easily:

AAATAAAxxx = AAATbbb() RRRTQQQTQQQRRRxxx = RRRTQQQTbbb() RRRTRRRxxx = RRRTQQQTbbb

=) xxx = RRR�1QQQTbbb =
1

5
p

2

2

64

p
10 0

0
p

5

3

75

2

64
1p
5

1p
5

1p
5

1p
5

1p
5

�
2p
10
�

1p
10

0 1p
10

2p
10

3

75

=

2

64
1

�1

3

75

Hence we have

8
>><

>>:

C = 1

D = �1.
The best line is ŷ = 1� x. ⌅
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10.1.7. Solution to Assignment Seven
1. Solution. A hidden assumption is xxxTxxx = kxxxk2 6= 0. But this is not always true, let

me raise a counterexample:

The eigenvectors of rotation matrix KKK =

2

64
0 �1

1 0

3

75 are xxx1 = a

0

B@
1

i

1

CA associated

with eigenvalue l1 = i and xxx2 = b

2

64
1

�i

3

75 associated with eigenvalue l2 = �i. Foe

each xxxi we obtain

xxxT
i xxxi = 1 + i2 = 0.

But the eigenvalues are all complex, which leads to a contradiction for the

statement. ⌅

2. Proof. (a) The eigenspace for l is given by

{xxx : AAAxxx = lxxx}.

Firstly we investigate AAAXXX:

AAAXXX = AAA


xxx1 . . . xxxn

�

=


AAAxxx1 . . . AAAxxxk AAAxxxk+1 . . . AAAxxxn

�

=


lxxx1 . . . lxxxk AAAxxxk+1 . . . AAAxxxn

�

Then investigate XXX�1AAAXXX :

XXX�1AAAXXX = XXX�1


lxxx1 . . . lxxxk AAAxxxk+1 . . . AAAxxxn

�

=


lXXX�1xxx1 . . . lXXX�1xxxk XXX�1AAAxxxk+1 . . . XXX�1AAAxxxn

�

Since xxx1, . . . , xxxk are columns of XXX, and XXX�1XXX = III, we obtain

XXX�1xxxi = eeei for i = 1, . . . ,k.
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Hence

BBB =XXX�1AAAXXX

=


lXXX�1xxx1 . . . lXXX�1xxxk XXX�1AAAxxxk+1 . . . XXX�1AAAxxxn

�

=


leee1 . . . lXXX�1eeek XXX�1AAAxxxk+1 . . . XXX�1AAAxxxn

�

=

2

6666666666666666664

l 0 . . . 0 b1(k+1) . . . b1n

0 l . . . 0 b2(k+1) . . . b2n
...

...
. . .

...
...

. . .
...

0 0 . . . l bk(k+1) . . . bkn

0 0 . . . 0 b(k+1)(k+1) . . . b(k+1)n
...

...
. . .

...
...

. . .
...

0 0 . . . 0 bn(k+1) . . . bnn

3

7777777777777777775

If we write BBB in block matrix form, then we obtain:

BBB =

2

64
lIII BBB12

000 BBB22

3

75 .

(b) For a fixed eigenvalue l⇤, BBB could be written as

BBB =

2

6666666666666666664

l⇤ 0 . . . 0 b1(k+1) . . . b1n

0 l⇤ . . . 0 b2(k+1) . . . b2n
...

...
. . .

...
...

. . .
...

0 0 . . . l⇤ bk(k+1) . . . bkn

0 0 . . . 0 b(k+1)(k+1) . . . b(k+1)n
...

...
. . .

...
...

. . .
...

0 0 . . . 0 bn(k+1) . . . bnn

3

7777777777777777775
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Hence the matrix for lIII � BBB is given by:

lIII � BBB =

2

6666666666666666664

l� l⇤ 0 . . . 0 �b1(k+1) . . . �b1n

0 l� l⇤ . . . 0 �b2(k+1) . . . �b2n
...

...
. . .

...
...

. . .
...

0 0 . . . l� l⇤ �bk(k+1) . . . �bkn

0 0 . . . 0 l� b(k+1)(k+1) . . . �b(k+1)n
...

...
. . .

...
...

. . .
...

0 0 . . . 0 �bn(k+1) . . . l� bnn

3

7777777777777777775

In order to compute
����lIII � BBB

����, we cross the first k columns to get

����lIII � BBB
���� = (l� l⇤)k

����������

l� b(k+1)(k+1) . . . �b(k+1)n
...

. . .
...

�bn(k+1) . . . l� bnn

����������

Hence the term (l� l⇤) appears at least k times in the characteristic poly-

nomial of
����lIII � BBB

����.

Hence l⇤ is an eigenvalue of BBB with multiplicity at least k.

Since BBB is similar to AAA, they have the same eigenvalues. Hence l⇤ is an

eigenvalue of AAA with multiplicity at least k.

⌅

3. Solution. (a) AAAxxx = lxxx =) (AAA� lIII)xxx = 000. Since l = 0, we only need to inves-

tigate the dimension for xxx, where AAAxxx = 000.

Since AAA = xxxyyyT, rank(AAA) = 1. Hence dim(N(AAA)) = n� 1. So the eigenspace

for l is n� 1 dimension.

Thus l = 0 is an eigenvalue of AAA with n� 1 ind. eigenvectors.

(b) By part (a),

l1 = l2 = · · · = ln�1 = 0.
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The sum of the eigenvalues is the trace of AAA which equals to xxxTyyy. Thus

n

Â
i=1

li = ln = trace(AAA) = xxxTyyy.

Hence the remaining eigenvalue of AAA is ln = trace(AAA) = xxxTyyy.

(c) From part(a) l = 0 has n� 1 ind. eigenvectors.

Since ln 6= 0, the eigenvector associated to ln will be independent from

the n� 1 eigenvectors.(A theorem says if eigenvalues l1, . . . ,lk are distinct,

their corresponding eigenvectors xxx1, . . . , xxxk will be ind.)

Hence AAA has n ind. eigenvectors, AAA is diagonalizable.

⌅

4. This question is the special case for Cayley-Hamilton theorem. It states that if the

charactristic polynomial for AAA is PAAA(l) = (l� l1) . . . (l� ln), then

PAAA(AAA) = (AAA� l1 III) . . . (AAA� ln III) = 000.

Proof. Obviously, AAA has n ind. eigenvectors. Hence AAA is diagonalizable. Hence we

decompose AAA as

AAA = SSSDDDSSS�1

where DDD = diag(l1, . . . ,ln), and l1, . . . ,ln are n eigenvalues of AAA.

Hence we write BBB as:

BBB = (AAA� l1 III) . . . (AAA� ln III)

= (SSSDDDSSS�1
� l1 III) . . . (SSSDDDSSS�1

� ln III)

= (SSSDDDSSS�1
� l1SSSSSS�1) . . . (SSSDDDSSS�1

� lnSSSSSS�1)

=
h
SSS(DDD� l1 III)SSS�1

i
. . .
h
SSS(DDD� ln III)SSS�1

i
= SSS(DDD� l1 III) . . . (DDD� ln III)SSS�1

For each term (DDD� li III), i 2 {1,2, . . . ,n}, we find its ith row are all zero.

Hence the product (DDD� l1 III) . . . (DDD� ln III) must be zero matrix.

Hence BBB = SSS(DDD� l1 III) . . . (DDD� ln III)SSS�1 is a zero matrix. ⌅
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5. Solution. (a) Since l 6= 0 is a eigenvalue of AAABBB, there exists vector xxx s.t.

AAABBBxxx = lxxx

By postmultiplying BBB both sides we obtain

BBB(AAABBBxxx) = lBBBxxx =) BBBAAA(BBBxxx) = l(BBBxxx)

Hence we only need to show BBBxxx 6= 000 :

Assume BBBxxx = 000, then AAABBBxxx = AAA(BBBxxx) = AAA000 = 000 = lxxx.

Hence l = 0, which leads to a contradiction. Hence there exists eigenvector

BBBxxx 6= 000 s.t.

BBBAAA(BBBxxx) = l(BBBxxx)

Thus l is also an eigenvalue of BBBAAA.

(b) By definition, there exists vector xxx 6= 000 s.t.

AAABBBxxx = lxxx = 0xxx = 000.

Hence AAABBB is singular, the determinant det(AAABBB) = 0.

det(AAABBB) = det(AAA)det(BBB) = det(BBB)det(AAA) = det(BBBAAA) = 0.

Hence BBBAAA is also singular. Thus there exists yyy 6= 000 s.t.

BBBAAAyyy = 000 = 0yyy

By definition, l = 0 is also an eigenvalue of BBBAAA.

⌅
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6. Proof. (a) We set uuuk =

2

64
ak+1

ak

3

75. The rule

8
><

>:

ak+2 = 3ak+1 � 2ak

ak+1 = ak+1

can be written as uuuk+1 =

2

64
3 �2

1 0

3

75uuuk. And uuu0 =

2

64
5

4

3

75 .

After computation we derive xxx1 =

2

64
1

1

3

75 is eigenvector of AAA corresponding to

eigenvalue l1 = 1; xxx2 =

2

64
2

1

3

75 is eigenvector of AAA corresponding to eigenvalue

l2 = 2.

And then, we want to find the lienar combination of xxx1 and xxx2 to get

uuu0 =

2

64
5

4

3

75:

2

64
5

4

3

75 = 3

2

64
1

1

3

75+

2

64
2

1

3

75 . Or uuu0 = 3xxx1 + xxx2

Then we multiply uuu0 by AAAk to get uuuk:

uuuk = AAAku0 = 3AAAkxxx1 + AAAkxxx2

= 3lk
1xxx1 + lk

2xxx2

= 3xxx1 + 2kxxx2

=

2

64
3 + 2k+1

3 + 2k

3

75 .

Hence the general formula is aaak = 3 + 2k.
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(b) We set uuuk =

2

64
bk+1

bk

3

75. The rule

8
><

>:

bk+2 = 4bk+1 � 4bk

bk+1 = bk+1

can be written as uuuk+1 =

2

64
4 �4

1 0

3

75uuuk. And uuu0 =

2

64
b

a

3

75 .

We set AAA =

2

64
4 �4

1 0

3

75, then there exists nonsingular SSS =

2

64
2 3

1 1

3

75 such that

SSSDDD =

2

64
2 3

1 1

3

75

2

64
2 1

0 2

3

75 =

2

64
4 �4

1 0

3

75

2

64
2 3

1 1

3

75 =) DDD =

2

64
2 1

0 2

3

75 = SSS�1AAASSS.

Hence AAA is similar to DDD.

Then we compute AAAk:

AAAk = (SSSDDDSSS�1)k

= SSSDDDkSSS�1

Hence we only need to compute DDDk:

• We have known DDD1 =

2

64
2 1

0 2

3

75.

• If we assume DDDk =

2

64
p(k) q(k)

s(k) t(k)

3

75, then DDDk+1 =

2

64
2 1

0 2

3

75

2

64
p q

s t

3

75=

2

64
2p + s 2q + t

2s 2t

3

75=

2

64
p(k + 1) q(k + 1)

s(k + 1) t(k + 1)

3

75 .

• Hence by induction, s = 0, t(k) = 2k. And p(k + 1) = 2p(k) + 0 =)

p(k) = 2k; q(k + 1) = 2q(k) + t = 2q(k) + 2k =) q(k) = 2k�1[q(1) + k�

1] = k⇥ 2k�1
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• Hence DDDk =

2

64
2k k⇥ 2k�1

0 2k

3

75 .

Thus AAAk = SSSDDDkSSS�1 =

2

64
2 3

1 1

3

75

2

64
2k k⇥ 2k�1

0 2k

3

75

2

64
2 3

1 1

3

75

�1

= 2k

2

64
k + 1 �2k

k
2 1� k

3

75 .

Hence uuuk = AAAkuuu0 = 2k

2

64
k + 1 �2k

k
2 1� k

3

75

2

64
b

a

3

75 = 2k

2

64
b(k + 1)� 2ka

b( k
2 ) + (1� k)a

3

75

Hence the general formula is bk = 2k
h
(1� k)⇥ a + k

2 ⇥ b
i

.

⌅

7. Solution. (a) False.

Reason: For real symmetric matrix, we have shown that its eigenvectors

corrsponding to distinct eigenvalues are orthigonal. However, ind. eigenvec-

tors corresponding to the same eigenvalue may not be orthogonal.

Example: Let AAA = III. Any nonzero vector is eigenvector. But two different

vectors may not have to be orthogonal.

(b) True.

Reason: We do the eigendecomposition for AAA:

AAA = SSSLSSS�1

where L = diag(l1, . . . ,ln) and SSS =


xxx1 . . . xxxn

�
, where xxxi is the eigenvec-

tor of AAA associated with eigenvalue li for i = 1,2, . . . ,n.

Since columns of SSS are orthonormal vectors, it is unitary. Hence AAA = SSSLSSSH.

Since LH = L, we obtain

AAAH = (SSSLSSSH)H = SSSLHSSSH = SSSLSSSH = AAA

So AAA is Hermitian.

(c) True.
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Reason: Suppose AAA has the eigendecomposition

AAA = SSSLSSS�1

Then for the series we obtain:

III + AAA +
1
2!

AAA2 + . . . = SSSSSS�1 + SSSLSSS�1 +
1
2!

SSSL2SSS�1 + . . .

= SSS(III + L +
1
2!

L2 + . . . )SSS�1

If we define the series III + AAA + 1
2! AAA2 + · · · := eAAA, then we obtain:

eAAA = SSSeLSSS�1

Since every term for the series eL is diagonal matrix, the series eL is conse-

quently a diagonal matrix.

Hence eAAA is diagonalizable.

(d) True.

Reason: Since AAAAAA�1 = III, taking complex conjugate we obtain AAAAAA�1 = III.

Taking transpose we get (AAA�1)HAAAH = III.

And we have AAAH = AAA, so (AAA�1)HAAA = III. That is to say (AAA�1)H = AAA�1. Hence

AAA�1 is Hermitian.

⌅

8. Solution. (a) • N(AAAT) is orthogonal to C(AAA) under the old unconjugated in-

ner product.

In fact, for 8uuu 2 N(AAAT) and 8AAAvvv 2 C(AAA),

(AAAvvv)Tuuu = vvvT(AAATuuu) = vvvT000= 000. =) C(AAA)?N(AAAT)()N(AAAT)?C(AAA).

• However, N(AAAT) is not always orthogonal to C(AAA) under the new uncon-

jugated inner product.
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Example: If AAA =

0

B@
1 1

i i

1

CA , then uuu =

0

B@
1

i

1

CA 2 C(AAA) and uuu 2 N(AAAT).

But uuuHuuu = 2 6= 0.

• N(AAAH) is orthogonal to C(AAA) under the new unconjugated inner prod-

uct.

In fact, for 8uuu 2 N(AAAH) and 8AAAvvv 2 C(AAA),

(AAAvvv)Huuu= vvvH(AAAHuuu) = vvvH000= 000. =) C(AAA)?N(AAAH)()N(AAAH)?C(AAA).

• However, N(AAAH) is not always orthogonal to C(AAA) under the old uncon-

jugated inner product.

Example: If AAA =

0

B@
1 1

i i

1

CA , then uuu =

0

B@
1

i

1

CA 2 C(AAA) and vvv =

2

64
1

�i

3

75 2

N(AAAH).

But uuuTvvv = 2 6= 0.

(b) • Example: Let VVV = span

8
><

>:

0

B@
1

i

1

CA

9
>=

>;
.

Then since we have
✓

1 i
◆
0

B@
1

i

1

CA= 0, we see VVV?=VVV. Thus VVV \VVV?=VVV!

• If we use xxxHvvv = 000 to define the orthogonal complement, then {000} /2

VVV \VVV?.

Assume VVV \VVV? contains some nonzero vector xxx, then xxx is orthogonal

to itself:

xxxHxxx = 0.

But xxxHxxx = kxxxk2, so xxx = 000, which leads to a contradiction!

⌅
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10.1.8. Solution to Assignment Eight
1. Solution. We factorize AAA 2R

n⇥n into:

AAA = UUUSVVVT

where UUU is a n⇥ n orthogonal matrix, S is a n⇥ n diagonal matrix, VVV is a n⇥ n

orthogonal matrix.

Thus we write AAAAAAT and AAATAAA as:

AAAAAAT = UUUSVVVTVVVSTUUUT = UUUSSTUUUT = UUUS2UUUT. Since VVVTVVV = III due to orthonormality.

AAATAAA = VVVSTUUUTUUUSVVVT = VVVSTSVVVT = VVVS2VVVT. Since UUUTUUU = III due to orthonormality.

If we set SSS = (VVVT)�1UUUT = VVVUUUT, then the inverse is given by SSS�1 = (UUUT)�1VVV�1 =

UUUVVVT.

Hnece there exists invertible SSS = VVVUUUT such that

SSS�1(AAAT AAA)SSS = UUUVVVT(AAATAAA)VVVUUUT

= UUUVVVTVVVS2VVVTVVVUUUT

= UUUS2UUUT = AAAAAAT

Hence AAAT AAA is similiar to AAAAAAT, i.e. AAAT AAA and AAAAAAT are similar. ⌅

2. Let AAA be m ⇥ n (m � n) matrix of rank n with singular value decomposition

UUUSVVVT. Let S+ denote the n⇥m matrix

0

BBBB@

1
s1

0 . . . 0
. . .

...
. . .

...

1
sn

0 . . . 0

1

CCCCA

And we define AAA+ = VVVS+UUUT
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(a) Show that

AAAAAA+ =

2

64
IIIn 000

000 000

3

75 and AAA+AAA = IIIn.

(Note that AAA+ is called the pseudo-inverse of AAA.)

(b) Show that x̂xx = AAA+bbb satisfies the normal equation AAATAAAxxx = AAATbbb.

Solution. (a) We write S+ into block matrix:

S+ =


S�1 000n⇥(m�n)

�

where S�1 := diag( 1
s1

, . . . , 1
sn
).

Hence SS+ =


SS�1 000m⇥(m�n)

�
=

2

64
IIIn 000n⇥(m�n)

000m�n 000(m�n)⇥(m�n)

3

75 .

Thus we derive

AAAAAA+ = UUUSVVVTVVVS+UUUT

= UUUSS+UUUT = UUU

2

64
IIIn 000n⇥(m�n)

000m�n 000(m�n)⇥(m�n)

3

75UUUT

We write UUU as block matrix:

UUU =


UUU1 UUU2

�

where UUU1 is m⇥ n matrix, UUU2 is m⇥ (m� n) matrix.

319



Hence we derive

AAAAAA+ = UUU

2

64
IIIn 000n⇥(m�n)

000m�n 000(m�n)⇥(m�n)

3

75UUUT

=


UUU1 UUU2

�
2

64
IIIn 000n⇥(m�n)

000m�n 000(m�n)⇥(m�n)

3

75

2

64
UUUT

1

UUUT
2

3

75

=

2

64
UUU1 IIInUUUT

1 000n⇥(m�n)

000m�n 000(m�n)⇥(m�n)

3

75

=

2

64
IIIn 000n⇥(m�n)

000m�n 000(m�n)⇥(m�n)

3

75 due to the orthogonality of UUU.

Moreover, AAA+AAA = VVVS+UUUTUUUSVVVT = VVVS+SVVVT.

You can verify by yourself that S+S = III.

Hence AAA+AAA = VVVVVVT = IIIn.

(b) We only need to show AAATAAAAAA+bbb = AAATbbb.

Since rank(AAA) = n, the columns of AAA are ind. Hence AAAT AAA is invertible.

• Firstly, we show (AAATAAA)�1AAAT is the right inverse of AAA:

AAA(AAATAAA)�1 AAAT = UUUSVVVT(VVVSUUUTUUUSVVVT)�1VVVSUUUT

= UUUSVVVT(VVVS2VVVT)�1VVVSUUUT = UUUSVVVTVVVS�2VVVTVVVSUUUT

= UUUSS�2SUUUT

= III

• Since we also obtain AAA+AAA = III, we derive

AAA+ = AAA+ III = AAA+AAA
h
(AAATAAA)�1AAAT

i
= III

h
(AAAT AAA)�1AAAT

i
=
h
(AAAT AAA)�1AAAT

i

Thus we have AAAT AAAAAA+ = AAAT =) AAATAAAAAA+bbb = AAATbbb.

⌅
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3. Proof. (a)

kAAAk2
FFF = trace(AAATAAA)

= trace

"
n

Â
i=1

sivvviuuuT
i ⇥

n

Â
i=1

siuuuivvvT
i

#

= trace

 
n

Â
i=1

s2
i vvvi(uuuT

i uuui)vvvT
i + Â

i 6=j
sisjvvvi(uuuT

i uuuj)vvvT
j

!

= trace

 
n

Â
i=1

s2
i vvvivvvT

i + 000

!
due to orthogonality for uuui’s and vvvi’s.

=
n

Â
i=1

s2
i trace

⇣
vvvivvvT

i

⌘

Suppose vvvi =


v1i v2i . . . vni

�T
, then due to the orthonormality of vvvi, we

obtain

trace
⇣

vvvivvvT
i

⌘
=

n

Â
j=1

v2
ji = 1.

Hence kAAAk2
FFF = Ân

i=1 s2
i trace

�
vvvivvvT

i
�
= Ân

i=1 s2
i .

(b) • When k < n, it’s obvious that

AAAk = s1uuu1vvvT
1 + · · ·+ skuuukvvvT

k .

Hence

AAA� AAAk = sk+1uuuk+1vvvT
k+1 + · · ·+ snuuunvvvT

n .

And

kAAA� AAAkk
2
FFF = trace

 
n

Â
i=k+1

sivvviuuuT
i ⇥

n

Â
i=k+1

siuuuivvvT
i

!

Similarly, we obtain

kAAA� AAAkk
2
FFF =

n

Â
i=k+1

s2
i .

• Otherwise, AAAk = AAA, thus kAAA� AAAkk
2
FFF = 0.

⌅

4. Proof. We only need to show that maxxxx,yyy kxxxT AAAyyyk2 = s2
1 :

321



• we find

kxxxTAAAyyyk2 = khxxx, AAAyyyik2
 kxxxk2

· kAAAyyyk2

= kAAAyyyk2

The equality holds if and only if xxx = AAAyyy.

Thus

max
xxx,yyy
kxxxT AAAyyyk2 = max

yyy
kAAAyyyk2 = max

yyy
yyyT(AAATAAAyyy).

We only need to show maxyyy yyyT(AAAT AAAyyy) = s2
1 :

• Since AAAT AAA is real symmetric, there exists n orthogonal eigenvectors of AAAT AAA.

Moreover, we can divide these eigenvectors by their length to get n orthonor-

mal eigenvectors ppp1, ppp2, . . . , pppn associated with eigenvalues l1,l2, . . . ,ln re-

spectively.

Without loss of generality, we set l1 = maxi li for i = 1, . . . ,n.

Since they span R
n, we can express arbitrary yyy as linear combination of

ppp1, ppp2, . . . , pppn:

yyy = a1 ppp1 + a2 ppp2 + · · ·+ an pppn.

Moreover, the product yyyTyyy is

yyyTyyy = kyyyk2 = 1

=
n

Â
i=1

n

Â
j=1

aiaj pppi pppj

=
n

Â
i=1

a2
i = 1.

• Moreover, the product AAAT AAAyyy is given by:

AAAT AAAyyy = AAAT AAA(a1 ppp1 + a2 ppp2 + · · ·+ an pppn)

= a1(AAAT AAAppp1) + a2(AAAT AAAppp2) + · · ·+ an(AAAT AAApppn)

= a1l1 ppp1 + a2l2 ppp2 + · · ·+ anln pppn
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Hence the product yyyT(AAATAAAyyy) is given by:

yyyT(AAAT AAAyyy) = yyyT(a1l1 ppp1 + a2l2 ppp2 + · · ·+ anln pppn)

=

 
n

Â
i=1

ai pppT
i

! 
n

Â
j=1

ajlj pppj

!
=

n

Â
i=1

n

Â
j=1

aiajlj pppT
i pppj

=
n

Â
i=1

a2
i li

 l1

n

Â
i=1

a2
i = l1.

The equality is satisfied when yyy = ppp1. Hence maxyyy yyyT(AAATAAAyyy) = l1.

Since l1 = s2
1 , we derive maxyyy yyyT(AAAT AAAyyy) = s2

1 .

⌅

5. Proof. • We do the eigendecomposition for AAA:

AAA = UUUSUUUT

where UUU is a n⇥ n orthogonal matrix such that columns are eigenvectors

of AAA2.

S = diag(l1, . . . ,ln) is a n⇥ n diagonal matrix, and (l1, . . . ,ln) are eigenval-

ues of AAA2.

And then we define
p

S := diag(
p

l1, . . . ,
p

ln). Obviously, we have S =
p

S
p

S.

Hence we could factorize AAA into

(UUU
p

S)(UUU
p

S)T = UUU
p

S
p

S
T
UUU = UUUSUUU = AAA.

Thus we define QQQ := UUU
p

S, which means we can factorize AAA into AAA = QQQQQQT.

• Then we show the columns of QQQ are mutually orthogonal:
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Suppose UUU =


uuu1 . . . uuun

�
, and {uuu1, . . . ,uuun} is orthonormal basis.

QQQ=UUU
p

S=


uuu1 . . . uuun

�

0

BBBB@

p
l1

. . .
p

ln

1

CCCCA
=


p

l1uuu1
p

l2uuu2 . . .
p

lnuuun

�

Since {uuu1, . . . ,uuun} is orthonormal basis, we obtain:

uuuiuuuj = 0 for i 6= j. =) (
p

liuuui)(
q

ljuuuj) = 0 for i 6= j.

which means columns of QQQ are mutually orthogonal.

⌅
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10.2. Midterm Exam Solutions

10.2.1. Sample Exam Solution
1. (a)

AAA =

2

66664

1 1 c 1

0 �1 1 2

1 2 1 �1

3

77775

(b) The augmented matrix is given by

2

66664

1 1 c 1 c

0 �1 1 2 0

1 2 1 �1 �c

3

77775

Then we compute its row-reduced form:

2

66664

1 1 c 1 c

0 �1 1 2 0

1 2 1 �1 �c

3

77775
Row 1=Row 1+Row 2
============)
Row 3=Row 3�Row 1

2

66664

1 0 c + 1 3 c

0 �1 1 2 0

0 1 1� c �2 �2c

3

77775

Row 2=Row 2⇥(�1)
===========)

2

66664

1 0 c + 1 3 c

0 1 �1 �2 0

0 1 1� c �2 �2c

3

77775

Row 3=Row 3�Row 2
============)

2

66664

1 0 c + 1 3 c

0 1 �1 �2 0

0 0 2� c 0 �2c

3

77775

i. If c = 2, then we obtain:

Row 3=Row 3⇥(� 1
4 )===========)

2

66664

1 0 3 3 2

0 1 �1 �2 0

0 0 0 0 1

3

77775
Row 1=Row 1�2⇥Row 3
=============)
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2

66664

1 0 3 3 0

0 1 �1 �2 0

0 0 0 0 1

3

77775
(rref)

ii. Otherwise, we derive:

Row 3=Row 3⇥( 1
2�c )===========)

2

66664

1 0 c + 1 3 c

0 1 �1 �2 0

0 0 1 0 2c
c�2

3

77775
Row 1=Row 1�Row 3⇥(c+1)
================)

Row 2=Row 2+Row 3

2

66664

1 0 0 3 �
c2+4c
c�2

0 1 0 �2 2c
c�2

0 0 1 0 2c
c�2

3

77775
(rref)

(c) i. If c = 2, there is no solution to this system.

ii. Otherwise, we convert this system into:

8
>>>>>><

>>>>>>:

x1 + 3x4 = �
c2 + 4c
c� 2

x2 � 2x4 =
2c

c� 2

x3 =
2c

c� 2

=)

8
>>>>>><

>>>>>>:

x1 = �
c2 + 4c
c� 2

� 3x4

x2 =
2c

c� 2
+ 2x4

x3 =
2c

c� 2

Hence the complete set of solutions is given by

xxxcomplete =

0

BBBBBBB@

�
c2+4c
c�2 � 3x4

2c
c�2 + 2x4

2c
c�2

x4

1

CCCCCCCA

=

0

BBBBBBB@

�
c2+4c
c�2

2c
c�2

2c
c�2

0

1

CCCCCCCA

+ x4

0

BBBBBBB@

�3

2

0

1

1

CCCCCCCA

.

(d) i. If c = 2, obviously, the rref of AAA is

2

66664

1 0 3 3

0 1 �1 �2

0 0 0 0

3

77775
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Hence rank(AAA) = 2.

ii. Otherwise, the rref of AAA is

2

66664

1 0 0 3

0 1 0 �2

0 0 1 0

3

77775

Hence rank(AAA) = 3.

In conclusion, rank(AAA) =

8
>><

>>:

3, c 6= 2;

2, c = 2.
(e) When c = 0, the complete solution is given by:

xxxcomplete = x4

0

BBBBBBB@

�3

2

0

1

1

CCCCCCCA

.

where x4 is a scalar.

Hence a basis for the subspace of solutions is

8
>>>>>>><

>>>>>>>:

0

BBBBBBB@

�3

2

0

1

1

CCCCCCCA

9
>>>>>>>=

>>>>>>>;

.

2. • For skew symmetric matrix, once the lower triangular part is determined,

the whole matrix is immediately determined. For example, if we know

aij = m(i > j), then the corresponding upper triangular entry is aji = �m.

Thus our basis is given by:

{AAAij} for 1 j  i  n.
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where the entries ast(1 s, t  n) for AAAij is given by

ast =

8
>>>>><

>>>>>:

0, (s, t) 6= (i, j) and (s, t) 6= (j, i);

1, (s, t) = (i, j);

�1, (s, t) = (j, i).

• Notice ax2 + bx + 2a + 3b = a(x2 + 2) + b(x + 3). And (x2 + 2) and (x + 3)

are obviously independent. Hence the basis is given by

{(x2 + 2), (x + 3)}.

• Firstly we show that (x� 1), (x + 1), (2x2 � 2) are independent:

a1(x� 1) + a2(x + 1) + a3(2x2
� 2) = 0 =)

2a3x2 + (a1 + a2)x + (�a1 + a2 � 2a� 3) = 0.

Hence we derive

8
>>>>><

>>>>>:

2a3 = 0

a1 + a2 = 0

�a1 + a2 � 2a3 = 0

=)

8
>>>>><

>>>>>:

a1 = 0

a2 = 0

a3 = 0

which means (x� 1), (x + 1), (2x2 � 2) are independent.

Hence one basis for this space is {(x� 1), (x + 1), (2x2 � 2)}.

3. (a) Obviously, the entrie of DDD is

dij =

8
><

>:

dii, i = j;

0, i 6= j.

We set EEE = AAADDD, FFF = DDDAAA. Hence the entries for EEE and FFF is given by:

eij =
n

Â
t=1

aitdtj = aijdjj fij =
n

Â
t=1

ditatj = diiaij
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where 1 i, j  n.

In order to let EEE = FFF, we must let eij = fij for 81 i, j  n.

=) aijdjj = diiaij =) aij(djj � dii) = 0.

Since dii 6= djj for 8i 6= j, we derive djj � dii 6= 0. Hence aij = 0 for 8i 6= j.

Considering the case i = j, then djj � dii = dii � dii = 0. Thus the value of aij

is undetermined.

In conclusion, AAA could be any diagonal matrix.

(b) • We construct BBBij such that the (i, j)th entry of BBBij is 1, other entries are

all zero.

• We set AAABBBij = EEEij; BBBij AAA = FFFij. Hence the entries for EEEij and FFFij is given

by:

eij
pq =

n

Â
t=1

aptbtq f ij
pq =

n

Â
t=1

bptatq

where 1 p,q  n.

Since AAABBB = BBBAAA is always true for any matrix BBB, we have AAABBBij = BBBij AAA.

Hence eij
pq = f ij

pq.

• For q 6= i, we have eii
iq = Ân

t=1 aitbtq = 0 since btq = 0 for 8t = 1,2, . . . ,n.

Also, f ii
iq = Ân

t=1 bitatq = aiq.

Hence 0 = aiq for 8q 6= i.

• For i 6= j, we have eij
ij = Ân

t=1 aitbtj = aiibij = aii and f ij
ij = Ân

t=1 bitatj =

bijajj = ajj.

Hence aii = ajj.

So, AAA is diagonal and all the diagonal entries of AAA are equal. Hence AAA = cIII

for some scalar c.

4. (a) 2

64
5 4 1 0

4 5 0 1

3

75 Row 2=5⇥Row 2�4⇥Row 1
===============)

2

64
5 4 1 0

0 9 �4 5

3

75
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Row 1=9⇥Row 1�4⇥Row 2
===============)

2

64
45 0 25 �20

0 9 �4 5

3

75
Row 1= 1

45⇥Row 1
==========)

Row 2= 1
9⇥Row 2

2

64
1 0 5

9 �
4
9

0 1 �
4
9

5
9

3

75

Hence the inverse of the matrix

0

B@
5 4

4 5

1

CA is

2

64
5
9 �

4
9

�
4
9

5
9

3

75.

(b) 2

64
a b 1 0

c d 0 1

3

75 Row 2=a⇥Row 2�c⇥Row 1
===============)

2

64
a b 1 0

0 ad� bc �c a

3

75

Row 1=(ad�bc)⇥Row 1�b⇥Row 2
===================)

2

64
a(ad� bc) 0 ad �ab

0 ad� bc �c a

3

75

i. If ad � bc = 0, then this process cannot continue, which means the

inverse of

0

B@
a b

c d

1

CA doesn’t exist.

ii. If ad� bc 6= 0, without loss of generality, we assume a 6= 0.

(If a = 0, then c must be nonzero. Then we only need to set the second

row as pivot row to proceed similarly.)

Thus we obtain:

Row 1= 1
a(ad�bc)⇥Row 1

=============)
Row 2= 1

ad�bc⇥Row 2

2

64
1 0 d

ad�bc
�b

ad�bc

0 1 �c
ad�bc

a
ad�bc

3

75

Hence the inverse of the matrix

0

B@
a b

c d

1

CA is

2

64
d

ad�bc
�b

ad�bc

�c
ad�bc

a
ad�bc

3

75.

5. (a) We set AAA = III � uuuuuuT.

• Firstly, we find that uuu 2 N(AAA) :

AAAuuu = (III � uuuuuuT)uuu = uuu� uuu(uuuTuuu) = uuu� uuu = 000.
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Moreover, cuuu 2 N(AAA), where c is a scalar.

Hence any elements that parallel to uuu is in N(AAA).

• Secondly, 8x 2 N(AAA), we notice:

AAAxxx = 000 =) (III � uuuuuuT)xxx = xxx� uuuuuuTxxx = 000 =) xxx = uuu(uuuTxxx).

Since uuuTxxx is a scalar, xxx is parallel to uuu.

In other words, any elements in N(AAA) is parallel to uuu.

In conclusion, N(AAA) = span{uuu}. Hence dim(N(AAA)) = 1.

Hence rank(AAA) = n� dim(N(AAA)) = n� 1.

(b) We find that

PPP2 = PPP

PPP5 = PPP.

Hence rank(PPP2) = rank(PPP) = n� 1;rank(PPP5) = rank(PPP) = n� 1.

(c) i. If III � xxxyyyT = 000, (for example, xxx =


1
�

,yyy =


1
�

.) then rank(III � xxxyyyT) = 0.

ii. Otherwise, we set AAA = III � xxxyyyT.

• Firstly, for 8vvv 2 N(AAA), we notice:

AAAvvv = (III � xxxyyyT)vvv = 000 =) vvv = xxx(yyyTvvv).

Since yyyTvvv is a scalar, vvv is parallel to xxx.

In other words, any elements in N(AAA) is parallel to xxx.

• Secondly, we discuss whether xxx is in N(AAA) :

xxx 2 N(AAA)() AAAxxx = (III � xxxyyyT)xxx = 000() xxx = xxx(yyyTxxx). (10.8)

A. If yyyTxxx = 1, then condition (10.8) is satisfied, then xxx is in N(AAA).

Moreover, cxxx 2 N(AAA), where c is a scalar.
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Hence any elements that parallel to xxx is in N(AAA).

In this case, we derive N(AAA) = span{xxx}. Hence dim(N(AAA)) = 1.

rank(AAA) = n� dim(N(AAA)) = n� 1.

B. Otherwise, then condition (10.8) is not satisfied, thus xxx is not in

N(AAA).

Obviously, cxxx /2 N(AAA) for 8 nonzero scalar c.

Hence any nonzero elements that parallel to xxx is not in N(AAA).

In this case, we derive N(AAA) = {000}. Hence dim(N(AAA)) = 0. rank(AAA) =

n� dim(N(AAA)) = n.

In conclusion,

• When III � xxxyyyT = 000, rank(III � xxxyyyT) = 0.

• Otherwise,

rank(III � xxxyyyT) =

8
>><

>>:

n yyyTxxx 6= 1;

n� 1 yyyTxxx = 1.

6. (a) No.

Reason: (AAA + BBB)(AAA� BBB) = AAA2
� BBB2 + (BBBAAA� AAABBB).

But (BBBAAA� AAABBB) cannot always be zero. For example,

AAA =

2

64
1 0

1 0

3

75 BBB =

2

64
�2 0

2 0

3

75 .

But AAABBB =

2

64
�2 0

�2 0

3

75 , BBBAAA =

2

64
�2 0

2 0

3

75 .

(b) False.

Reason: For example,

AAA =

2

64
1 0

0 1

3

75 BBB =

2

64
�1 0

0 �1

3

75 .
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Although AAA and BBB are invertible, AAA + BBB is not invertible:

AAA + BBB =

2

64
0 0

0 0

3

75 .

(c) True.

Reason: If f1 and f2 is in this set, then the linear combination of f1 and f2 is

also in this set. Why?

For function a1 f1 + a2 f2, where a1,a2 are scalars, we obtain:

a1 f1 + a2 f2(1) = a1 f1(1) + a2 f2(1)

= a1 ⇥ 0 + a2 ⇥ 0

= 0.

Hence a1 f1 + a2 f2 is also in this set. Hence this set is a vector space.

(d) True.

Reason: If AAA and BBB are invertible, then for the product AAABBB, we find

AAABBBBBB�1AAA�1 = AAA(BBBBBB�1)AAA�1 = AAAIIIAAA�1 = III.

Hence BBB�1 AAA�1 is the inverse of AAABBB. Hence the product AAABBB is invertible.

(e) False.

Don’t mix up this statement with the proposition: Row transforamtion doesn’t

change the row space.

Actually, in most case, the two matrices that have the same reduced row

echelon form have different column space.

For example,

AAA =

2

66664

1 3 3 4

2 6 9 7

�1 �3 3 4

3

77775
Row transform
========)UUU =

2

66664

1 3 0 �1

0 0 1 1

0 0 0 0

3

77775
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they have the same reduced row echelon form. However, the first column of AAA

is

0

BBBB@

1

2

�1

1

CCCCA
/2 col(UUU). They have different column space.

(f) True.

Reason: Suppose AAA is n ⇥ n square matrix, if two columns of AAA are the

same, then dim(col(AAA)) = rank(AAA) < n. Since AAA is not full rank, AAA cannot

be invertible.

(g) False.

Don’t mix up this statement with the equality:

rank(AAA) + dim(N(AAA)) = n.

Actually, rank(AAA) = dim(row(AAA)) = dim(col(AAA)).
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10.2.2. Midterm Exam Solution
1. (a) We can write this system as:

8
>>>>><

>>>>>:

x� y + 3z = 1

2x + y = 5

�x� 5y + 9z = �7

We can convert it into matrix form:

2

66664

1 �1 3

2 1 0

�1 �5 9

3

77775

2

66664

x

y

z

3

77775
=

2

66664

1

5

�7

3

77775
.

(b) The augmented matrix is given by:

2

66664

1 �1 3 1

2 1 0 5

�1 �5 9 �7

3

77775

And we perform row transformation on this matrix:

2

66664

1 �1 3 1

2 1 0 5

�1 �5 9 �7

3

77775
Row 2=Row 2�2⇥Row 1
=============)

Row 3=Row 3+Row 1

2

66664

1 �1 3 1

0 3 �6 3

0 �6 12 �6

3

77775
Row 3=Row 3+2⇥Row 2
=============)

2

66664

1 �1 3 1

0 3 �6 3

0 0 0 0

3

77775

Row 1=Row 1+ 1
3⇥Row 2

==============)

2

66664

1 0 1 2

0 3 �6 3

0 0 0 0

3

77775

Row 2=Row 2⇥ 1
3=========)

2

66664

1 0 1 2

0 1 �2 1

0 0 0 0

3

77775
(rref)
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The reduced row echelon form of the augmented matrix for this system is

2

66664

1 0 1 2

0 1 �2 1

0 0 0 0

3

77775
.

(c) We convert this system into:

8
><

>:

x + z = 2

y� 2z = 1
=)

8
><

>:

x = 2� z

y = 1 + 2z

Hence the complete set of solutions is given by

xxxcomplete =

0

BBBB@

2� z

1 + 2z

z

1

CCCCA
=

0

BBBB@

2

1

0

1

CCCCA
+ z

0

BBBB@

�1

2

1

1

CCCCA
.

(d)

AAA =

2

66664

1 �1 3

2 1 0

�1 �5 9

3

77775

From part (b), we know that AAA is singular. Hence AAA�1 doesn’t exist.

(e) From part (b), we know that AAA has 2 pivot variables. Hence rank(AAA) = 2.

2. (a) The coefficient matrix for this equation is given by:


2 �1 3 0

�

Hence x1 is pivot variable, x2, x3, x4 are free variables.

Moreover, 2x1 � x2 + 3x3 = 0 =) x1 =
x2�3x3

2 .
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Hence the complete set of solutions is given by

xxxcomplete =

0

BBBBBBB@

x2�3x3
2

x2

x3

x4

1

CCCCCCCA

= x2

0

BBBBBBB@

1
2

1

0

0

1

CCCCCCCA

+ x3

0

BBBBBBB@

�
3
2

0

1

0

1

CCCCCCCA

+ x4

0

BBBBBBB@

0

0

0

1

1

CCCCCCCA

.

(b) Obviously, the three vectors

0

BBBBBBB@

1
2

1

0

0

1

CCCCCCCA

,

0

BBBBBBB@

�
3
2

0

1

0

1

CCCCCCCA

,

0

BBBBBBB@

0

0

0

1

1

CCCCCCCA

are ind.

Hence one basis for VVV is

8
>>>>>>><

>>>>>>>:

0

BBBBBBB@

1
2

1

0

0

1

CCCCCCCA

,

0

BBBBBBB@

�
3
2

0

1

0

1

CCCCCCCA

,

0

BBBBBBB@

0

0

0

1

1

CCCCCCCA

9
>>>>>>>=

>>>>>>>;

.

Hence dim(VVV) = 3.

(c) The columns of AAA form a basis for AAA.

Hence one matrix AAA is given by:

AAA =

2

66666664

1
2 �

3
2 0

1 0 0

0 1 0

0 0 1

3

77777775

.

(d) We only need to find BBB such that

BBBxxx = 000 where xxx =

0

BBBBBBB@

x1

x2

x3

x4

1

CCCCCCCA

.

Thus one possible matrix is BBB =


4 �2 6 0

�
.
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In this case, BBBxxx = 2(2x1 � x2 + 3x3) = 0.

3. (a) BBB =

2

66664

2 0 0

0 2 0

0 0 2

3

77775
.

Verify: In this case, BBB = 2III.

Thus BBBAAA = 2IIIAAA = 2AAA. for every AAA.

(b) BBB =

2

66664

0 0 0

0 0 0

0 0 0

3

77775
.

Verify: In this case, BBBAAA = 000AAA = 000;2BBB = 000.

Hence BBBAAA = 2BBB for every AAA.

(c) BBB =

2

66664

0 0 1

0 1 0

1 0 0

3

77775
.

Verify: In this case, BBB is an elementary matrix. It interchanges the first and

the last rows of AAA.

(d) Such BBB doesn’t exist.

Reason: Suppose AAA =

2

66664

a b c

d e f

g h i

3

77775
, then BBBAAA =

2

66664

c b a

f e d

i h g

3

77775
.

However, if the first row of BBB is


a1 a2 a3

�
, then the (1,1)th entry of BBBAAA

is

a1a + a2d + a3g,

which makes it impossible to equal to c.

Hence such BBB doesn’t exist.

4. (a) i. • Sufficiency. If there exists an n⇥m matrix CCC such that AAACCC = IIIm, then

for 8bbb 2R
m we obtain:

AAACCCbbb = IIImbbb = bbb.

If we set xxx0 = CCCbbb, then we derive AAAxxx0 = bbb. Hence xxx0 is one solution
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to AAAxxx = bbb, which means AAAxxx = bbb has at least one solution for 8bbb 2

R
m.

• Necessity. If AAAxxx = bbb has at least one solution for 8bbb 2 R
m, then we

construct bbb = eeei for i = 1,2, . . . ,m.

For 8i 2 {1,2, . . . ,m}, there exists xxxi such that AAAxxxi = eeei.

Thus we construct CCC =


xxx1 xxx2 · · · xxxm

�
. CCC is an n ⇥ m matrix

and

AAACCC = AAA


xxx1 xxx2 · · · xxxm

�

=


AAAxxx1 AAAxxx2 · · · AAAxxxm

�

=


eee1 eee2 · · · eeem

�
= III.

Thus CCC is right inverse of AAA.

ii. The rank of AAA is the number of nonzero rows in the rref(AAA).

The linear system AAAxxx = bbb always has solution for 8bbb. We convert it into

augmented matrix form:


AAA bbb

�
Row transform
========)


rref(AAA) bbb⇤

�

Once the rref(AAA) has zero rows and the corresponding bbb⇤ has nonzero

entries, this system has no solution. Hence rref(AAA) has no zero rows.

Since AAA is a m⇥ n matrix, we have m nonzero rows for AAA.

Thus rank(AAA) = m.

(b) • For 1⇥ 3 matrix AAA =

✓
1 2 7p

◆
, rank(AAA) = 1.

And there exists xxx1 =

0

BBBB@

1

0

0

1

CCCCA
such that AAAxxx1 = eee1.

Hence we construct CCC =


xxx1

�
. We find that AAACCC =

✓
1 2 7p

◆

0

BBBB@

1

0

0

1

CCCCA
=
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1 = III. Hence CCC =

0

BBBB@

1

0

0

1

CCCCA
is the right inverse of AAA.

• For 3⇥ 1 matrix BBB =

0

BBBB@

1

2

7p

1

CCCCA
, we find rank(BBB) = 1 6= 3.

From part (a) we derive BBB has no right inverse.

5. (a) No, let’s raise a counter-example:

AAA =

2

64
3 1

5 3

3

75 =) rank(AAA) = 2.

AAAT =

2

64
3 5

1 3

3

75 =) AAA + AAAT =

2

64
6 6

6 6

3

75

Hence rank(AAA + AAAT) = 1 6= 2 = rank(AAA).

(b) • Firstly, we show N(AAA) ⇢ N(AAAT AAA):

For any xxx0 2 N(AAA), we have AAAxxx0 = 000. Thus by postmultiplying AAAT we

have AAAT AAAxxx0 = 000. Hence xxx0 2 N(AAAT AAA).

• Then we show N(AAAT AAA) ⇢ N(AAA):

For any xxx0 2 N(AAATAAA), we have AAAT AAAxxx0 = 000. Thus by postmultiplying xxxT
0

we have xxxT
0 AAATAAAxxx0 = 000, which implies kAAAxxx0k

2 = xxxT
0 AAAT AAAxxx0 = 000. Hence

AAAxxx0 = 000. Hence xxx0 2 N(AAA).

In conclusion, N(AAA) = N(AAAT AAA).

(c) • Since AAA is m⇥n matrix, then rank(AAATAAA)+dim(N(AAAT AAA)) = n= rank(AAA)+

dim(N(AAA)).

• Since N(AAA) = N(AAATAAA), we derive dim(N(AAATAAA)) = dim(N(AAA)).

Thus rank(AAAT AAA) = rank(AAA).
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6. (a) Verify by yourself that the following matrices are symmetric:

(i) AAA2
� BBB2

(iii) AAABBBAAA

(b) There are infinitely many solutions.

Reason:

• Since AAA is 5⇥ 8matrix, rank(AAA)+dim(N(AAA)) = 8 =) dim(N(AAA)) = 3.

Hence this system AAAxxx = bbb has special solutions.

• Moverover, since rank(AAA) = 5, we have 5 nonzero pivots, which means

rref(AAA) has no zero rows.

Hence this system AAAxxx = bbb always has particular solution.

In conclusion, there are infinitely many solutions.

(c) False.

Reason: For example, if we have

AAA =

2

64
1 0

0 0

3

75 BBB =

2

64
0 0

0 1

3

75

then AAA + BBB =

2

64
1 0

0 1

3

75, which is obviously nonsingular.

(d) False.

Reason: For example, the set of 2⇥ 2 matrices with rank no more than r = 1

is not a vector space. Why?

AAA =

2

64
1 0

0 0

3

75 , BBB =

2

64
0 0

0 1

3

75 are both in this set since rank(AAA) + rank(BBB) = 1.

However, AAA + BBB =

2

64
1 0

0 1

3

75 doesn’t belong to this set since rank(AAA + BBB) = 2.

(e) False.

Reason: This set doesn’t satisfy vector addition rule and scalar multiplication

rule.
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If f , g are both in this set, then ( f + g)(1) = f (1) + g(1) = 2 6= 1. Hence f + g

is not in this set.

Similarly, you can verify l f (l is a scalar that not equal to 1) is not in this

set.

Hence it cannot be a vector space.
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10.3. Final Exam Solutions

10.3.1. Sample Exam Solution
1. (a) Since we have

D(sin x) = 0sin x + 1cos x + 0sin2x + 0cos2x

D(cos x) = �1sin x + 0cos x + 0sin2x + 0cos2x

D(sin2x) = 0sin x + 0cos x + 0sin2x + 2cos2x

D(cos2x) = 0sin x + 0cos x + (�2)sin2x + 0cos2x.

the matrix representation for the basis {sin x, cos x, sin2x, cos2x} is given by

2

66666664

0 1 0 0

�1 0 0 0

0 0 0 2

0 0 �2 0

3

77777775

(b) • Firstly, we show {sin x, cos x, sin2x, cos2x} are four eigenvectors of DDD2:

DDD2(sin x) =
d2

dx2 (sin x) = (�1)⇥ sin x

DDD2(cos x) =
d2

dx2 (cos x) = (�1)⇥ cos x

DDD2(sin2x) =
d2

dx2 (sin2x) = (�4)⇥ sin2x

DDD2(cos2x) =
d2

dx2 (cos2x) = (�4)⇥ cos2x

• Secondly, we show {sin x, cos x, sin2x, cos2x} are independent:

Given

a1 sin x + a2 cos x + a3 sin2x + a4 cos2x = 0

where ai’s are scalars for i = 1,2,3,4.
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– If we set x = 0, then we derive:

0a1 + a2 + 0a3 + a4 = 0.

– If we set x = p, then we derive:

0a1 � a2 + 0a3 + a4 = 0.

– If we set x = p
2 , then we derive:

a1 + 0a2 + 0a3 � a4 = 0.

– If we set x = p
4 , then we derive:

p
2

2
a1 +

p
2

2
a2 + a3 + 0a4 = 0.

Solving the linear system of equations

8
>>>>>>>>><

>>>>>>>>>:

0a1 + a2 + 0a3 + a4 = 0

0a1 � a2 + 0a3 + a4 = 0

a1 + 0a2 + 0a3 � a4 = 0
p

2
2

a1 +

p
2

2
a2 + a3 + 0a4 = 0.

,

we derive

a1 = a2 = a3 = a4 = 0.

Hence {sin x, cos x, sin2x, cos2x} are independent.

In conclusion, {sin x, cos x, sin2x, cos2x} are four linearly independent eigen-

vectors of DDD2.

2. (a) We only need to find least squares solution xxx⇤ to LLLxxx = bbb, where

LLL =

2

66664

1 1

1 2

1 3

3

77775
xxx =

2

64
C

D

3

75 bbb =

2

66664

2

1

3

3

77775
.
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Take on trust that we only need to solve LLLTLLLxxx = LLLTbbb.

Since LLLTLLL =

2

64
3 6

6 14

3

75 , LLLTbbb =

2

64
6

13

3

75

We derive

xxx =

2

64
3 6

6 14

3

75

�12

64
6

13

3

75 =
1

3⇥ 14� 6⇥ 6

2

64
14 �6

�6 3

3

75

2

64
6

13

3

75 =
1
6

2

64
6

3

3

75 =

2

64
1

1
2

3

75 .

Thus the fit line is y = 1 + 1
2 x.

(b) The eigenvalue for PPP is l = 1. when AAA is m ⇥ n matrix with m > n; the

eigenvalues for PPP are l = 0 or l = 1 when AAA is square matrix.

Reason: Suppose AAA is m⇥ n(m � n) matrix with rank(AAA) = n.

• Firstly we notice that PPP is idemponent:

PPP2 =
h

AAA(AAAT AAA)�1AAAT
ih

AAA(AAAT AAA)�1AAAT
i

= AAA(AAAT AAA)�1AAAT AAA(AAATAAA)�1AAAT

= AAA(AAAT AAA)�1AAAT = PPP.

• Secondly, we show that the possible eigenvalues for PPP could only be 0

or 1:

If l is the eigenvalue for PPP, then there exists nonzero xxx 2R
m⇥1 s.t.

PPPxxx = lxxx

By postmultiplying PPP we derive

PPP2xxx = lPPPxxx =) PPPxxx = lPPPxxx =) (l� 1)(PPPxxx) = 000.

Hence we derive that l = 1 or PPPxxx = 000.
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– If PPPxxx = 000, where xxx 2R
m⇥1 is a nonzero vector,

then by postmultiplying AAAT we obtain:

AAAT
h

AAA(AAATAAA)�1AAAT
i

xxx = AAAT000 = 000 =) AAATxxx = 000.

Since AAA has independent columns, we obtain dim(col(AAA)) = rank(AAA) =

n.

Thus rank(AAAT) = n.

Since rank(AAAT) + dim(N(AAAT)) = m, we derive N(AAAT) = m� n.

i. If m > n, then N(AAAT) > 0, 0 could be eigenvalue for PPP.

⇤ We can construct an eigenvector for PPP associated with eigen-

value l = 0:

For any nonzero xxx 2 N(AAAT), we have

AAATxxx = 000.

By postmultiplying AAA(AAAT AAA)�1 we derive

AAA(AAAT AAA)�1AAATxxx = 000 =) PPPxxx = 000.

which means xxx is the eigenvalue for PPP associated with eigen-

value l = 0.

ii. If m = n, then N(AAAT) = 0, 0 cannot be eigenvalue for PPP.

• Finally we construct an eigenvector for PPP associated with eigenvalue

l = 1:

For any ttt 2R
n⇥1, we construct x̂xx = AAAttt. Then we notice

PPPx̂xx = AAA(AAATAAA)�1AAAT AAAttt = AAAttt = x̂xx
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Hence l = 1 must be the eigenvalue for PPP.

In conclusion, for m⇥ n matrix AAA(m � n),

• When m = n, the only possible eigenvalue for PPP is l = 1.

• When m � n, the possible eigenvalues for PPP are l = 0 or l = 1.

3. (a) True.

Reason: For symmetric AAA � 0, AAA has all positive eigenvalues.

• Firstly we show AAA is invertible:

We assume there exists xxx0 6= 000 that is in N(AAA). In other words, there

exists xxx0 6= 000 such that

AAAxxx0 = 000

which means 0 is the eigenvalue for AAA. Since AAA has all positive eigen-

values, it makes a contradiction.

Hence N(AAA) = {000}, AAA is invertible.

• Secondly, we show AAA�1
� 0:

Since AAA � 0, xxxT AAAxxx > 0 for 8 nonzero xxx.

We define yyy = AAAxxx, obviously, range(AAA) = R
n � N(AAA) = R

n � {000}.

Hence yyy also denotes arbitrary nonzero vector in R
n. And

yyyTAAA�1yyy = xxxT AAAT AAA�1AAAxxx = xxxT AAATxxx = xxxTAAAxxx > 0.

Equivalently, AAA�1
� 0.

(b) False.

Reason: Let me raise a counter example:

For AAA =

2

64
1 i

0 0

3

75, xxx =

2

64
�i

1

3

75 is in N(AAA), yyy = AAAT

2

64
1

0

3

75 =

2

64
1

i

3

75 is in C(AAAT).

But the inner product of xxx and yyy is not zero:

hxxx,yyyi = yyyHxxx =


1 �i

�
2

64
�i

1

3

75 = �2i 6= 0.

Hence xxx and yyy are not perpendicular.
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(c) True.

Reason: If rank(AAA) = 0, then dim(col(AAA)) = 0. However, any vector space

with zero dimension could only be the space {000}.

Hence the column space of AAA is {0}, which means all columns of AAA are 000.

Hence all elements of AAA are 0. Thus AAA = 000.

(d) True.

Reason: For 8xxx 2 N(AAA) and 8yyy 2 C(AAAT), there exists vector uuu such that

yyy = AAATuuu.

Thus we derive

xxxTyyy = hxxx,yyyi = hxxx, AAATuuui = uuuTAAAxxx = uuuT000 = 0.

(e) True.

Reason: We do the eigendecomposition for AAA and BBB:

AAA = UUU1S1UUUT
1 BBB = UUU2S2UUUT

2

where UUU1,UUU2 are both orthogonal matrix.

Then we define UUU :=

2

64
UUU1 000

000 UUU2

3

75, we find that

UUUTUUU =

2

64
UUUT

1 UUU1 000

000 UUUT
2 UUU2

3

75 =

2

64
III 000

000 III

3

75 = III.

Hence UUU is a matrix with orthonormal columns. Moreover, UUU is a square

matrix. Hence it is a orthogonal matrix.

And we find that

2

64
AAA 000

000 BBB

3

75 could be decomposed as

2

64
AAA 000

000 BBB

3

75 =

2

64
UUU1 000

000 UUU2

3

75

2

64
S1

S2

3

75

2

64
UUUT

1 000

000 UUUT
2

3

75 = UUU

2

64
S1

S2

3

75UUUT
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Hence

2

64
AAA 000

000 BBB

3

75 is also diagonalizable.

4. (a) We set uuuk =

2

64
yk

zk

3

75. The rule

8
><

>:

yk+1 = 0.8yk + 0.3zk

zk+1 = 0.2yk + 0.7zk

can be written as uuuk+1 =

2

64
0.8 0.3

0.2 0.7

3

75uuuk. And uuu0 =

2

64
0

5

3

75 .

We set AAA =

2

64
0.8 0.3

0.2 0.7

3

75 and DDD =

2

64
0.5 0

0 1

3

75.

• In order to show AAA and DDD are similar, we construct our SSS such that

AAASSS = SSSDDD

We set SSS =

0

B@
a b

c d

1

CA, then AAASSS = SSSDDD can be written as:

2

64
0.8 0.3

0.2 0.7

3

75

0

B@
a b

c d

1

CA =

0

B@
a b

c d

1

CA

2

64
0.5 0

0 1

3

75

=)

2

64
0.8a + 0.3c 0.8b + 0.3d

0.2a + 0.7c 0.2b + 0.7d

3

75 =

2

64
0.5a b

0.5c d

3

75 .

The linear system of equation could be converted as

8
>>>>>>>>><

>>>>>>>>>:

0.8a + 0.3c = 0.5a

0.8b + 0.3d = b

0.2a + 0.7c = 0.5c

0.2b + 0.7d = d

=)

8
><

>:

a + c = 0

2b� 3d = 0
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If we set a = 1,b = 3, we get c = �1,d = 2.

Thus SSS =

2

64
1 3

�1 2

3

75 is one special solution.

Thus AAASSS =

2

64
0.5 3

�0.5 2

3

75 = SSSDDD =) AAA = SSSDDDSSS�1. Hence AAA is similar to

DDD.

• And then we can compute AAAk:

AAAk = (SSSDDDSSS�1)k

= SSSDDDkSSS�1

=

2

64
1 3

�1 2

3

75

2

64
0.5 0

0 1

3

75

k2

64
1 3

�1 2

3

75

�1

=

2

64
1 3

�1 2

3

75

2

64
0.5k 0

0 1

3

75
1
5

2

64
2 �3

1 1

3

75

=
1
5

2

64
2⇥ ( 1

2 )
k + 3 (�3)⇥ ( 1

2 )
k + 3

(�2)⇥ ( 1
2 )

k + 2 3⇥ ( 1
2 )

k + 2

3

75 .

• Hence by induction, uuuk = AAAkuuu0 = 1
5

2

64
2⇥ ( 1

2 )
k + 3 (�3)⇥ ( 1

2 )
k + 3

(�2)⇥ ( 1
2 )

k + 2 3⇥ ( 1
2 )

k + 2

3

75

2

64
0

5

3

75=

2

64
(�3)⇥ ( 1

2 )
k + 3

3⇥ ( 1
2 )

k + 2

3

75 .

The general formula for yk and zk is

8
><

>:

yk = (�3)⇥ (
1
2
)k + 3

zk = 3⇥ (
1
2
)k + 2

.

Thus

8
>><

>>:

lim
k!•

yk = 3

lim
k!•

zk = 2
.

(b) For real symmetric matrix DDD =

2

64
0.5 0

0 1

3

75, SVD decomposition is just eigen-

decomposition.
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Obviously, the eigenvalues for DDD is l1 = 0.5,l2 = 1.

• When l = 0.5, one eigenvector for DDD is xxx1 =


1 0

�
.

• When l = 1, one eigenvector for DDD is xxx2 =


0 1

�
.

Hence we construct QQQ =


xxx1 xxx2

�
=

2

64
1 0

0 1

3

75 .

DDD has the factorization

DDD = QQQ

0

B@
0.5

1

1

CAQQQT =

2

64
1 0

0 1

3

75

2

64
0.5

1

3

75

2

64
1 0

0 1

3

75 .

5. We do the eigendecomposition for AAA:

AAA = QQQDDDQQQT.

where QQQ is orthogonal matrix, DDD is diagonal matrix.

Then if we set yyy := QQQTxxx, we find that

R(xxx, AAA) =
xxxT AAAxxx
xxxTxxx

=
xxxTQQQDDDQQQTxxx

xxxTxxx
=

yyyTDDDyyy
yyyTyyy

= R(yyy, DDD)

Given any AAA, we can always convert it into diagonal matrix DDD. Hence without

loss of generality, we set AAA is a diagonal matrix such that

AAA = diag(l1,l2, . . . ,ln).

For diagonal matrix AAA, we derive

R(xxx, AAA) =
xxxT AAAxxx
xxxTxxx

=
Ân

i=1 lix2
i

Ân
i=1 x2

i
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(a)

n

Â
i=1

lix2
i �

n

Â
i=1

l1x2
i = l1

n

Â
i=1

x2
i =) R(xxx, AAA) =

Ân
i=1 lix2

i

Ân
i=1 x2

i
� l1, 8xxx 6= 0.

When xxx = (1,0,0, . . . ,0), we can get the equality.

(b) Firstly we compute the eigenvector xxx1 for AAA associated with l1:

(l1 III�AAA)xxx1 = 000 =)

0

BBBBBBB@

0

l2 � l1

. . .

ln � l1

1

CCCCCCCA

xxx1 = 000 =) xxx1 =

0

BBBBBBB@

a

0
...

0

1

CCCCCCCA

.

where a is a scalar.

Hence yyy ? xxx =) yyy = (0,y2, . . . ,yn). i.e. the first element of yyy is zero.

n

Â
i=1

liy2
i =

n

Â
i=2

liy2
i �

n

Â
i=2

l2y2
i = l2

n

Â
i=2

y2
i =) R(yyy, AAA) =

Ân
i=1 liy2

i

Ân
i=1 y2

i
� l2,

for 8yyy 2 xxx?1 � {000}.

When yyy = (0,1,0, . . . ,0), we get the equality.

(c) For 8vvv = (b1,b2, . . . ,bn), there exists (b1, b2) 6= 000 such that (b1, b2) ? (b1,b2).

Hence we construct yyy
⇤
= (b1, b2,0,0, . . . ,0). Then

yyyT
⇤

AAAyyy = l1b2
1 + l2b2

2  l2(b2
1 + b2

2) = l2yyyT
⇤
yyy
⇤
=) R(yyy

⇤
, AAA)  l2.

Moreover, yyyT
⇤
vvv = 0. Thus we derive

min
yyyTvvv=0

R(yyy, AAA)  R(yyy
⇤
, AAA)  l2.
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6. (a) Suppose xxx =


x1 x2 x3

�T
2R

3, then

xxxTZZZxxx = 5x2
1 + 5x2

2 + 7x2
3 + 2x1x2 + 8x1x3 + 6x2x3

= (x2
1 + x2

2 + 2x1x2)(4x2
1 + 4x2

3 + 8x1x3) + (3x2
2 + 3x2

3 + 6x2x3)

= (x1 + x2)
2 + 4(x1 + x3)

2 + 3(x2 + x3)
2 + x2

2

� 0.

Hence ZZZ ⌫ 0.

(b) Suppose xxx =


x1 x2 · · · xn

�T
2R

n, then

xxxTMMMxxx =
n

Â
i,j=1

Mijxixj =
n

Â
i=1

Miix2
i + Â

j 6=i
Mijxixj

= 2 Â
1i<jn

Mijxixj +
n

Â
i=1

Miix2
i

= Â
1i<jn

(2Mijxixj + |Mij|x2
i + |Mij|x2

j )� Â
1i<jn

(|Mij|x2
i + |Mij|x2

j ) +
n

Â
i=1

Miix2
i

= Â
1i<jn

(2Mijxixj + |Mij|x2
i + |Mij|x2

j ) +
n

Â
i=1

(Miix2
i �Â

j 6=i
|Mij|)x2

i

Notice that (Miix2
i �Âj 6=i |Mij|) � 0 since MMM is diagonal dominant.

And if we define sij =

8
><

>:

1,Mij � 0

0,Mij < 0
, then we obtain:

xxxTMMMxxx = Â
1i<jn

|Mij|(xi + sijxj)
2 +

n

Â
i=1

(Miix2
i �Â

j 6=i
|Mij|)x2

i � 0.

Hence MMM ⌫ 0.
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10.3.2. Final Exam Solution
1. (a) For 8 f , g 2 {polynomials of degree  4}, we obtain:

•

T( f + g) = (x� 2)
d

dx
( f + g) = (x� 2)

d
d f

+ (x� 2)
d

dg
= T( f ) + T(g)

•

T(c f ) = (x� 2)
d

dx
(c f ) = c(x� 2)

d
d f

= cT( f ).

where c is a scalar.

Since T satisfies the vector addition and scalar multiplication rule, it is a

linear transformation.

Moreover, we obtain:

T(1) = (x� 2)
d1
dx

= 0

T(x) = (x� 2)
dx
dx

= x� 2

T(x2) = (x� 2)
dx2

dx
= 2x(x� 2) = 2x2

� 4x

T(x3) = (x� 2)
dx3

dx
= 3x2(x� 2) = 3x3

� 6x2

T(x4) = (x� 2)
dx4

dx
= 4x3(x� 2) = 4x4

� 8x3.

Hence the matrix representation is given by:

2

66666666664

0 0 0 0 0

�2 1 0 0 0

0 �4 2 0 0

0 0 �6 3 0

0 0 0 �8 4

3

77777777775

(b) • For f = 1, T( f ) = (x� 2) d f
dx = 0 = 0 f .

Hence f = 1 is an eigenvector of T associated with eigenvalue l = 0.
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• For f = x� 2, T( f ) = (x� 2) d f
dx = x� 2 = f .

Hence f = x� 2 is an eigenvector of T associated with eigenvalue l = 1.

Moreover, we have a1⇥ (1) + a2⇥ (x� 2) = 0, where a1,a2 are scalars, then

we derive

x(a1 + a2)� 2a2 = 0. =) a1 = a2 = 0.

Hence (x� 2) and 1 are independent.

Hence two independent eigenvectors of T are 1 and (x� 2).

2. (a) Firstly, we set xxx =

2

66664

1

1

�2

3

77775
,yyy =

2

66664

�1

�1

4

3

77775
. Obviously, they are independent.

Hence {xxx,yyy} is the basis for column space of matrix

2

66664

1 �1

1 �1

�2 4

3

77775
.

Then we convert {xxx,yyy} into orthogonal basis {qqq1,qqq2}:

•

qqq1 = xxx

•

qqq2 = yyy� Projyyy(qqq1) = yyy�
hyyy, xxxi
hxxx, xxxi

xxx =

2

66664

2
3

2
3

2
3

3

77775
.

• The projection of zzz onto the vector qqq1 is

Projqqq1
(zzz) =

hxxx,zzzi
hxxx, xxxi

xxx =

2

66664

�
1
6

�
1
6

1
3

3

77775
.
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• The projection of zzz onto the vector qqq2 is

Projqqq2
(zzz) =

hqqq2,zzzi
hqqq2,qqq2i

qqq2 =

2

66664

2
3

2
3

2
3

3

77775
.

Hence the projection of zzz onto span{xxx,zzz} is given by:

Projspan{qqq1,qqq2}
(zzz) = Projqqq1

(zzz) + Projqqq2
(zzz) =

2

66664

�
1
6

�
1
6

1
3

3

77775
+

2

66664

2
3

2
3

2
3

3

77775
=

2

66664

1
2

1
2

1

3

77775

Hence the projection onto the column space of

2

66664

1 �1

1 �1

�2 4

3

77775
is

2

66664

1
2

1
2

1

3

77775
.

(b) We construct an isomorphism from R
2⇥2 to R

4⇥1:

2

64
a b

c d

3

75 7!


a b c d
�T

.

The matrix representation AAA for the mapping

2

64
a

b

3

75 7!


a + b a� b �2a + 4b 0
�T

is given by:

AAA =

2

66666664

1 1

1 �1

�2 4

0 0

3

77777775

.

We define K = {AAAxxx|xxx 2R
2⇥1}.
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Hence we only need to find the best approximation of bbb :=

2

66666664

1

2

7

1

3

77777775

in the space

K.

We define xxx :=

2

66666664

1

1

�2

0

3

77777775

,yyy :=

2

66666664

1

�1

4

0

3

77777775

. Then we convert {xxx,yyy} into orthogonal

vectors:

• We set qqq1 = xxx.

• We set qqq2 = yyy� Projqqq1
(yyy). Hence

qqq2 = yyy� Projqqq1
(yyy)

= yyy�
hqqq1,yyyi
hqqq1,qqq1i

qqq1

=


7
3

1
3

4
3 0

�T
.
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Hence the projection of bbb onto the space K is:

Projspan{xxx,yyy}(bbb) = Projspan{qqq1,qqq2}
(bbb)

= Projqqq1
(bbb) + Projqqq2

(bbb)

=
hqqq1,bbbi
hqqq1,qqq1i

qqq1 +
hqqq2,bbbi
hqqq2,qqq2i

qqq2

= �
6

11

2

66666664

1

1

�2

0

3

77777775

+
37
66

2

66666664

7

1

4

0

3

77777775

=
1
11

2

66666664

23

�14

65

0

3

77777775

.

Hence the best approximation for bbb =

2

66666664

1

2

7

1

3

77777775

is 1
11

2

66666664

23

�14

65

0

3

77777775

.

Correspondingly, the best approximation for BBB=

2

64
1 2

7 1

3

75 is 1
11

2

64
23 �14

65 0

3

75 .

3. (a) False.

Reason: For example, if AAA =

2

64
1 1

1 1

3

75, AAA�1 doesn’t exist.

(b) True.

Reason: For orthogonal matrix QQQ, we obtain QQQTQQQ = III. Thus

det(QQQTQQQ) = det(III) =) det(QQQT)det(QQQ) = det(III) =) [det(QQQ)]2 = 1

Hence det(QQQ) = ±1.

(c) True.
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Reason: For real symmetric AAA, �AAA is PSD. �AAA could be diagonalized by

orthogona matrix PPP:

PPPT(�AAA)PPP = DDD() PPPDDDPPPT = �AAA

where DDD = diag(l1, . . . ,ln), where li’s are eigenvalues for �AAA.

Since �AAA = �AAAT, we obtain

(�AAA)(�AAA)T = PPPDDDPPPTPPPDDDPPPT = PPPDDD2PPPT.

Or equivalently, DDD2 = PPPT(�AAA)(�AAA)TPPP. where the eigenvalues for (�AAA)(�AAA)T

are on the diagonal of DDD2.

This shows that if l is the eigenvalue for �AAA, then l2 is the eigenvalue for

(�AAA)(�AAA)T = AAAAAAT.

Since �AAA is PSD, all eigenvalues of �AAA are positive. Hence l =
p

l2.

If l is the eigenvalue for �AAA, then �l is the eigenvalue for AAA. Hence the

absolute value of eigenvalues for AAA are the same as the singular values for

AAA.

(d) False.

Reason: For example, AAA =

2

64
0 1

0 0

3

75, then PAAA(t) =

�������

t �1

0 t

�������
= t2.

(e) True.

Reason: rank(AAA) =the smallest number of rank 1 matrices with sum AAA.

Hence rank(AAA)  5.

4. (a)

|lIII � AAA| = 0 =)

�������

l 1

�4 l

�������
= 0 =) l2 + 4 = 0.

Hence the eigenvalues for AAA are l1 = 2i,l2 = �2i.

• When l = 2i, (lIII � AAA)xxx = 000 =) xxx = a

0

B@
1

�2i

1

CA , where a is a scalar.
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• When l = �2i, (lIII � AAA)xxx = 000 =) xxx = b

0

B@
1

2i

1

CA , where b is a scalar.

Hence a

0

B@
1

�2i

1

CA are eigenvectors of AAA associated with eigenvalue l = 2i;

b

0

B@
1

2i

1

CA are eigenvectors of AAA associated with eigenvalue l = �2i.

Moreover, uuu =

0

B@
1

2i

1

CA+

0

B@
1

�2i

1

CA .

(b) • Firstly, AAAT AAA =

2

64
16 0

0 1

3

75 . And we have

|lIII�AAATAAA|=

�������

l� 16 0

0 l� 1

�������
= (l� 16)(l� 1) = 0 =) l1 = 16,l2 = 1.

– When l = 16, (lIII� AAAT AAA)xxx = 000 =) xxx = a

0

B@
1

0

1

CA , where a is a scalar.

– When l = 1, (lIII � AAAT AAA)xxx = 000 =) xxx = b

0

B@
0

1

1

CA , where b is a scalar.

Hence xxx1 = a

0

B@
1

0

1

CA are eigenvectors of AAAT AAA associated with l1 = 16;

xxx2 = b

0

B@
0

1

1

CA are eigenvectors of AAAT AAA associated with l2 = 1.

Hence S = diag(
p

l1,
p

l2) = diag(4,1).

If we set a = 1, b = 1, then VVV =

2

64
1 0

0 1

3

75 .

• Secondly, Since we have known AAA = UUUSVVVT, we derive

UUU = AAAVVVS�1 =

2

64
0 �1

4 0

3

75

2

64
1 0

0 1

3

75

2

64
1
4 0

0 1

3

75 =

2

64
0 �1

1 0

3

75 .
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In conclusion, our SVD decomposition is given by:

AAA =

2

64
0 �1

1 0

3

75

2

64
4 0

0 1

3

75

2

64
1 0

0 1

3

75

T

5. (a) Suppose SSS�1AAASSS = DDD1, SSS�1BBBSSS = DDD2, where DDD1, DDD2 are diagonal matrices.

Then equivalently,

AAA = SSSDDD1SSS�1 BBB = SSSDDD2SSS�1

Hence the product AAABBB is given by:

AAABBB = (SSSDDD1SSS�1)(SSSDDD2SSS�1)

= SSSDDD1DDD2SSS�1

= SSSDDD2DDD1SSS�1

= SSSDDD2SSS�1)(SSSDDD1SSS�1)

= BBBAAA.

(b) We let vvv1, . . . ,vvvn be linearly independent eigenvectors of AAA associated with

n distinct eigenvalues l1, . . . ,ln.

Thus AAAvvvi = livvvi. By postmultiplying BBB we find that

BBBAAAvvvi = liBBBvvvi for i = 1,2, . . . ,n. (10.9)

Notice that {xxx1, . . . , xxxn} spans the whole R
n, thus any vector in R

n could be

expressed as the linear combination of {xxx1, . . . , xxxn}. Hence for BBBvvvi 2R
n, we

set

BBBvvvi = b1vvv1 + b2vvv2 + · · ·+ bnvvvn. (10.10)

By postmultiplying AAA for equation (10.10) we find that

AAABBBvvvi = b1AAAvvv1 + b2AAAvvv2 + · · ·+ bn AAAvvvn

= b1l1vvv1 + b2l2vvv2 + · · ·+ bnlnvvvn

(10.11)
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Also, by applying equation (10.10) into equation (10.9) we derive:

BBBAAAvvvi = li(b1vvv1 + b2vvv2 + · · ·+ bnvvvn)

= b1livvv1 + b2livvv2 + · · ·+ bnlivvvn

(10.12)

Since AAABBB = BBBAAA, we derive AAABBBvvvi = BBBAAAvvvi. Combining equation (10.11) and

(10.12) we obtain:

000 = AAABBBvvvi � BBBAAAvvvi = b1(l1 � li)vvv1 + b2(l2 � li)vvv2 + · · ·+ bn(ln � li)vvvn

Due to the independence of vvvi, we derive

b1(l1 � li) = b2(l2 � li) = · · · = bn(ln � li) = 0.

Since eigenvalues of AAA are distinct, we get lj� li 6= 0 for j 6= i. Hence b j = 0

for j 6= i.

Considering equation (10.10), we derive BBBvvvi = bivvvi, which means vvvi is also

the eigenvector of BBB.

Hence AAA and BBB has the same eigenvectors vvv1, . . . ,vvvn. Since AAA can be diago-

nalized by matrix SSS =


vvv1 vvv2 . . . vvvn

�
, BBB could be also diagonalized by

matrix SSS.

(c) We need to show that there exists SSS that can diagonalize AAA and BBB:

Suppose l1,l2, . . . ,lh be the distinct eigenvalues of AAA with multiplicities

r1,r2, . . . ,rh respectively. Since AAA is diagonalizable, there exists QQQ satisfying

QQQ�1AAAQQQ := DDD = diag(l1 IIIr1 ,l2 IIIr2 , . . . ,lh IIIrh) =

0

BBBBBBB@

l1 IIIr1

l2 IIIr2

. . .

lh IIIrh

1

CCCCCCCA

.

Also, we can obtain the product QQQ�1BBBQQQ and partition it into block matrix
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(We partition it in the same way that DDD has been partitioned):

QQQ�1BBBQQQ := CCC =

2

66666664

CCC11 CCC12 · · · CCC1h

CCC21 CCC22 · · · CCC2h
...

...
. . .

...

CCCh1 CCCh2 · · · CCChh

3

77777775

where CCCij is ri ⇥ rj matrix.

• Firstly, we show CCC is block diagonal:

Note that AAABBB = BBBAAA, thus we have

DDDCCC = (QQQ�1AAAQQQ)(QQQ�1BBBQQQ)

= QQQ�1AAABBBQQQ = QQQ�1BBBAAAQQQ

= (QQQ�1BBBQQQ)(QQQ�1AAAQQQ)

= CCCDDD.

Notice that the (i, j)th submatrix of DDDCCC is equal to the (i, j)th submatrix

of CCCDDD, which yields li IIIri CCCij = CCCijlj IIIrj =) liCCCij = ljCCCij.

Since li 6= lj for i 6= j, we derive CCCij = 000 for i 6= j; thus

CCC = diag(CCC11,CCC22, . . . ,CCChh) =

0

BBBBBBB@

CCC11

CCC22

. . .

CCChh

1

CCCCCCCA

.

is block diagonal.

• Then we show CCC is diagonalizable:

Since BBB is diagonalizable, there exists MMM satisfying

MMM�1BBBMMM = NNN =) BBB = MMMNNNMMM�1
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where NNN is diagonal. And since QQQ�1BBBQQQ = CCC, we derive

QQQ�1MMMNNNMMM�1QQQ = CCC =) (QQQ�1MMM)�1CCC(QQQ�1MMM) = NNN

If we define TTT := QQQ�1MMM, then TTT�1CCCTTT = NNN. So CCC is also diagonalizable.

• Then we show each CCCii is diagonalizable:

Moreover, if we partition TTT as:

TTT =

2

66666664

TTT11 TTT12 · · · TTT1h

TTT21 TTT22 · · · TTT2h
...

...
. . .

...

TTTh1 TTTh2 · · · TTThh

3

77777775

,

where TTTij is ri ⇥ rj matrix, then we find the product CCCTTT is always block

diagonal matrix.

Similarly, the product TTT�1
⇥ (CCCTTT) is also block diagonal matrix.

Hence without loss of generailty, we can say there must exist block

diagonal matrix TTT⇤ = diag(TTT11, TTT22, . . . , TTThh) such that

TTT�1
⇤ CCCTTT⇤ =

0

BBBBBBB@

TTT�1
11

TTT�1
22

. . .

TTT�1
hh

1

CCCCCCCA

0

BBBBBBB@

CCC11

CCC22

. . .

CCCnn

1

CCCCCCCA

0

BBBBBBB@

TTT11

TTT22

. . .

TTThh

1

CCCCCCCA

=

0

BBBBBBB@

TTT�1
11 CCC11TTT11

TTT�1
22 CCC22TTT22

. . .

T�1
hh CCChhTTThh

1

CCCCCCCA

= NNN.

(10.13)

Hence each CCCii is also diagonalizable.

• Finally, we set PPP = QQQTTT⇤, we show that both PPP�1AAAPPP and PPP�1BBBPPP are
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diagonal:

PPP�1 AAAPPP = TTT�1
⇤ QQQ�1AAAQQQTTT⇤ = TTT�1

⇤ DDDTTT⇤

= diag(TTT�1
11 , TTT�1

22 , . . . , TTT�1
hh )diag(l1 IIIr1 ,l2 IIIr2 , . . . ,lh IIIrh)diag(TTT11, TTT22, . . . , TTThh)

= diag(l1TTT�1
11 TTT11,l2TTT�1

22 TTT22, . . . ,lhT�1
hh Thh)

= diag(l1 IIIr1 ,l2 IIIr2 , . . . ,lh IIIrh) = DDD

and

PPP�1BBBPPP = TTT�1
⇤ QQQ�1BBBQQQTTT⇤ = TTT�1

⇤ CCCTTT⇤

= NNN (You may check equation (10.13) to see why.)

Hence both PPP�1AAAPPP and PPP�1BBBPPP are diagonal. The proof is complete.

6. (a) Firstly, we extend the Hadamard Product into vectors:

For uuu,vvv 2R
n⇥1, we obtain:


uuu � vvv

�
=


u1v1 u2v2 . . . unvn

�T
.

Secondly, it’s easy for you to verify the two properties:

Proposition 10.1 For matrices AAA, BBB,CCC 2R
n⇥n, we have

(AAA + BBB) � CCC = AAA � CCC + BBB � CCC

Proposition 10.2 For vectors uuu1,vvv1,uuu2,vvv2 2R
n⇥1, we have

(uuu1vvvT
1 ) � (uuu2vvvT

2 ) = (uuu1 � uuu2)⇥ (vvv1 � vvv2)
T.

So we begin to show rank(AAA � BBB)  rank(AAA) rank(BBB) :

We let r1 = rank(AAA),r2 = rank(BBB). Due to the theorem (8.4), we can decom-
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pose AAA and BBB as:

AAA = s1uuu1vvvT
1 + s2uuu2vvvT

2 + · · ·+ sr1 uuur1 vvvT
r1

BBB = h1www1xxxT
1 + h2www2xxxT

2 + · · ·+ hr2 wwwr2 xxxT
r2

where uuui,vvvi,wwwi, xxxi’s are all R
n⇥1 vectors.

Hence the Hadamard product AAA � BBB is given by:

AAA � BBB =

 
r1

Â
i=1

siuuuivvvT
i

!
�

 
r2

Â
j=1

hjwwwjxxxT
j

!

=
r1

Â
i=1

r2

Â
j=1

sihj(uuuivvvT
i � wwwjxxxT

j ) Due to the proposition (10.1)

=
r1

Â
i=1

r2

Â
j=1

sihj(uuui � wwwj)(vvvi � xxxj)
T Due to the proposition (10.2)

Notice that (uuui � wwwj) and (vvvi � xxxj) are all R
n⇥1 vectors, so (uuui � wwwj)(vvvi � xxxj)

are rank 1 matrix.

Hence we express AAA � BBB as the sum of r1r2 matrices with rank 1.

Thus rank(AAA � BBB)  r1r2 = rank(AAA) rank(BBB).

(b) Since AAA ⌫, we decompose AAA as:

AAA = UUUTUUU where UUU is square.

If we set UUU :=

2

66666664

uuuT
1

uuuT
2
...

uuuT
n

3

77777775

, we can write AAA as:

AAA = UUUTUUU =


uuu1 uuu2 · · · uuun

�

2

66666664

uuuT
1

uuuT
2
...

uuuT
n

3

77777775

= uuu1uuuT
1 + uuu2uuuT

2 + · · ·+ uuunuuuT
n
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Similarly, we can write BBB as:

BBB = vvv1vvvT
1 + vvv2vvvT

2 + · · ·+ vvvnvvvT
n .

Hence AAA � BBB can be written as

AAA � BBB =

 
n

Â
i=1

uuuiuuuT
i

!
�

 
n

Â
j=1

vvvjvvvT
j

!

=
n

Â
i=1

n

Â
j=1

(uuuiuuuT
i � vvvjvvvT

j )

=
n

Â
i=1

n

Â
j=1

(uuui � vvvj)(uuui � vvvj)
T

If we set wwwij = uuui � vvvj, then we obtain:

AAA � BBB =
n

Â
i=1

n

Â
j=1

wwwijwwwT
ij

Hence for 8xxx 2R
n, we derive

xxxT(AAA � BBB)xxx =
n

Â
i=1

n

Â
j=1

xxxTwwwijwwwT
ijxxx

=
n

Â
i=1

n

Â
j=1
hxxxwwwij, xxxwwwiji

=
n

Â
i=1

n

Â
j=1
kxxxwwwijk

2
� 0.

By definition, AAA � BBB ⌫ 0.
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