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1 — Week1

1.1 Example of mathematical modelling
Exercise 1.1 Put S0 dollars into a bank. Assume annual interest rate is r, which is continu-
ously compounded.
Derive a function that describles the growth of the deposit. ⌅

Solution. 1. Denote S = S(t) as the deposit at time t.
2. Principle: The rate of chance in the deposit at any time is equal to the rate at which interest

is calculated:

dS
dt

= rS 1st order linear ODE.

3. Initial condition: S(t = 0) = S0.
4. Thus we solve the initial value problem:

8
<

:

dS
dt

= rS

S(t = 0) = S0

=) S(t) = S0ert .

We may plot the graph of the solution:

Figure 1.1: Plotting of the solution

⌅
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1.1.1 1st order ODE
• Gereral 1st order ODE:

du
dt

= f (t,u). where u = u(t) is unknown.

• Linear 1st order ODE:

du
dt

= a(t)u(t)+g(t) (1.1)

where a(t),g(t) are given continuous function.
• How to solve (1.1)?

– Case 1: Homogeneous ODE, when g(t)⌘ 0.

⌅ Solution 1.1

du
dt

= a(t)u. (1.2)

Assume u 6= 0, then we derive

du
u

= a(t)dt.

By integrating both sides we find that

LHS =
Z du

u
= ln |u|

RHS =
Z

a(t)dt +C for arbitrary constant C.

Thus ln |u|=
R

a(t)dt +C.

=) u(t) =C exp
✓Z

a(t)dt
◆

for arbitrary constant C.

⌅

Example:
For the ODE

du
dt

= 2tu, the solution is given by:

u(t) =C exp
✓Z

2t dt
◆
=Cet2

for 8 constant C.

– Case 2:Nonhomogeneous ODE, when g(t) 6= 0.

⌅ Solution 1.2 Variation of constant formula:
Conjecture the solution to be

u(t) =C(t)exp
✓Z

a(t)dt
◆

with C(t) ti be determined.
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Then we put this expression into Eq.(1.1) to derive:

LHS =C0(t)exp
✓Z

a(t)dt
◆
+C(t)a(t)exp

✓Z
a(t)dt

◆

RHS = g(t)+C(t)a(t)exp
✓Z

a(t)dt
◆

which implies

C0(t)exp
✓Z

a(t)dt
◆
= g(t) =) C0(t) = g(t)exp

✓
�
Z

a(t)dt
◆

Hence we derive the formula for C(t):

C(t) =
Z

g(t)exp
✓
�
Z

a(t)dt
◆

dt +C for 8 constant C.

In summary,

u(t) = exp
✓Z

a(t)dt
◆Z 

g(t)exp
✓
�
Z

a(t)dt
◆�

dt (1.3)

+C exp
✓Z

a(t)dt
◆
. (1.4)

where (1.3) is the particular solution and (1.4) is the solution to homogeneous
ODE. (special solution) ⌅

And we have another method to solve this ODE:

⌅ Solution 1.3 Integrating factor method:
The key idea is to choose some function s(t) s.t.

g(t)s(t) =
d[us]

dt
. (1.5)

Then we convert Eq.(1.1) into:

g(t) =
du
dt

�a(t)u

And by multiplying factor s(t) both sides we derive:

g(t)s = s
du
dt

�a(t)us

=
d[us]

dt
= s

du
dt

+u
ds
dt
.

Equivalently,

u
ds
dt

=�a(t)us =) ds
dt

=�a(t)s =) s(t) =C exp
✓
�
Z

a(t)dt
◆
.
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If we choose integrating factor to be

s(t) = exp
✓
�
Z

a(t)dt
◆
,

then we integrate Eq.(1.5) both sides:
Z d[us]

dt
dt =

Z
g(t)s(t)dt. =) us =

Z
g(t)s(t)dt +C.

Hence the final formula is

u = s�1
Z

g(t)s(t)dt +C
�

= exp
✓Z

a(t)dt
◆Z

g(t)exp
✓
�
Z

a(t)dt
◆
+C

�

⌅

Example:
We tend to solve the IVP: (initial value problem)

(
u0+2u = e�t

u(0) = 1

Solution. ⇤ Homogeneous:

u0+2u = 0 =) u(t) =Ce�2t .

⇤ Non-homogeneous:

u(t) = e�2t
✓Z

e�t exp(�2t)+C
◆

= e�2t �et +C
�

Notice that u(t = 0) = 1, thus we derive:

e0(C+ e0) = 1 =) C = 0.

In conclusion,

u(t) =Ce�2t + e�t .

⌅
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2.1 Separable equations
Here we give a definition for a special class of first order equations that can be solved by direct
integration:

Definition 2.1 — Separable. First order ODEs that have the form as:

M(x)+N(y)
dy
dx

= 0

or

M(x)dx+N(y)dy = 0

are said to be separable. ⌅

Then we show the process to solve separable ODEs:

⌅ Solution 2.1 For the ODE

M(x)+N(y)
dy
dx

= 0 (2.1)

We define H1 and H2 to be any antiderivatives of M and N. i.e.

dH1

dx
= M(x)

dH2

dy
= N(y)

Thus the Eq.(2.1) becomes

H 0
1(x)+H 0

2(y)
dy
dx

= 0. (2.2)
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We regard y as a function of x and apply the chain rule:

H 0
2(y)

dy
dx

=


d
dy

H2(y)
�

dy
dx

=
d
dx

H2(y).

Consequently, we write Eq.(2.2) as:

d
dx

[H1(x)+H2(y)] = 0. (2.3)

By integrating the Eq.(2.3) we derive:

H1(x)+H2(y) = c for 8c 2 R.

Or equivalently, the general solution for Eq.(2.1) is given by:
Z

M(x)dx+
Z

N(y)dy = c for 8c 2 R.

⌅

Example 1:
Solve the IVT:

8
><

>:

dy
dx

=
3x2 +4x+2

2(y�1)
y(0) =�1

Solution. We write this ODE as:

2(y�1)dy = (3x2 +4x+2)dx

Then we do the integration both sides:

y2 �2y = x3 +2x2 +2x+ c for 8c 2 R.

The condition y(0) =�1 gives c = 3. Hence we obtain the solution:

y2 �2y = x3 +2x2 +2x+3.

⌅

R
1. Sometimes the equation of the form

dy
dx

= f (x,y) (2.4)

has a constant solution y = y0. Such a solution is easy to find. For example, the
equation

dy
dx

=
(y�3)cosx

1+2y2

has the constant solution y = 3. Other solutions could be found by separating the
variables and do integration.

2. Sometimes it’s better to leave teh solution in implicit form. If it’s convenient to do
so, we usually find the solution explicitly.
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Definition 2.2 — Bernoulli Equation. An ODE of the form:

y0+q(t)y =
g(t)
ya

is called the Bernoulli equation, where a is arbitrary real number except for a = 0 and
a =�1. ⌅

⌅ Solution 2.2 In order to solve the Bernoulli equation:

y0+q(t)y =
g(t)
ya

, (2.5)

We use the substitution v = ya+1 to derive that:

dv
dt

= (a +1)ya

dy
dt

=) dy
dt

=
1

(a +1)ya

dv
dt

We put this expression into Eq.(2.5) to obtain:

1
(a +1)ya

dv
dt

+q(t)y =
g(t)
ya

Or equivalently,

dv
dt

+(a +1)q(t)v = g(t).

Thus we only need to solve this linear first order ODE. ⌅

Example 2:
Solve the ODE

y0 = ry� ky2

where r > 0 and k > 0.

Solution. We use the substitution v = y�1 to derive that:

dv
dt

=� 1
y2

dy
dt

=) dy
dt

=�y2 dv
dt

We put this expression into the original equation:

�y2 dv
dt

= ry� ky2

Or equivalently,

dv
dt

+ rv = k.

Then we multiply both sides by integrating factor u(t) = ert to derive:

d
dt
[vert ] = kert
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Hence

vert =
Z

kert dt =) v =
k
r
+ ce�rt

Thus the solution to the ODE is:

y =
r

k+ ce�rt for 8c 2 R.

⌅

Definition 2.3 — Homogeneous Equations. The ODE that has the form:

dy
dx

= f
⇣y

x

⌘
(2.6)

is said to be the homogeneous equation. ⌅

Such equations can always be transformed into separable equations by a change of the dependent
variable:

⌅ Solution 2.3 In order to solve Eq.(2.6), We introduce a new unknown:

v(x) =
y(x)

x
=) dy

dx
= v+ x

dv
dx

Then we put this expression into Eq.(2.6) to obtain:

dv
f (v)� v

=
dx
x

Then we do integration both sides to derive:
Z dv

f (v)� v
=
Z dx

x

Thus the solution is given by:

u
⇣y

x

⌘
� ln |x|= c

where u(s) =
R ds

f (s)�s and c is a constant. ⌅

Example 3:
Solve the ODE:

dy
dx

=
2x2 + xy+ y2

x2

Solution. We transform this ODE into homogeneous:

dy
dx

=
⇣y

x

⌘2
+
⇣y

x

⌘
+2

Thus we introduce v = y
x to derive:

dy
dx

= x
dv
dx

+ v
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We put this expression into the origin ODE to derive:

x
dv
dx

+ v = v2 + v+2

Or equivalently,

dv
v2 +2

=
dx
x

=)
Z dv

v2 +2
=
Z dx

x

The solution to the ODE is

1p
2

Z d vp
2

( vp
2
)2 +1

=
Z dx

x
=) 1p

2
arctan(

vp
2
)� ln |x|= c for c 2 R.

⌅
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2.2 Difference between linear and nonlinear ODEs
We are familiar with the first order linear ODE. Now let’s state a theorem that guarantee the
existence and uniqueness of its solution.

Theorem 2.1 — Theorem of uniqueness and existence for first order linear ODE. Given IVP
(

y0+ p(t)y = g(t)
y(t0) = y0

(2.7)

If p,q are c.n.t on an open interval I = (a,b ) and t0 2 I, then there exists unique y = y(t) that
solves Eq.(2.7).

The general first order ODEs have the form:
8
<

:

dy
dt

= f (t,y)

y(t = t0) = y0

(2.8)

And there is a theorem that states the condition when the equation(2.8) has the unique solu-
tion:

Theorem 2.2 — Theorem of uniqueness and existence for general first order ODE.
For the rectangle

RRR = {(t,y) : |t � t0| a, |y� y0| b},

We assume that
1. f is continuous on RRR.
2. ∂ f

∂y is continuous on RRR.
Then there 90 < h  a s.t. Eq.(2.8) has a unique solution y = y(t) for t 2 (t0 �h, t0 +h).

We can apply this theorem to solve some ODEs:
Example 5:

Solve the ODE:

(
y0 = (siny)8

y(0) = 0
.

Solution. We observe that y(t)⌘ 0 is one particular solution.
Since

• f (t,y) = (siny)8 is continuous on R;
• ∂ f (t,y)

∂y = 8(siny)7 cosy is continuous on R,
We derive that y(t)⌘ 0 is the unique solution. ⌅

Sometimes we can determine whether an ODE could be uniquely solved:
Example 6:
Figure out whether the ODE below has an unqiue solution:

8
><

>:

dy
dt

=
3t2 +4t +2

2(y�1)
y(0) =�1

Solution. • f (t,y) = 3t2+4t+2
2(y�1) is c.n.t except for y = 1.
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• ∂ f
∂y =� 3t2+4t+2

2(y�1)2 is c.n.t. except for y = 1.
Then an rectangle RRR containing the point (0,�1) could be drawn s.t.

f and
∂ f
∂y

are c.n.t on RRR.

Therefore, near point (0,�1), the ODE could be uniquely solved. ⌅

Example 7:
Figure out whether the ODE below has an unqiue solution:

8
><

>:

dy
dt

=
3t2 +4t +2

2(y�1)
y(0) =�1

Solution. No rectangle can be drawn around point (0,1). Hence this ODE doesn’t have an
unique solution.
However, it is separable! Thus we obtain:

Z
2(y�1)dy =

Z
(3t2 +4t +2)dt. =) y2 �2y = t3 +2t2 +2t +C

Setting y(0) =�1 we obtain:

C =�3.

Hence we derive:

y2 �2y+1 = t3 +2t2 +2t +4 =) y = 1±
p

t3 +2t2 +2t +4.

Since y(0) =�1, we omit the mius condition:

y = 1�
p

t3 +2t2 +2t +4.

⌅

R
1. Uniqueness implies the trajectories of any solution to the ODE never self-intersets

with each other.
2. For linear ODE, there is general solutions.

For nonlinear ODE, there may not have general solutions.
3. For linear ODE, there exists explicit solutions.

For nonlinear ODE, there may not exist explicit solutions.

Example 8:
Finite time blow-up: solve the ODE:

(
y0 = y2

y(0) = 1

Solution. The solution is given by:

y(t) =
1

1� t

However, we observe that y(t)! • as t ! 1. Hence the theorem (2.2) doesn’t guarantee the
global existence of the solution. ⌅
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What happened? The theorem(2.2) just states the 1st order ODE has a unique solution on
specific intervals when satisfying its conditions. But this theorem doesn’t state there will exists a
global solution! The theorem only says there will exists a local solution on the interval |t| h.
How to proof the theorem(2.2)?

Proof for existence part. W.L.O.G, suppose (t0,y0) = (0,0).
Then we rewrite the ODE(2.8) to be the integration form:

y(t) =
Z

dy =
Z t

t0=0
f (s,y(s))ds+ y0

We define f0(t)⌘ 0 for |t| h. (t is to be determined later) And we obtain:

f1(t) =
Z t

t0=0
f (s,f0(s))ds+ y0

. . .

fn(t) =
Z t

t0=0
f (s,fn�1(s))ds+ y0

If we finally find that there exists a integer k s.t. fk(t) = fk+1(t), then fk(t) is one solution to
ODE. But in order to achiveve this, we need two conditions to be satisfied:

1. All fn(t) to be well-defined.
2. {fn(t)} is uniformly convergent.

Next we show that this two conditions could be satisfied:
• We will show that we can choose h s.t. all fn(t) to be well-defined. i.e.

(s,fn(s)) 2 RRR for |s| h , |fn(s)| b for |s| h.

Since f is continuous, it must be bounded in RRR. Hence there 9M s.t.

f (t,y) M for 8(t,y) 2 RRR.

Hence the integration fn(s) satisfy the inequality:

|fn(t)|=
����
Z t

t0
f (s,fn�1(s))ds

����+ y0  tM

If we choose |t| b
M , then we derive:

|fn(t)|
b
M

⇥M = b.

In other words, all fn(t) is well-defined for h = min{ b
M ,a}.

• Then we’d like to show that {fn(t)} is uniformly convergent. Let’s review the definition
again:

Definition 2.4 — Uniformly convergent. For 8|t| h and 8e > 0, there 9N(e) s.t.

|fn(t)�f(t)|< e

for 8n > N. ⌅

For series, there is a very convenient test for uniform convergence, due to Weier-
strass.
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Theorem 2.3 The sequence of function fn(t) defined on a set EEE satisfies:

|fn(t)| Mn (x 2 EEE,n = 1,2,3, . . .)

Then Âfn(t) converges uniformly on EEE if ÂMn converges.

We could use theorem(2.3) to show {fn(t)} is uniformly convergent:
– Firstly, since ∂ f

∂y is continuous on RRR, for 8(t,y1),(t,y2) 2 RRR, there exists y3 between
y1 and y2 s.t.

f (t,y1)� f (t,y2) =


∂

∂y
f (t,y3)

�
(y1 � y2)

Obviously, ∂ f
∂y is bounded on RRR, there exists K s.t.

����
∂ f
∂y

(t,y)
���� K for 8t,y 2 RRR

Hence we derive:

| f (t,y1)� f (t,y2)|=
����

∂

∂y
f (t,y3)

���� |y1 � y2| K|y1 � y2|

for 8(t,y1) and (t,y2) 2 RRR.
– Secondly, we set y1 = fn(t) and y2 = fn�1(t) to obtain:

| f [t,fn(t)]� f [t,fn�1(t)]| K|fn(t)�fn�1(t)|

– Then we use induction to show that

|fn(t)�fn�1(t)|
MKn�1|t|n

n!

1. For n = 1, we observe that

|f1(t)| tM

2. Hence for n = p, we assume that

|fp(t)�fp�1(t)|
MK p�1|t|p

p!

3. Then for n = p+1, we derive:

|fp+1(t)�fp(t)|= |
Z t

t0
{ f [s,fp(s)]� f [s,fp�1(s)]} ds|


Z t

t0
| f [s,fp(s)]� f [s,fp�1(s)]| ds

 K
Z t

t0
|fp(s)�fp�1(s)| ds

 K
Z t

t0

✓
MK p�1|s|p

p!

◆
ds

 MK p|t|p+1

(p+1)!
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– We could write fn(t) into the form:

fn(t) = f1(t)+ [f2(t)�f1(t)]+ · · ·+[fn(t)�fn�1(t)] =
n

Â
i=1

Dfi(t)

where Dfi(t) = fi(t)�fi�1(t) for i = 1,2, . . . ,n.
– And we notice that

|Dfi(t)|
MKn�1|t|n

n!
And we obtain:

•

Â
n=1

MKn�1|t|n

n!


•

Â
n=1

MKn�1hn

n!

 M
k

•

Â
n=1

(Kh)n

n!

=
M
k
(eKh �1)

Hence Â MKn�1|t|n
n! converges. By theorem(2.3) we derive that ÂDfi(t) = fn(t) is

uniformly convergent.
• Then we show one solution to Eq.(2.8):

We define f(t) = lim
n!•

fn(t) since fn(t) is uniformly convergent. Then we derive:

f(t) = lim
n!•

fn(t) = lim
n!•

Z t

0
f [s,fn�1(s)]ds

=
Z t

0
lim
n!•

f [s,fn�1(s)]ds

=
Z t

0
f [s,f(s)]ds.

Hence f(t) is the solution to Eq.(2.8).
⌅

Proof for the uniqueness part. Suppose there are two functions f and y satisfying the Eq.(2.8).
Then we obtain:

|f(t)�y(t)|=
����
Z t

0
f [s,f(s)]ds�

Z t

0
f [s,y(s)]ds

����=
����
Z t

0
{ f [s,f(s)]� f [s,y(s)]}ds

����


����
Z t

0
| f [s,f(s)]� f [s,y(s)]|ds

����


����
Z t

0
K|f(s)�y(s)|ds

����

=

8
>><

>>:

K
Z t

0
|f(s)�y(s)|ds, 0  t  a,

�K
Z t

0
|f(s)�y(s)|ds, �a  t  0

Then we set R(t) =
R t

0 |f(s)�y(s)|ds, then we observe that
8
><

>:

R(0) = 0
R(t)� 0 for t � 0.
R0(t) KR(t) for |t| a.

(2.9)
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And we can solve the formula(2.9) to derive:

e�KtR(t) 0 =) R(t) 0 for |t| a.

Since R(t)� 0 for t � 0, we derive R(t) = 0 for 0  t  a.
Similarly, we obtain R(t) = 0 for �a  t  0.
Hence R(t) = 0 =) f(t) = y(t) for |t| a. Thus the uniqueness of the solution is constructed.

⌅
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Any 1st order ODE could be written as:

M(x,y)dx+N(x,y)dy = 0

And most first order equations cannot be solved by elementary integration methods, but some
ODE such as exact equations could. Let’s give the definition for exact equations:

Definition 3.1 — Exact Equations. Let the ODE

M(x,y)+N(x,y)y0 = 0 (3.1)

be given. Suppose that we can identify a function y(x,y) s.t.

∂y

∂x
(x,y) = M(x,y),

∂y

∂y
(x,y) = N(x,y)

and such that y(x,y) = c defines y = f(x) implicitly as a differentiable function of x.
Then the Eq.(3.1) is called to be an exact differential equation. ⌅

The solution to Eq.(3.1) is y(x,y) = c, where c is a constant. Let’s show how we derive this
conclusion:

⌅ Solution 3.1 In order to solve the Eq.(3.1), suppose we can pick a function y(x,y) s.t.

∂y

∂x
(x,y) = M(x,y),

∂y

∂y
(x,y) = N(x,y)

and such that y(x,y) = c defines y = f(x) implicitly as a differentiable function of x. Then
we find

M(x,y)+N(x,y)y0 =
∂y

∂x
+

∂y

∂y
dy
dx

=
d
dx

y(x,y = f(x)).
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Hence we derive:

d
dx

y(x,y = f(x)) = 0. =) y(x,y = f(x)) = c for 8c 2 R.

⌅

We have learnt different methods to solve different ODEs so far, and many of them belong to
exact ODEs:

⌅ Example 3.1 • Linear homogeneous ODEs could be transformed to be exact:
For the linear homogeneous ODE

dy
dx

+ f (x)y = 0 =) 1
y

dy
dx

+ f (x) = 0,

we set M(x,y) = f (x) and N(x,y) = 1
y . Assume there exists y(x,y) s.t.

∂

∂x
y(x,y) = f (x)

∂

∂y
y(x,y) =

1
y

Hence our y(x,y) is given by:

y(x,y) =
Z

f (x)dx+ ln |y|

Thus our solution is given by:
Z

f (x)dx+ ln |y|= c =) y = cexp
✓
�
Z

f (x)dx
◆

for c 2 R.

• Separable ODEs are exact:
For the separable ODE

M(x)+N(y)
dy
dx

= 0,

We can pick our y(x,y):

y(x,y) =
Z

M(x)dx+
Z

N(y)dy

Thus our solution is given by:
Z

M(x)dx+
Z

N(y)dy = c for c 2 R.

⌅
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3.1 Necessary and Sufficient Conditions
The general form of 1st ODE is

M(x,y)dx+N(x,y)dy = 0. (3.2)

We can use a theorem to test whether Eq.(3.2) is exact:

Theorem 3.1 Let M,N,∂yM,∂xN be continuous in a rectangle RRR = {a < x < b ,s < y < d}.
Then Eq.(3.2) is exact iff. ∂yM = ∂xN in RRR.

Proof. Sufficiency.
If Eq.(3.2) is exact, then there 9y(x,y) such that

∂xy(x,y) = M; ∂yy(x,y) = N

Then we find that

∂yM = ∂y∂xy ∂xN = ∂x∂yy.

Hence ∂y∂xy = ∂x∂yy for any second order continuously differentiable function y .
Thus ∂yM = ∂xN.
Necessity.
We set

y(x,y) =
Z

M(x,y)dx+h(y)

Hence we obtain:

∂xy = M(x,y)

∂yy = ∂y

Z
M(x,y)dx+h0(y)

We’d like to let

∂xy = M ∂yy = N

Thus

N(x,y) = ∂y

Z
M(x,y)dx+h0(y) =) h0(y) =�∂y

Z
M(x,y)dx+N(x,y)

Thus

h(y) =
Z 

N(x,y)�∂y

Z
M(x,y)dx

�
dy.

We need to check whether the RHS obtain the formula only in terms of y:

∂xh = ∂x

Z 
N(x,y)�∂y

Z
M(x,y)dx

�
dy

=
Z 

∂xN(x,y)�∂x

Z
∂yM(x,y)dx

�
dy

=
Z
[∂xN(x,y)�∂yN(x,y)]dy

= 0.

Then Eq.(3.2) is exact. ⌅
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R If an ODE is exact, we know how to find f(x,y).

Example 1:

2xdx+(y+ x)dy = 0

Thus M(x,y) = 2x,N(x,y) = y+ x =) ∂yM = 0 6= ∂xN = 1.
Thus it is not exact.

Example 2:

(ycosx+2xex)dx+(sinx+ x2ey �1)dy = 0.

Solution.

• Firstly, check exact or not!
• Set f(x,y) =

R
M(x,y)dx+h(y)

• General solution is given by:

f(x,y)⌘C.

⌅

Example 3:

2ydx+ xdy = 0.

Solution. ∂yM = 2 6= ∂xN = 1. Hence it is not exact!
Multiply both sides by 1

xy :

2
x

dx+
1
y

dy = 0.

Thus ∂yM̂ = 0 = ∂xN̂ = 0. Hence it is exact. ⌅

In general, suppose Eq.(3.2) is not exact. But is it possible to find an integrating factor µ(x,y)
s.t.

µ(x,y)M(x,y)dx+µ(x,y)N(x,y)dy = 0 is exact? (3.3)

⌅ Solution 3.2 If Eq.(3.3) is exact, then

∂y[µM] = ∂x[µN]. =) M∂y(µ)+µ∂y(M) = N∂x(µ)+µ∂x(N)

Thus we derive:

µ(∂yM�∂xN)+M∂yµ �N∂xµ = 0.

µ is the solution to the 1st order PDE!
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• Case 1: ∂yM�∂xN
N depends only on x:

We set µ = µ(x), then ∂yµ = 0. Hence µ(x) is the solution to

µ(∂yM�∂xN)�Nu0 = 0.

• Case 2: ∂yM�∂xN
M depends only on y:

We set µ = µ(y), then ∂xµ = 0. Hence µ(y) is the solution to

µ(∂yM�∂xN)+Mu0 = 0.

⌅

Example:
Solve the ODE:

(3xy+ y2)dx+(x2 + xy)dy = 0

Solution. • We observe that:

∂yM = 3x+2y
∂xN = 2x+ y

Since ∂yM 6= ∂xN, it is not exact.
• Find an integrating factor:

∂yM�∂xN
N

=
x+ y

x2 + xy
=

1
x

Hence this term depends only on x.
Set µ = µ(x) to find µ(x)

• Multiply both sides by µ:

µ(3xy+ y2)dx+µ(x2 + xy)dy = 0

is exact!
Thus the final solution is given by:

x3y+
1
2

x2y2 =C

⌅
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4.1 Autonomous 1st order ODE
We study a kind of 1st order ODE that it doesn’t show us the independent variable explic-
itly:

Definition 4.1 — Autonomous 1st order ODE.
The autonomous 1st order ODE has the form:

dy
dt

= f (y) (4.1)

Note that this ODE doesn’t show the independent variable ttt. ⌅

Recall that we have considered the special case of Eq.(4.1) in which f (y) = ay+b.
We want to use geometrical methods to find the qualitative information directly from the

ODE without solving the equation.
We want to find some constant functions y = c s.t. there is no change or variation in the

value of y as t increases. How to find these functions? We just need to let f (y) = 0 to derive the
roots:

Definition 4.2 — Critical point.
A critical point of a function y = g(x) is a value x0 such that

g0(x0) = 0.

Moreover, we define the critical points of the Eq.(4.1) to be the zeros of f (y). ⌅

Definition 4.3 — Equilibrium solution. Suppose y0 is the critical point of Eq.(4.1), then we
derive f (y0) = 0. And we observe that y = y0 is also the solution to Eq.(4.1). Hence y = y0
is called the Equilibrium solution to Eq.(4.1). ⌅

Now we show that we can visualize other solutions of Eq.(4.1) and sketch their graphs quickly
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by studying f (y):

⌅ Example 4.1 We tend to sketch the general graph of the ODE

dy
dt

= r(1� y
K
)y for constans r and K. (4.2)

We set f (y) = r(1� y
K )y and draw the graph of f (y):

Figure 4.1: f (y) versus y for Eq.(4.2)

In this graph we find the critical points are:

y1 = 0 y2 = K

And the equilibrium solutions are:

y = 0, y = K.

• Observe that dy
dt > 0 for 0 < y < K and dy

dt < 0 for y > K. So we can draw the phase
line (the y-axis) to show the variation of y. (Shown in Figure(4.2a)).

• We can plot the curves for Eq.(4.2) from the information given below: (The graph is
shown in Figure(4.2b)).

Figure 4.2: The graph for ODE(4.2)
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– We can infer from Figure(4.1) that when y is around 0 or K, the value for f (y) is
near zero. Hence the corresponding curves for Eq.(4.2) are very flat. Similarly,
when y leaves the neighborhood of 0 and K, the corresponding curves for Eq.(4.2)
are very steep.

– To draw the Figure(4.2b), we start with the equilibrium solutions y = 0 and y = K;
then we draw other curves that are increasing for 0 < y < K and decreasing for
y > K. And the curves are flat when y approaching 0 or K.

– Note that other solutions cannot interset with the solution y = K. Why? By the
existence and uniqueness theorem, there should be a unique solution that could
pass through a given point in the ty�plane.

– We can also determine the concavity of those curves by computing d2y
dt2 :

d2y
dt2 =

d
dt

✓
dy
dt

◆
=

d
dt

f (y) = f 0(y)
dy
dt

= f 0(y) f (y)

Interval of y (0, K
2 ) (K

2 ,K) (K,+•)
sign for f 0(y) + � �
sign for f (y) + + �

Concavity + � +

– Finally, we observe that all curves seem to approach K as t increases.
⌅

The information above is obtained without solving the ODE. However, sometimes we need a
detailed description by solving the ODE:

⌅ Example 4.2 Given the condition y(t = 0) = y0 and provided that y 6= 0 and y 6= K, we
transform Eq.(4.2) into form:

dy
(1� y

K )y
= r dt =)

 
1
y
+

1
K

1� y
K

!
dy = r dt.

By integrating both sides we obtain:

ln |y|� ln
���1�

y
K

���= rt + c for constant c.

• When 0 < y0 < K, we have known that 0 < y < K all the time. Hence we break the
absolute value bars to find:

y
1� y

K
=Cert for constant C.

By setting y(t = 0) = y0 we derive:

C =
y0

1� y0
K

=) y =
y0K

y0 +(K � y0)e�rt

• Similarly, when y0 > K we derive the same result.
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And we notice that when y0 = 0, by Eq.(4.2), y = 0 is the solution; when y0 > 0, if we let
t ! •, we obtain:

lim
t!•

y(t) =
y0K
y0

= K

Thus for 8y0 > 0, the solution approaches the equilibrium solution y = K asymptotically as
t ! •. ⌅

In this example we notice that for 8y0 > 0, the solution approaches the equilibrium solution
y = K asymptotically as t ! •. We say that y = K is an asympotically stable solution of
Eq.(4.2):

Definition 4.4 — asympotically stable solution. For the solution to the autonomous 1st order
ODE(4.1), if the nearby curves all converges to the equilibrium solution as t increases, then
the equilibrium solution is said to be the asympotically stable solution. ⌅

On the other hand, even the solutions for Eq.(4.2) starts very close to zero, it approaches to K as
t increases instead of approaching to 0. We say that y = 0 is an unstable equilibrium solution of
Eq.(4.2).

Definition 4.5 — Unstable equilibrium solution. For the solution to the autonomous 1st order
ODE(4.1), if the nearby curves all diverge away from the equilibrium solution as t increases,
then the equilibrium solution is said to be the unstable equilibrium solution ⌅

Exercise 4.1 Consider the equation of the form

dy
dt

= f (y)

where f (y) = y(y�1)(y�2). Determine the critical (equilibrium) points and classify it as
asymptotically stable or unstable. Sketch several graphs of solutions in the ty-plane. ⌅

⌅ Solution 4.1 Firstly, we draw the graph of f(y):

Figure 4.3: f (y) versus y



4.1 Autonomous 1st order ODE 33

In this graph we find the critical points are:

y1 = 0 y2 = 1 y3 = 2.

Hence the equilibrium solutions are:

y = 0 y = 1 y = 2.

• Also, we find that:

dy
dt

< 0 when y < 0

dy
dt

> 0 when 0 < y < 1

dy
dt

< 0 when 1 < y < 2

dy
dt

> 0 when y > 2

Thus we draw the phase line (the y-axis) to show the variation of y.

Figure 4.4: The phase line

• We can also determine the concavity of those curves by computing d2y
dt2 :

d2y
dt2 =

d
dt

✓
dy
dt

◆
=

d
dt

f (y) = f 0(y)
dy
dt

= f 0(y) f (y) = y(y�1)(y�2)(3y2�6y+2)

Interval of y (�•,0) (0,1�
p

3
3 ) (1�

p
3

3 ,1)
sign for f 0(y) + + �
sign for f (y) � + +

Concavity � + �
Interval of y (1,1+

p
3

3 ) (1+
p

3
3 ,2) (2,+•)

sign for f 0(y) � + +
sign for f (y) � � +

Concavity + � +

Finally, we plot the curves from the information given above:
⌅
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Definition 4.6 — 2nd order linear ODE. The general form of 2nd order linear ODE is given
by:

y00+ p(t)y0+q(t)y = g(t) (4.3)

⌅

If the RHS in Eq.(4.3) is zero, it is said to be homogeneous, otherwise the Eq.(4.3) is said to be
nonhomogeneous.
We begin to talk about homogeneous equations first:

4.2 Homogeneous with constant coefficient
In this lecture we only talk about the equations in which the functions p(t),q(t) are constants. In
this case, the Eq.(4.3) become:

ay00+by0+ cy = 0. (4.4)

which is said to be the homogeneous 2nd order linear ODE with constant coefficient.
Then we try to solve this ODE:

⌅ Solution 4.2

• We guess the solution to the Eq.(4.4) to have the form y = ert , where r is a parameter
to be determined. Then it follows that y0 = rert , y00 = r2ert . By substituting these
expressions for y,y0 and y00 we obtain:

(ar2 +br+ c)ert = 0.

Since ert 6= 0, we derive that

ar2 +br+ c = 0.

Definition 4.7 For the ODE ay00+by0+cy= 0, its characteristic equation is given
by:

ar2 +br+ c = 0. (4.5)

We can see that if r is a root to Eq.(4.5), then y = ert is a solution to the ODE(4.4). ⌅

• We set D = b2 �4ac, and discuss three cases to solve this ODE:
– D > 0 : There exists two real roots r1 6= r2:

r1 =
�b+

p
D

2a
r2 =

�b�
p

D
2a

Then the fundamental set of solutions to Eq.(4.4) is

{y1 = er1t , y2 = er2t}
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The general solution is given by:

y(t) = c1er1t + c2er2t for constants c1,c2.

– D < 0 : There exists two complex roots r1 6= r2 :

r1 =
�b+ i

p
|D|

2a
= l + iµ r2 =

�b� i
p
|D|

2a
= l � iµ

Then the fundamental set of solutions to Eq.(4.4) is:

{y1 = er1t = el t(cos µt + isin µt), y2 = er2t = el t(cos µt � isin µt)} (4.6)

We want to express the solution of such a problem in terms of real-valued
functions. And we can use a theorem to solve this task: (verify this theorem by
yourself)

Theorem 4.1 Consider the Eq.(4.3),

y00+ p(t)y0+q(t)y = 0

where p and q are continuous real-valued functions. If y = u(t)+ iv(t) is a
complex-valued solution of Eq.(4.3), then its real part u(t) and its imaginary
part v(t) are also solutions of this equation.

Thus from the formula(4.6), we obtain a new real fundamental set of solutions to
Eq.(4.4):

{y1 = el t cos(µt), y2 = el t sin(µt)}

Hence the general solution is given by:

y(t) = el t [c1 cos(µt)+ c2 sin(µt)] for constants c1,c2.

– D = 0 : There exists two repeated roots r1,r2 :

r1 = r2 = r =� b
2a

Obviously, y1 = ert is a solution. How to find a second solution? We set

y2 = v(t)y1(t) = v(t)ert .

Then it follows that

y02 = [rv(t)+ v0(t)]ert

and

y002 = r[rv(t)ert + v0(t)ert ]+ rv0(t)ert + v00(t)ert

= [r2v(t)+2rv0(t)+ v00(t)]ert
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By substituting these expressions for y,y0 and y00 in Eq.(4.4) we obtain:

v00(t) = 0 =) v(t) = c1 + c2t.

Hence the second solution could be

y2 = c1ert + c2tert .

In conclusion, the fundamental set of solutions to Eq.(4.4) is given by

{y1 = ert , y2 = tert}

Hence the general solution is

y(t) = ert(c1 + c2t) for constants c1,c2.

⌅
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5.1 Theorem of existence and uniqueness
The fundamental theoretical result for IVP for second order linear equations is stated below,
which is analogous for first order linear equations:

Theorem 5.1 — Existence and Uniqueness Theorem for 2nd order linear equations. 5.1
Consider the IVP

y00+ p(t)y0+q(t)y = g(t), y(t0) = y0, y0(t0) = y00 (5.1)

where p,q and g are continuous on an open interval I that contains the point t0. Then there
exists a unique solution y = f(t) of this problem in the interval I.

R This theorem derives three statements:

• The IVP exists a solution.
• The solution to this IVP is unique
• The solution f is defined on the interval I and is at least twice differentiable.

Proof. This proof need to be filled ⌅

⌅ Example 5.1 Find the unique solution of the IVP

y00+ p(t)y0+q(t)y = 0, y(t0) = 0, y0(t0) = 0

where p and q are continuous in an open interval I containing t0 ⌅

Solution: We find that y = f(t) = 0 is one solution. By the uniqueness part of Theorem(5.1), it
is the only solution to the given IVP.
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5.2 Principle of superposition
Next, we find that if y1 and y2 are two solutions to the ODE:

L[y] = y00+ p(t)y0+q(t)y = 0 (5.2)

then its linear combinations are also the solution to Eq.(5.2). We state this result as a theo-
rem:

Theorem 5.2 — Principle of Superposition. If y1 and y2 are two solutions of the Eq.(5.2),

L[y] = y00+ p(t)y0+q(t)y = 0

then the linear combination c1y1 + c2y2 is also a solution for constants c1,c2.

Proof. We observe that

L[c1y1 + c2y2] = [c1y1 + c2y2]
00+ p(t)[c1y1 + c2y2]

0+q(t)[c1y1 + c2y2]

= c1y001 + c2y002 + c1 py01 + c2 py02 + c1qy1 + c2qy2

= c1[y001 + py01 +qy1]+ c2[y002 + py02 +qy2]

= c1L[y1]+ c2L[y2].

Since y1 and y2 are solutions to Eq.(5.2), we derive

L[y1] = L[y2] = 0 =) L[c1y1 + c2y2] = 0.

Hence c1y1 + c2y2 is also a solution for constants c1,c2. ⌅

5.3 Wronskian
The next question is that whether there may be other solutions of a different form from c1y1+c2y2?
We answer this question in the following steps:

1. Firstly, we claim that c1y1 + c2y2 could be possible solution to the IVP problem if and
only if its Wronskian is not zero at initial point:
Suppose y1 and y2 are gien two solutions to Eq.(5.2), then c1y1 + c2y2 would be possible
solution to the IVP problem

y00+ p(t)y0+q(t)y = 0, y(t0) = 0, y0(t0) = 0 (5.3)

if and only if we can choose (c1,c2) satisfying

(
(c1y1 + c2y2)(t0) = c1y1(t0)+ c2y2(t0) = y0,

(c1y1 + c2y2)
0(t0) = c1y01(t0)+ c2y02(t0) = y00.

(5.4)

The determinant of coefficients of the system(5.4) is

W (y1,y2)(t0) =
����
y1(t0) y2(t0)
y01(t0) y02(t0)

����= y1(t0)y02(t0)� y01(t0)y2(t0) (5.5)
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• If W 6= 0, then the system(5.4) has a unique solution for (c1,c2), according to the
Crema’s Rule, the solution is given by:

c1 =

����
y0 y2(t0)
y00 y02(t0)

����
����
y1(t0) y2(t0)
y01(t0) y02(t0)

����

, c2 =

����
y1(t0) y0
y01(t0) y00

����
����
y1(t0) y2(t0)
y01(t0) y02(t0)

����

.

In this case, c1y1 + c2y2 could be the possible solution.
• If W = 0, there may have infinitely many (c1,c2) or no (c1,c2) to satisfy the sys-

tem(5.4). Hence in this case, there may not exist the solution in form of c1y1 + c2y2.
During the discussion above, we introduce a special determinant: Wronskian.

Definition 5.1 — Wronskian. For the IVP

y00+ p(t)y0+q(t)y = 0, y(t0) = y0, y0(t0) = y00

If y1 and y2 are two solutions of this problem, then the Wronskian determinant
/Wronskian of solutions y1 and y2 is defined as:

W (y1,y2)(t0) =
����
y1(t0) y2(t0)
y01(t0) y02(t0)

����

⌅

The Wronskian is always useful. It can help us to make sure whether there exists one
linear combination of y1 and y2 that could be the possible solution to the IVP problem.
We can conclude the discussions above into a theorem:

Theorem 5.3 Suppose y1 and y2 are two solutions of the ODE:

L[y] = y00+ p(t)y0+q(t)y = 0.

Given the IVP

y00+ p(t)y0+q(t)y = 0, y(t0) = y0, y0(t0) = y00,

it is always possible for us to pick c1 and c2 s.t.

y = c1y1(t)+ c2y2(t)

is the solution to this problem if and only if the Wronskian of the solutions y1 and y2 at
t0

W (y1,y2)(t0) =
����
y1(t0) y2(t0)
y01(t0) y02(t0)

����

is not zero.

2. Moreover, uner the assumption that p,q are continuous functions, and using the theorem
given above, we could derive that the solution to the Eq.(5.2) only has the form c1y1+c2y2
if and only if there exists a point t0 s.t.

W (y1,y2)(t0) 6= 0.
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Theorem 5.4 Suppose that y1 and y2 are two solutions of the Eq.(5.2),

L[y] = y00+ p(t)y0+q(t)y = 0.

Then the linear combination of y1 and y2,

y = c1y1(t)+ c2y2(t)

with arbitrary constants c1 and c2 are the only solution to Eq.(5.2) if and only if there
exists a point t0 s.t.

W (y1,y2)(t0) 6= 0.

5.4 Fundamental set of solutions
Can we use a term to describe that the linear combination of y1 and y2 are the only solution to
Eq.(5.2)? We introduce the definition for fundamental set of solutions:

Definition 5.2 — Fundamental set of solutions. Suppose {y1,y2} is a set of solutions to the
ODE

y00+ p(t)y0+q(t)y = 0, (5.6)

then {y1,y2} is said to be a fundamental set of solutions if it satisfies:
1. y1 and y2 solves for Eq.(5.6)
2. If y0 solves for Eq.(5.6), then it is a linear combination of y1 and y2.

⌅

Combining the Theorem(5.3) and (5.4) with the definition above, we derive a useful fact:

Theorem 5.5 {y1,y2} is a fundamental set of solutions to Eq.(5.6) iff.

9t0 such that W (y1,y2)(t0) 6= 0
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Linear independence and Wronskian
And we also want to explore more properties for the fundamental set of solutions. Firstly,

let’s introduce the definiton for linear dependence with respect to functions:

5.5 Linear independence
Definition 5.3 — Linear independence. A set of functions { f1, f2, . . . , fn} is called linear
independent iff.

k1 f1 + k2 f2 + · · ·+ kn fn = 0 () k1 = k2 = · · ·= kn = 0.

⌅

In fact, we can use linear independence to define fundamental set again:

Definition 5.4 — Equivalent definiton for fundamental set of solutions.
A set of solutions {y1,y2} to Eq.(5.6) is a fundamental set of solutions iff.

1. y1 and y2 solves for Eq.(5.6)
2. {y1,y2} are linearly independent.

⌅

The proof for this equivalent definition is omitted due to the length of this book.

5.6 Abel’s theorem
And we want to know the relationship between Wronskian and fundamental set of solutions,
which is obtained from Abel’s theorem:

Theorem 5.6 — Abel’s theorem. If y1 and y2 are solutions of the differential equation

y00+ p(t)y0+q(t)y = 0 (5.7)

where p,q are c.n.t. on an open interval I, then the Wronskian is given by

W (y1,y2)(t) = cexp

�
Z

p(t)dt
�

where c is a certain constant that depends on y1 and y2, but not on I. Further more, W (y1,y2)(t)
is either zero or never zero for 8t 2 I.

Proof. Since y1 and y2 are the solutions to Eq.(5.7), we have

y001 + p(t)y01 +q(t)y1 = 0 (5.8)
y002 + p(t)y02 +q(t)y2 = 0 (5.9)

And we let Eq.(5.8)⇥(�y2)+Eq.(5.9)⇥(y1) to derive

(y1y002 � y001y2)+ p(t)(y1y02 � y01y2) = 0 (5.10)

Then we let W (t) =W (y1,y2)(t) = y1y02 � y01y2 and we observe that

W 0 = y1y002 � y001y2
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Then we could rewrite Eq.(5.10) into:

W 0+ p(t)W = 0 =) W (t) = cexp

�
Z

p(t)dt
�

where c is a constant.

Since the exponential is never zero, the wronskian is either zero or never zero for 8t 2 I. ⌅

5.7 Completeness of fundamental set of solutions
In fact, every solution to the 2nd order linear ODE must be uniquely expressed as a lienar
combination fo fundamental set of solutions. This is called the completeness of fundamental set
of solutions.

Theorem 5.7 — Completeness for fundamental set of solutions. If {y1,y2} is a fundamental
set of solutions to the equation

y00+ p(t)y0+q(t)y = 0 (5.11)

then every solution to Eq.(5.11) could be uniquely expressed as

y(t) = c1y1(t)+ c2y2(t)

where c1,c2 are constants.

Before the proof, we have a review of the property about the fundamental set of solutions:
• Property 1: [Check for Theorem(5.6)]

W (y1,y2) is either zero or never zero for 8t 2 I.
• Property 2: [Check for Theorem(5.5)]

{y1,y2} is fundamental set of solutions iff. W (y1,y2)(t) 6= 0 for all t 2 I.
We can use these two properties to proof this theorem:

Proof. Suppose y(t) is a solution to Eq.(5.11), since it is well-defined, we set

y(t0) = y0, y0(t0) = y00

Then we intend to find c1,c2 s.t.
(

c1y1(t0)+ c2y2(t0) = y0

c1y01(t0)+ c2y0(t0) = y00
(5.12)

By property(2), W (y1,y2) 6= 0. Hence Eq.(5.12) admits unique pair (c1,c2).
We set f(t) = c1y1 + c2y2. You can verify that

• f(t) solves for Eq.(5.11)
• f(t) satisfies the same initial condition as y(t).

By the existence and uniqueness theorem,

f(t) = y(t) = c1y1 + c2y2

⌅

R You maybe confued about too many theorems and massy relationships this section. But at
least you should hold on these points below:
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{y1,y2} is fundamental set of solutions iff. W (y1,y2)(t) 6= 0 for all t 2 I.

Every solution to Eq.(5.11) could be uniquely expressed as linear combination of funda-
mental set of solutions

Abel’s theorem
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6.1 Method of reduction of order
In order to solve the 2nd orde linear ODE, we usually use the reduction of order method:

• If we know y1(t) is one solution, we guess the another solution is given by:

y2(t) = v(t)y1(t)

And then we put y2(t) into our origin ODE to derive the formula of v(t).
Firstly, let’s restrict our ODE into constant coefficient equation to show how to use this method:

6.2 Constant coefficient equation
In the lecture before, maybe you are confused about why the second solution to the two repeated
roots case is tert , which is not obvious. So let’s have a brief review on how to derive this solution
again:

⌅ Solution 6.1 We intend to solve the homogeneous 2nd order ODE with constant coeffi-
cients:

ay00+by0+ cy = 0 (6.1)

where its characteristic equation has two repeated roots.
In this case, b2 �4ac = 0 =) r =� b

2a . Hence one solution to Eq.(6.1) is

y1(t) = ert

To find a second solution, we guess

y = v(t)y1(t) = v(t)ert
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It follows that

y0 = [v0(t)+ rv(t)]ert

and

y00 = [v00(t)+2rv0(t)+ r2v(t)]ert

By substituting the above formulas in Eq.(6.1), we obtain:
�

a[v00(t)+2rv0(t)+ r2v(t)]+b[v0(t)+ rv(t)]+ cv(t)
 

ert = 0. (6.2)

Or equivalently,

[av00(t)+(2ar+b)v0(t)+(ar2 +br+ c)v(t)]ert = 0 (6.3)

Since ert 6= 0, we obtain:

av00(t)+(2ar+b)v0(t)+(ar2 +br+ c)v(t) = 0.

Since r =� b
2a and b2 �4ac = 0, it’s trival that 2ar+b = 0 and ar2 +br+ c = 0.

Hence

av00(t) = 0 =) v00(t) = 0. =) v(t) = c1 + c2t

Hence the second solution is given by:

y(t) = (c1 + c2t)ert

Thus partly some solutions to Eq.(6.1) are a linear combination of

y1 = ert y2 = tert

And the wronskian is given by:

W (y1,y2)(t) =
����

ert tert

rert (1+ rt)ert

����= ert 6= 0 (6.4)

Hence {y1 = ert ,y2 = tert} is a fundamental set of solutions to Eq.(6.1). And the general
solution to Eq.(6.1) is

y(t) = c1ert + c2tert .

⌅

And also, the reduction of order method could be extended more:

6.3 General homogeneous ODE
Suppose y1(t) is a solution, which is not everywhere zero, of the homogeneous ODE:

y00+ p(t)y0+q(t)y = 0. (6.5)
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⌅ Solution 6.2 In order to find a second solution, we let

y = v(t)y1(t)

It follows that

y0 = v0(t)y1(t)+ v(t)y01(t)

and

y00 = [v00(t)y1(t)+ v0(t)y01(t)]+ [v0(t)y01(t)+ v(t)y001(t)]

Substituting the above formulas into Eq.(6.5) we obtain:

{[v00(t)y1(t)+v0(t)y01(t)]+[v0(t)y01(t)+v(t)y001(t)]}+ p(t)[v0(t)y1(t)+v(t)y01(t)]+q(t)y1(t)= 0.

Or equivalently,

y1(t)v00+[2y01(t)+ p(t)y1(t)]v0+[y001(t)+ p(t)y01(t)+q(t)y1(t)]v = 0.

Since y1(t) is a solution to Eq.(6.5), we derive y001(t)+ p(t)y01(t)+q(t)y1(t) = 0. Thus

y1(t)v00+[2y01(t)+ p(t)y1(t)]v0 = 0. (6.6)

Notice that Eq.(6.6) is actually a first-order equation for function v0. Hence it is possible to
write the formula for v(t), but this formula is ugly. In practice we often work on the specific
v(t) and derive the final formula.
But, I will show you how to derive v(t) in general case:
For Eq.(6.6), we divide y1(t) both sides to obtain the first order linear homogeneous
equation:

v00+


2
y01(t)
y1(t)

+ p(t)
�

v0 = 0.

The solution is obviously given by:

v0 =C exp

�
Z ✓

2
y01(t)
y1(t)

+ p(t)
◆

dt
�

for constant C

It follows that

v =C
Z ⇢

exp

�
Z ✓

2
y01(t)
y1(t)

+ p(t)
◆

dt
��

dt for constant C

Hence the second solution is given by:

y =Cy1(t)
Z ⇢

exp

�
Z ✓

2
y01(t)
y1(t)

+ p(t)
◆

dt
��

dt for constant C

⌅

Why this method is called the reduction of order? Because the critical step is to compute the
solution to a first order ODE for v0 instead of the original second order ODE for y. We show
an example of using reduction of order method:
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⌅ Example 6.1 Given that y1 = t1/4e2
p

t is a solution of

t2y00 � (t �0.1875)y = 0, t > 0, (6.7)

find a fundamental set of solutions.
We set y = v(t)y1(t), which follows that

y0 = v0(t)y1(t)+ v(t)y01(t)

y00 = [v00(t)y1(t)+ v0(t)y01(t)]+ [v0(t)y01(t)+ v(t)y001(t)]
= v00(t)y1(t)+2v0(t)y01(t)+ v(t)y001(t).

And we put the formuals above into Eq.(6.7) to obtain:

t2[v00(t)y1(t)+2v0(t)y01(t)+ v(t)y001(t)]� (t �0.1875)v(t)y1(t) = 0.

Or equivalently,

t2y1(t)v00+2t2y01(t)v
0+[t2y001(t)� (t �0.1875)y1(t)]v(t) = 0.

Since y1(t) is a solution to Eq.(6.7), we have t2y001(t)� (t �0.1875)y1(t) = 0. Thus

t2y1(t)v00+2t2y01(t)v
0 = 0. =) y1(t)v00+2y01(t)v

0 = 0.

Substituting y1 = t1/4e2
p

t into the above equation we obtain:

t1/4e2
p

tv00+2


1
4

t�3/4e2
p

t + t�1/4e2
p

t
�

v0 = 0.

Since e2
p

t 6= 0, we obtain:

t1/4v00+
✓

1
2

t�3/4 +2t�1/4
◆

v0 = 0. =) v00+
✓

1
2

t�1 +2t�1/2
◆

v0 = 0.

Solving this first order linear homogeneous equation for function v0 we derive:

v0 =C exp

�
Z ✓

1
2

t�1 +2t�1/2
◆

dt
�
=C exp


�
✓

1
2

ln |t|+4t1/2
◆

dt
�

=Ct�1/2 exp(�4t1/2)

It follows that

v =C
Z h

t�1/2 exp(�4t1/2)
i

dt = 2C
Z

exp(�4t1/2)dt1/2 =�C
2

exp(�4t1/2)+D

In other words, our finally v is given by:

v = c1 exp(�4t1/2)+ c2
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It follows that

y = v(t)y1(t) = c1t1/4 exp(�2t1/2)+ c2t1/4 exp(2t1/2)

Hence our second solution is

y2 = t1/4 exp(�2t1/2)

And the Wronskian is given by:

W (y1,y2)(t) =
����

t1/4 exp(�2t1/2) t1/4 exp(2t1/2)
exp(�2t1/2)

� 1
4 t�3/4 � t�1/4� exp(2t1/2)

� 1
4 t�3/4 + t�1/4�

����= 2 6= 0.

Hence the fundamental set of solution to Eq.(6.7) is

{y1 = t1/4 exp(2t1/2), y2 = t1/4 exp(�2t1/2)}

Thus our general solution is

y = c1y1 + c2y2 = t1/4
h
c1 exp(2t1/2)+ c2 exp(�2t1/2)

i

⌅
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6.4 Sketch to solve nonhomogeneous equations
We now return to the nonhomogeneous equation

L[y] = y00+ p(t)y0+q(t)y = g(t) (6.8)

where p,q and g are given continuous functions on open interval I.
How to find its general solution? Actually we need to find its corresponding homogeneous
equation:

L[y] = y00+ p(t)y0+q(t)y = 0 (6.9)

The solution to (6.9) provides a basis for constructing the general solution to (6.8):

Theorem 6.1 Suppose {y1(t),y2(t)} is a fundamental set of solutions to the homogeneous
ODE:

L[y] = y00+ p(t)y0+q(t)y = 0

And y0(t) is a particular solution to the nonhomogeneous ODE:

L[y] = y00+ p(t)y0+q(t)y = g(t).

Then the general solution to the nonhomogeneous ODE is given by:

y(t) = c1y1(t)+ c2y2(t)+ y0(t),

where c1,c2 are arbitrary constant.

Proof. Suppose f(t) is arbitrary solution to Eq.(6.8), then we have:

L[f ] = L[y0] = g(t)

Hence we have:

L[f ]�L[y0] = L[f � y0] = 0

And any solution to the homogeneous equation is a linear combination of y1 and y2.
Hence there exists c1 and c2 s.t.

f � y0 = c1y1 + c2y2 =) f = c1y1 + c2y2 + y0

Thus the proof is complete. ⌅

The theorem(6.1) states that to solve the nonhomogeneous equation(6.8), we need to do three
things:

• Find the general solution c1y1 + c2y2 to the corresponding homogeneous equation.
• Find one single solution Y (t) to the nonhomogeneous equation, which is often referred as

a particular solution.
• Sum the functions found in steps 1 and 2.

We have discuessed how to find c1y1 + c2y2, but how to find a particular solution in step 2?
There are two methods known as the method of undetermined coefficients and the method of
variation of parameters. We will discuss the former one now:
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6.5 Method of undetermined coefficients
This method requires us to guess about the forms of the particular solution Y (t), but with the
coefficients undetermined. And then we substitute this expression into Eq.(6.8). Then we can
determine the coefficients to satisfy the Eq.(6.8). The key idea is how do we guess the forms
of particular solution? We will introduce some forms corresponding to very special 2nd order
ODEs.
Firstly, let’s discuss five examples to give you some intuition on this method:

⌅ Example 6.2 Find a particular solution of

y00 �3y0 �4y = 3e2t (6.10)

We guess our particular solution Y (t) is some multiple of e2t :

Y (t) = Ae2t where A needs to be determined

It follows that

Y 0(t) = 2Ae2t , Y 00(t) = 4Ae2t

After substituting for y,y0 and y00 in Eq.(6.10) we obtain:

(4A�6A�4A)e2t = 3e2t =) A =�1
2

Hence our particular solution is

Y (t) =�1
2

e2t .

⌅

However, our guess for this kind of ODE (g(t) is exponential) is not always correct. Let me raise
a counterexample:

⌅ Example 6.3 Find a particular solution of

y00 �3y0 �4y = 2e�t (6.11)

• If we guess our particular solution Y (t) is some multiple of e�t , i.e. Y (t) = Ae�t , then
you can verify that after substituting for y,y0 and y00 in Eq.(6.11) we obtain:

(A+3A�4A)e�t = 2e�t =) 2e�t = 0

which is a contradiction. Hence there is no particular solution in form of Ae�t .
Why our guess is wrong? Notice that Ae�t is the solution to its corresponding homogeneous
equation, so it is impossible for this term to be the solution to the inhomogeneous equation.
How do we handle this case?

• We guess our particular solution Y (t) is some of multiple of te�t , i.e.

Y (t) = Ate�t .
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It follows that

Y 0(t) = A(1� t)e�t , Y 00(t) = A(t �2)e�t

After substituting for y,y0 and y00 in Eq.(6.11) we obtain:

A(t �2�3+3t �4t)e�t = 2e�t =) A =�2
5

Hence our particular solution is

Y (t) =�2
5

te�t

⌅

⌅ Example 6.4 Find a particular solution of

y00 �3y0 �4y = 2sin t (6.12)

• If we guess our particular solution Y (t) is some multiple of sin t, i.e. Y (t) = Asin t,
then you can verify that after substituting for y,y0 and y00 in Eq.(6.12) we obtain:

�Asin t �3Acos t �4Asin t = 2sin t =)
(
�A�4A = 2

�3A = 0

which is a contradiction. Hence there is no particular solution in form of Asin t.
Why our guess is wrong? We notice that there appears cos t during our deviation. Hence we
should do a little modification for our guess:

• We guess our particular solution Y (t) is linear combination of sin t and cos t, i.e.

Y (t) = Asin t +Bcos t

And it follows that

Y 0(t) = Acos t �Bsin t, Y 00(t) =�Asin t �Bcos t

After substituting for y,y0 and y00 in Eq.(6.12) we obtain:

(�Asin t �Bcos t)+(�3Acos t +3Bsin t)+(�4Asin t �4Bcos t) = 2sin t

Or equivalently,

(�A+3B�4A)sin t+(�B�3A�4B)cos t = 2sin t =)
(
�5A+3B = 2
�5B�3A = 0

=)

8
><

>:

A =� 5
17

B =
3

17

Hence our particular solution is:

Y (t) =� 5
17

sin t +
3
17

cos t.

⌅
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What information we can summarize from the above examples?
• If nonhomogeneous term g(t) is eat ,

– In most cases (eat is not a solution to its corresponding homogeneous ODE), we
should guess Y (t) is Aeat . [like Example(6.2)]

– If eat is also a solution to its corresponding homogeneous ODE, then we should
guess Y (t) is Ateat . [like Example(6.3)]

• If g(t) is sinb t or cosb t, then we should guess Y (t) is a linear combination of sinb t and
cosb t. [like Example(6.4)]

But what if g(t) is eat sinb t or eat cosb t? We just take the product of the corresponding types
of functions, i.e.

Y (t) = Aeat(Bsinb t +C cosb t) or Y (t) = Ateat(Bsinb t +C cosb t)

Later we will show the general idea of how to guess our Y (t).

⌅ Example 6.5 Find a particular solution of

y00 �3y0 �4y =�8et cos2t. (6.13)

We guess our particular solution Y (t) is the product of et and a linear combination of cos2t
and sin2t, i.e.

Y (t) = Aet cos2t +Bet sin2t

It follows that

Y 0(t) = [Acos2t �2Asin2t]et +[Bsin2t +2Bcos2t]et

= (A+2B)et cos2t +(�2A+B)et sin2t

and

Y 00(t) = [(A+2B)cos2t �2(A+2B)sin2t]et +[(�2A+B)sin2t +2(�2A+B)cos2t]et

= (�3A+4B)et cos2t +(�4A�3B)et sin2t

After substituing for y,y0 and y00 in Eq.(6.13) we obtain:

et cos2t[(�3A+4B)�3(A+2B)�4A]
+et sin2t[(�4A�3B)�3(�2A+B)�4B] =�8et cos2t

Hence we derive:

(
�10A�2B =�8

2A�10B = 0
=)

8
><

>:

A =
10
13

B =
2

13

Hence our particular solution is:

Y (t) =
10
13

et cos2t +
2

13
et sin2t.

⌅
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Now we suppose that g(t) is a sum of two terms, g(t) = g1(t)+g2(t). And we know that Y1(t)
and Y2(t) are two solutions of the equations

ay00+by0+ cy = g1(t) (6.14)
ay00+by0+ cy = g2(t) (6.15)

Then how to find the particular solution for the equation

ay00+by0+ cy = g(t) = g1(t)+g2(t)? (6.16)

Since Y1(t) and Y2(t) are two solutions of the Eq.(6.14) and Eq.(6.15), we have

aY 00
1 +bY 0

1 + cY1 = g1(t) (6.17)
aY 00

2 +bY 0
2 + cY2 = g2(t) (6.18)

Then Eq.(6.17)+Eq.(6.18) follows that

[aY 00
1 +bY 0

1 + cY1]+ [aY 00
2 +bY 0

2 + cY2] = a[Y 00
1 +Y 00

2 ]+b[Y 0
1 +Y 0

2]+ c[Y1 +Y2]

= a[Y1 +Y2]
00+b[Y1 +Y2]

0+ c[Y1 +Y2]

= g1(t)+g2(t) = g(t).

Hence we derive that Y1 +Y2 is a particular solution to Eq.(6.16). The following example shows
this procedure.

⌅ Example 6.6 Find a particular solution of

y00 �3y0 �4y = 3e2t +2e�t +2sin t �8et cos2t. (6.19)

By splitting up the RHS of Eq.(6.19) we obtain the four equations:

y00 �3y0 �4y = 3e2t

y00 �3y0 �4y = 2e�t

y00 �3y0 �4y = 2sin t
y00 �3y0 �4y =�8et cos2t

Through the Example(6.2) to Example(6.5) we can find the particular solution of these
equations.
Thus a particular solution to Eq.(6.19) is a sum of them, i.e.

Y (t) =�1
2

e2t � 2
5

te�t � 5
17

sin t +
3
17

cos t +
10
13

et cos2t +
2
13

et sin2t.

⌅

⌅ Solution 6.3 Now we summarize how to find the general solution to the nonhomogeneous
equation:

ay00+by0+ cy = g(t) (6.20)

1. Find the general solution yc(t) of the corresponding homogeneous equation.
• The specific way is to use the characteristic equation ar2 + br + c = 0. Then
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discuss it in three cases:
8
><

>:

D > 0 : y(t) = c1er1t + c2er2t .

D = 0 : y(t) = c1ert + c2tert .

D < 0 : y(t) = el t(c1 cos µt + c2 sin µt).

2. You should make sure that our g(t) only belong to the class of functions discussed
below:

eat (exponential) sinat or cosat (triangle) Pn(t) (polynomial)

or the sums or the products of such functions above. Otherwise we cannot solve this
ODE now, we have to use variation of parameters discuessed in the next section!

• Caution: Note that polynomials doesn’t contain fraction function, such as t�1.
3. Then we need to find the particular solution Y (t) to Eq.(6.20) using method of unde-

termined coefficients. But how to guess the forms of our Y (t)? You can check the table
below as reference. (try to memorize it, you can check the example discuessed before
to understand this table.)

Note: Here a is a 00root 00 refers to a is a 00root 00 of the characterstic equation
ar2 +br+ c = 0.

g(t) Y(t) The value for s

keat Atseat s =

8
><

>:

0,a is not a root.
1,a = r1 6= r2

2,a = r1 = r2

Pn(t)eat Qn(t)tseat Same as above

(
Pneat sinb t
Pneat cosb t

(
[Qn(t)cosb t

+Rn(t)sinb t]tseat s =

(
0,a + ib is not a root.
1,a + ib = r1,a � ib = r2

After guessing the fomrs of Y (t), we derive Y 0 and Y 00, then plug them into our Eq.(6.20)
to derive the coefficients. Thus we obtain our particular solution Y (t).

4. Finally, then general solution to Eq.(6.20) is given by:

y = yc(t)+Y (t).

⌅
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y0(t) = C1(t)Y1(t)+C2(t)Y2(t) Question: How to choose C1(t) and C2(t)? Let y = y0(t),
then we have

y0 =C0
1Y1 +C1Y 0

1 +C0
2Y2 +C2Y 0

2

= [C0
1Y1 +C0

2Y2]+ [C1Y 0
1 +C2Y 0

2]

We let C0
1Y1 +C0

2Y2 = 0 (Condition One), then

y0 =C1Y 0
1 +C2Y 0

2

It follows that

y00 = [C0
1Y 0

1 +C1Y 00
1 ]+ [C0

2Y 0
2 +C2Y 00

2 ]

= [C0
1Y 0

1 +C0
2Y 0

2]+ [C1Y 00
1 +C2Y 00

2 ]

Then we have

g = y00+ py0+qy
= [C0

1Y 0
1 +C0

2Y 0
2]+ [C1Y 00

1 +C2Y 00
2 ]+ p[C1Y 0

1 +C2Y 0
2]+q[C1Y1 +C2Y2]]

= [C0
1Y 0

1 +C0
2Y 0

2]+C1[Y 00
1 + pY 0

1 +qY1]+C2[Y 00
2 + pY 0

2 +qY2]

=C0
1Y 0

1 +C0
2Y 0

2

Second Condition: g =C0
1Y 0

1 +C0
2Y 0

2.

Y1 Y2
Y 0

1 Y 0
2

�
C0

1
C0

2

�
=


0
g

�
matrix form

Must: Determinant W (Y1,Y2)(t) 6= 0, there exists unqiue pair of (C0
1,C

0
2):

C0
1 =

����
0 Y2
g Y 0

2

����

W (Y1,Y2)(t)
=� Y2(t)g(t)

W (Y1,Y2)(t)

and

C0
2 =

����
Y1 0
Y 0

1 g

����

W (Y1,Y2)(t)
=

Y1(t)g(t)
W (Y1,Y2)(t)

Hence we obtain:

C1(t) =�
Z Y2(t)g(t)

W (Y1,Y2)(t)
dt C2(t) =

Z Y1(t)g(t)
W (Y1,Y2)(t)

dt

Theorem 6.2 Assume that p,q,g are c.n.t. on I, and {Y1,Y2} ae a fundamental set of solutions
to homogeneous Eq, then a particular solution to (1) is

y0(t) =�
Z Y2(t)g(t)

W (Y1,Y2)(t)
dtY1(t)+

Z Y1(t)g(t)
W (Y1,Y2)(t)

dtY2(t)

The general solution is given by

y(t) =C1Y1 +C2Y2 + y0(t)
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for arbitrary constants C1,C2.
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7.1 Method of variation of parameters
Like the method of undetermined coefficients, this method is also designed to find the particular
solution of a nonhomogeneous 2nd order ODE.

• Why do we learn this method?
Because one limitation of method of undetermined coefficients is that it cannot handle
general g(t). But this method could.

• In which case does it work?
The method of variation of parameters works for the general 2nd order linear ODE when
the two conditions are satisfied:

1. We have known {Y1,Y2} is a fundamental set of solutions to its corresponding
homogeneous equations.

2. The integral in the expression of the particular solution can be solved in terms of
elementary functions.

7.1.1 How to use this method to solve our ODE?
Given general linear inhomogeneous ODE and its corresponding homogeneous ODE:

y00+ p(t)y0+q(t)y = g(t) (7.1)
y00+ p(t)y0+q(t)y = 0 (7.2)

Suppose {Y1,Y2} is a fundamental set of solutions to Eq.(7.2), i.e.
(

Y1,Y2 solves for Eq.(7.2)
W (Y1,Y2)(t) 6= 0

⌅ Solution 7.1 How to solve Eq.(7.1)? We guess our particular solution to be:

y0(t) =C1(t)Y1(t)+C2(t)Y2(t)
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Question: How to choose C1(t) and C2(t)?
Let y = y0(t), then we have

y0 =C0
1Y1 +C1Y 0

1 +C0
2Y2 +C2Y 0

2

= [C0
1Y1 +C0

2Y2]+ [C1Y 0
1 +C2Y 0

2]

If we set

C0
1Y1 +C0

2Y2 = 0 (7.3)

then it follows that

y0 =C1Y 0
1 +C2Y 0

2

and

y00 = [C0
1Y 0

1 +C1Y 00
1 ]+ [C0

2Y 0
2 +C2Y 00

2 ]

= [C0
1Y 0

1 +C0
2Y 0

2]+ [C1Y 00
1 +C2Y 00

2 ]

Substituing y,y0 and y00 in Eq.(7.1) we derive:

g(t) = y00+ py0+qy
= [C0

1Y 0
1 +C0

2Y 0
2]+ [C1Y 00

1 +C2Y 00
2 ]+ p[C1Y 0

1 +C2Y 0
2]+q[C1Y1 +C2Y2]]

= [C0
1Y 0

1 +C0
2Y 0

2]+C1[Y 00
1 + pY 0

1 +qY1]+C2[Y 00
2 + pY 0

2 +qY2]

=C0
1Y 0

1 +C0
2Y 0

2

Hence we only need to solve the equation:

g =C0
1Y 0

1 +C0
2Y 0

2 (7.4)

Combining Eq.(7.3) and Eq.(7.4) into compact matrix form:

Y1 Y2
Y 0

1 Y 0
2

�
C0

1
C0

2

�
=


0
g

�
(7.5)

So we only need to solve Eq.(7.5).
In order to solve it, we let the determinant W (Y1,Y2)(t) 6= 0, then there exists unqiue pair of
(C0

1,C
0
2) s.t.

C0
1 =

����
0 Y2
g Y 0

2

����

W (Y1,Y2)(t)
=� Y2(t)g(t)

W (Y1,Y2)(t)
C0

2 =

����
Y1 0
Y 0

1 g

����

W (Y1,Y2)(t)
=

Y1(t)g(t)
W (Y1,Y2)(t)
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By integrating for C0
1 and C0

2 we obtain:

C1(t) =�
Z Y2(t)g(t)

W (Y1,Y2)(t)
dt C2(t) =

Z Y1(t)g(t)
W (Y1,Y2)(t)

dt

Hence our particular solution is given by:

Y (t) =C1(t)Y1(t)+C2(t)Y2(t).

⌅

The part discussed above could be summarize into one theorem, which can be used directly in
exam:

Theorem 7.1 Assume that p,q,g are c.n.t. on an open interval I, and {Y1,Y2} ae a fundamental
set of solutions to homogeneous Eq.(7.2), then a particular solution to Eq.(7.1) is

y0(t) =�
Z Y2(t)g(t)

W (Y1,Y2)(t)
dt
�

Y1(t)+
Z Y1(t)g(t)

W (Y1,Y2)(t)
dt
�

Y2(t)

The general solution is given by

y(t) = C1Y1 +C2Y2| {z }
solution to homogeneous ODE

+ y0(t)|{z}
particular solution

for arbitrary constants C1,C2.

Here we show two examples on how to sovle general inhomogeneous 2nd order linear ODE:

⌅ Example 7.1 Find general solution to the ODE:

y00+4y0+4y = t�2e�2t , t > 0. (7.6)

• The characteristic equation is:

r2 +4r+4 = 0 =) r1 = r2 =�2.

And the Wronskian is given by:

W (e�2t , te�2t)(t) =
����

e�2t te�2t

�2e�2t (1�2t)e�2t

����= e�4t
����

1 t
�2 1�2t

����= e�4t 6= 0

Hence the solution for the homogeneous part is:

y =C1e�2t +C2te�2t

• We guess our particular solution to be

y0(t) =C1(t)e�2t +C2(t)te�2t
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Then by Theorem(7.1), we derive:

C1(t) =�
Z Y2g

W (Y1,Y2)
dt =�

Z te�2t ⇥ t�2e�2t

e�4t dt =�
Z 1

t
dt =� ln t

C2(t) =
Z Y1g

W (Y1,Y2)
dt =

Z e�2t ⇥ t�2e�2t

e�4t dt =
Z 1

t2 dt =�1
t

Hence our particular solution is given by:

y0(t) =� ln te�2t � e�2t

Combining the two parts, the general solution is

y =C1e�2t +C2te�2t � ln te�2t .

⌅

⌅ Example 7.2 Find the general solution to the ODE:

t2y00+7ty0+5y = 3t, t > 0, y1(t) = t�1 (7.7)

• Firstly, we use reduction of order to find another solution to the homogeneous part:

y(t) = v(t)y1(t) = t�1v(t)

It follows that:

y0 =�t�2v(t)+ t�1v0(t)

and

y00 = 2[t�3v(t)� t�2v0(t)]+ [�t�2v0(t)+ t�1v00(t)]

= 2t�3v(t)�2t�2v0(t)+ t�1v00(t).

Substituting y,y0 and y00 for the homogeneous ODE to obtain:

[2t�1v(t)�2v0(t)+ tv00(t)]+7[�t�1v(t)+ v0(t)]+5t�1v(t) = 0.

Or equivalently,

5v0(t)+ tv00(t) = 0 =) v0(t)+
t
5

v00(t) = 0

Hence we derive:

v0(t) = exp

�
Z t

5
dt
�
=Ct�5. =) v(t) =C1t�4 +C2
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Hence y(t) = t�1v(t) =C2t�1 +C1t�5.
Thus another solution to the homogeneous part is

y2(t) = t�5.

And the Wronskian is given by:

W (y1,y2)(t) =
����

t�1 t�5

�t�2 �5t�6

����=�4t�7 6= 0

Hence {t�1, t�5} forms fundamental set of solutions to the homogeneous part, the
solution to which is

y =C1t�1 +C2t�5.

• And we guess our particular solutio to be

y0(t) =C1(t)t�1 +C2(t)t�5.

Then by Theorem(7.1), we derive: (Here you should think why g = 3t�1.)

C1(t) =�
Z y2g

W (y1,y2)
dt =�

Z t�5 ⇥3t�1

�4t�7 dt =�
Z

�3
4

t dt =
3
8

t2

C2(t) =
Z y1g

W (y1,y2)
dt =

Z t�1 ⇥3t�1

�4t�7 dt =
Z

�3
4

t5 dt =�1
8

t6

Hence our particular solution is given by:

y0(t) =
3
8

t · t�1 � 1
8

t6 · t�5 =
1
4

t.

Combining the two parts, the general solution is

y =C1t�1 +C2t�5 +
1
4

t.

⌅

7.2 Application to Vibrations
Why do we study the second order ODE? Because many phenomenon in our nature could be
expressed as this kind of ODE. Let’s raise a specific example about this:

⌅ Example 7.3 We attach a mass into a spring as Figure(7.1) shown below:
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Figure 7.1: A spring-mass system (still condition)

When this system is still, we have:

mg = kL.

But when we let it oscillate a little bit, what will happen? We build a mathematical model to
describe it:

Gravity G = mg
Position µ(t)

Spring force Fs =�k[L+µ(t)]
Air resistence Fd =�rµ

0(t)
External force F(t)

Total Force G+Fs +Fd +F(t)

We apply the Newton’s second law to obtain:

mµ

00(t) = mg� k[L+µ(t)]� rµ

0(t)+F(t)
=�kµ(t)� rµ

0(t)+F(t)

Thus we obtain our second order IVP:
(

mµ

00(t) =�kµ(t)� rµ

0(t)+F(t)
µ(0) = µ0, µ

0(0) = µ

0
0

⌅
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The fundamental theorems and statements towards high-order linear ODEs will be introduced in
this lecture.

Definition 8.1 — Order n differential equations. A differential equation of order n is an
equation

dny
dtn = F

✓
y,

dy
dt
, · · · , dn�1y

dtn�1

◆
(8.1)

where F is a differentiable function defined in a domain U of a n+1 dimension space. ⌅

There are two kind of linear ODEs:
• Nonhomogeneous ODEs:

y(n) + p1(t)y(n�1) + · · ·+ pn�1(t)y0+ pn(t)y = g(t) (8.2)

• Homogeneous ODEs:

y(n) + p1(t)y(n�1) + · · ·+ pn�1(t)y0+ pn(t)y = 0 (8.3)

⌅ Example 8.1 Unlike first order linear ODE, the solutions to high order ODE may intersect
with each other. Here is an example:
For ODE y00 =�y, the two fundamental solutions are y1 = sin t, y2 = cos t. As we can see in
Figure(8.1), the solutions of a second order ODE may intersect.
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Figure 8.1: The graph of two solutions of a second-order ODE

⌅

Recall that due to the uniqueness theorem of first order ODE, two distinct solutions of first order
ODE will not intersect. Hence this theorem don’t apply for the high order ODE. Our question
is that what initial conditions should be given in order to determine the uniqueness of the
high order ODE?

Definition 8.2 — Existence and Uniqueness Theorem. Let (y0,y
(1)
0 , . . . ,y(n�1)

0 ) be a point such
that Eq.(8.2) is satisfied, i.e.

y(n�1)
0 + p1(t)y

(n�1)
0 + · · ·+ pn�1(t)y

(1)
0 + pn(t)y0 = g(t)

If p1, p2, . . . , pn and g are continuous on open interval I, and t0 is arbitrary point on I. Then
the solution f to Eq.(8.2) with initial condition

f(t0) = y0, f

0(t0) = y(1)0 , · · · , f

(n�1)(t0) = y(n�1)
0 (8.4)

exists and is unique. ⌅

In other words, this theorem guarantees that if any two solutions have the same initial condition,
then these two solutions will be the same on the interval I.

⌅ Example 8.2 Look at Example(8.1) again, at t = p

4 , the solution y1 satisfy

y1

⇣
p

4

⌘
=

p
2

2
, y01

⇣
p

4

⌘
=

p
2

2

The solution y2 satisfy

y2

⇣
p

4

⌘
=

p
2

2
, y02

⇣
p

4

⌘
=�

p
2

2

So these initial conditions are distinct, so it is not surpring that graphs of the solutions intersect
without coinciding. ⌅

Exercise 8.1 Suppose we know the Eq.(8.2) has solutions y1 = t and y2 = sin t, determine
the range of order n of the equation.
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Solution. Notice that y1 and y2 have the same derivatives of orders 0, 1 and 2 at point t = 0.
If they satisfy the same third-order equation, they would be the same on the open interval
I due to the uniqueness theorem. So an equation of order n � 4 satisfies both funtion. For
example, one equation is y(n) + y(n�2) = 0, n � 4. Hence n � 4. ⌅

⌅

Exercise 8.2 Can the graph of two solutions of the equation y00+ p(t)y0+q(t)y = 0 have the
form depicted in Figure(8.2)?

Figure 8.2: An impossible configuration of graphs

Proof. No. We can multiple solution y1 with constant c to make cy1 and y2 have the same
initial condition: (the reason why we can do this is shown below)
We construct g1 = ln(y1) and g2 = ln(y2). From the Figure(8.2), we assume y1(a) =
y2(a), y1(b) = y2(b). It follows that

g1(a) = g2(a), g1(b) = g2(b)

Due to the Roll’s theorem(Calculus I), there exists d 2 (a,b) such that g01(d) = g02(d). It
follows that there exists d s.t.

y01(d)
y1(d)

=
y02(d)
y2(d)

So it is always possible to multiply c to make

cy01(d) = y02(d) cy1(d) = y2(d) Shown in Fiugre(8.3)



68 Week8

Figure 8.3: An impossible configuration of graphs

But functions cy1 and y2 don’t coincide, which is a contradiction! ⌅

⌅

Definition 8.3 — Fundamental set of solutions.
Suppose {y1, . . . ,yn} are solutions to Eq.(8.3). And {y1, . . . ,yn} is said to form a fundamental
set of solutions if every solution to Eq.(8.3) could be expressed as a linear combination of
solutions y1, . . . ,yn uniquely. ⌅

Our question is how to verify a set of solutions is a fundamental set of solutions? Firstly we
define the Wronskian for high order ODE:

Definition 8.4 — Wronskian. The Wronskian for a set of solutions {y1, . . . ,yn} is a special
determinant:

W (y1,y2, . . . ,yn)(t) =

���������

y1 y2 · · · yn
y01 y02 · · · y0n
...

...
. . .

...

y(n�1)
1 y(n�1)

2 · · · y(n�1)
n

���������

⌅

Theorem 8.1 — Test for fundamental set of solutions.
The funtions p1, . . . , pn are continuous on the open interval I. {y1,y2, . . . ,yn} forms a funda-
mental set of solutions for Eq.(8.3) if and only if the Wronskian W (y1,y2, . . . ,yn)(t0) 6= 0 for
some t0 6= 0.

Proof. Sufficiency. For arbitrary point t 2 I, any solution y to Eq.(8.3) is uniquely determined if
we have defined its initial point:

y(t0) = y0, y0(t0) = y00, · · · , y(n�1)(t0) = y(n�1)
0

Suppose {y1,y2, . . . ,yn} forms a fundamental set of solutions for Eq.(8.3), then there exists
unique c1,c2, . . . ,cn such that

c1y1 + c2y2 + · · ·+ cnyn = y
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It follows that

c1y1(t0)+ · · ·+ cnyn(t0) = y0

c1y01(t0)+ · · ·+ cny0n(t0) = y00
· · ·

c1y(n�1)
1 (t0)+ · · ·+ cny(n�1)

n (t0) = y(n�1)
0

We write this equation into compact matrix form:
2

6664

y1(t0) y2(t0) · · · yn(t0)
y01(t0) y02(t0) · · · y0n(t0)

...
...

. . .
...

y(n�1)
1 (t0) y(n�1)

2 (t0) · · · y(n�1)
n (t0)

3

7775

2

6664

c1
c2
...

cn

3

7775
=

2

6664

y0
y00
...

y(n�1)
0

3

7775

Since {c1,c2, . . . ,cn} is uniquely defined, the first matrix on the left side must be invertible. Its
determinant is nonzero at t = t0. Hence W (y1,y2, . . . ,yn) 6= 0.
Necessity. If W (y1,y2, . . . ,yn)(t0) 6= 0, we only need to show that there exists a unique solution
{c1,c2, . . . ,cn} to the linear system

c1y1(t0)+ · · ·+ cnyn(t0) = y0

c1y01(t0)+ · · ·+ cny0n(t0) = y00
· · ·

c1y(n�1)
1 (t0)+ · · ·+ cny(n�1)

n (t0) = y(n�1)
0

for some t0 2 I. Since W (y1,y2, . . . ,yn) 6= 0 for some t0 2 I, the coefficients {c1,c2, . . . ,cn} is
uniquely given below:

0

BBB@

c1
c2
...

cn

1

CCCA
=

2

6664

y1(t0) y2(t0) · · · yn(t0)
y01(t0) y02(t0) · · · y0n(t0)

...
...

. . .
...

y(n�1)
1 (t0) y(n�1)

2 (t0) · · · y(n�1)
n (t0)

3

7775

�12

6664

y0
y00
...

y(n�1)
0

3

7775
.

Hence every solution to Eq.(8.3) could be expressed uniquely as a linear combination of
{y1,y2, . . . ,yn}. ⌅

We find that we could use Wronskian to describe fundamental set of solutions, and more-
ovre, we could show that the Wronskian is either zero for every t 2 I or else is never zero
there.

Theorem 8.2 — Abel’s Theorem. For nth high order ODE

y(n) + p1(t)y(n�1) + · · ·+ pn�1(t)y0+ pn(t)y = 0
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with fundamental set of solutions y1,y2, . . . ,yn. The Wronskian formula is given by:

W (y1,y2, . . . ,yn)(t) = cexp

�
Z

p1(t)dt
�

(8.5)

Proof. We only need to show that

W 0+ p1(t)W = 0 (=W 0 =�p1(t)W.

• By Leibniz formula for determinants (check wikipedia for detailed definition), the
Wronskian could be expressed as:

W (y1,y2, . . . ,yn)(t) = Â
s2Sn

sign(s)
n

’
i=1

y(s(i)�1)
i (t)

Then we differentiate Wronskian with respect to t:

d
dt

W (y1,y2, . . . ,yn)(t) =
d
dt Â

s2Sn

sign(s)
n

’
i=1

y(s(i)�1)
i (t)

= Â
s2Sn

sign(s)

 
d
dt

n

’
i=1

y(s(i)�1)
i (t)

!

=
n

Â
i=1

Â
s2Sn

sign(s)y(s(1)�2)
i (t) ’

i2{1,...,n}�{i}
y(s(i)�1)

i (t)

=

�����������

y01 y02 · · · y0n
y01 y02 · · · y0n
y001 y002 · · · y00n
...

...
. . .

...

y(n�1)
1 y(n�1)

2 · · · y(n�1)
n

�����������

+

�����������

y1 y2 · · · yn
y001 y002 · · · y00n
y001 y002 · · · y00n
...

...
. . .

...

y(n�1)
1 y(n�1)

2 · · · y(n�1)
n

�����������

+ · · ·+

�����������

y1 y2 · · · yn
y01 y02 · · · y0n
y001 y002 · · · y00n
...

...
. . .

...

y(n)1 y(n)2 · · · y(n)n

�����������

(8.6)

In other words, the derivative for Wronskian could be calculated by differentiating each
row separately.

• Note that the first n�1 terms of right side of Eq.(8.6) are all zero since they all contain a
pair of identical rows. Hence we derive:

d
dt

W (y1,y2, . . . ,yn)(t) =

�����������

y1 y2 · · · yn
y01 y02 · · · y0n
y001 y002 · · · y00n
...

...
. . .

...

y(n)1 y(n)2 · · · y(n)n

�����������

(8.7)

Since every yi solves the ODE, we have:

y(n)i + p1(t)y
(n�1)
i + · · ·+ pn�1(t)y0i + pn(t)yi = 0 (8.8)
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It follows that

y(n)i + · · ·+ pn�1(t)y0i + pn(t)yi =�p1(t)y
(n�1)
i

If we add first row times pn(t), second row times pn�1(t),..., the (n�1)th row times p2(t),
into the nth row, the value for Eq.(8.7) is invariant:

d
dt

W (y1,y2, . . . ,yn)(t) =

�����������

y1 y2 · · · yn
y01 y02 · · · y0n
y001 y002 · · · y00n
...

...
. . .

...

�p1(t)y
(n�1)
1 �p1(t)y

(n�1)
2 · · · �p1(t)y

(n�1)
n

�����������

Or equivalently,

d
dt

W (y1,y2, . . . ,yn)(t) =�p1(t)

�����������

y1 y2 · · · yn
y01 y02 · · · y0n
y001 y002 · · · y00n
...

...
. . .

...

y(n�1)
1 y(n�1)

2 · · · y(n�1)
n

�����������

=�p1(t)W (y1,y2, . . . ,yn)(t)

⌅

Now we want to explore the relationship between linear independence and fundamental set of
solutions.

Definition 8.5 — Linear independence. The functions f1, f2, . . . , fn is said to be linearly
dependent on open interval I if there exists k1,k2, . . . ,kn which are not all zero s.t.

k1 f1 + k2 f2 + · · ·+ kn fn = 0

for all t 2 I. Otherwise the functions f1, f2, . . . , fn are said to be linearly independent on I. ⌅

Theorem 8.3 — Test for fundamental set of solutions.
The funtions p1, . . . , pn are continuous on the open interval I. And suppose y1,y2, . . . ,yn are
solutions to Eq.(8.3). {y1,y2, . . . ,yn} forms a fundamental set of solutions for Eq.(8.3) if and
only if {y1,y2, . . . ,yn} are linerarly independent on I.

Proof. Suffiency. If {y1,y2, . . . ,yn} forms a fundamental set of solutions for Eq.(8.2), then
W (y1,y2, . . . ,yn)(t0) 6= 0 for some t0 2 I. Due to Abel’s theorem, W (y1,y2, . . . ,yn)(t) = 0 for all
t 2 I. Then we consider the equation

a1y1 +a2y2 + · · ·+anyn = 0 (8.9)

We differentiate this equation repeatedly to obtain other (n�1) equations:

a1y01 +a2y02 + · · ·+any0n = 0
...

a1y(n�1)
1 +a2y(n�1)

2 + · · ·+any(n�1)
n = 0

(8.10)
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We could write Eq.(8.9) and Eq.(8.10) into compact matrix form:
0

BBB@

y1 y2 . . . yn
y01 y02 . . . y0n
...

...
. . .

...

y(n�1)
1 y(n�1)

2 . . . y(n�1)
n

1

CCCA

0

BBB@

a1
a2
...

an

1

CCCA
=

2

6664

0
0
...
0

3

7775
(8.11)

⌅

Since W (y1,y2, . . . ,yn)(t) 6= 0, the first matrix in Eq.(8) is invertible. Hence the coefficients for
Eq.(8.9) should all be zero, which implies that {y1,y2, . . . ,yn} are linearly independent.
Necessity. Suppose y1,y2, . . . ,yn are linearly independent on I, we need to show they form a
fundamental solution on I. It suffices to show the Wronskian W (y1,y2, . . . ,yn)(t) 6= 0 for all t 2 I.
Assuming it is not true, and there 9t0 2 I such that W (y1,y2, . . . ,yn)(t0) = 0.
In this case the Eq.(8) has a nonzero solution, let’s denote it as {a

0
1 ,a

0
2 , . . . ,a

0
n}. Now we

construct a linear combination

y = a

0
1 y1 +a

0
2 y2 + · · ·+a

0
n yn (8.12)

Since we have

a

0
1 y1(t0)+a

0
2 y2(t0)+ · · ·+a

0
n yn(t0) = 0

a

0
1 y01(t0)+a

0
2 y02(t0)+ · · ·+a

0
n y0n(t0) = 0

...

a

0
1 y(n�1)

1 (t0)+a

0
2 y(n�1)

2 (t0)+ · · ·+a

0
n y(n�1)

n (t0) = 0

We derive the function y satisfies the intial condition:

y(t0) = 0, y

0(t0) = 0, . . . , y

(n�1)(t0) = 0. (8.13)

Moreover, y is also a solution to Eq.(8.3). And we find that y ⌘ 0 is also a solution to Eq.(8.3)
which satisfies the initial condition (8.13). By the uniqueness theorem,

y = a

0
1 y1 +a

0
2 y2 + · · ·+a

0
n yn = 0.

Since {a

0
1 ,a

0
2 , . . . ,a

0
n} are not all zero, we derive {y1,y2, . . . ,yn} are linearly dependent, which

is a contradiction. Thus the Wronskian is never zero in I, thus {y1,y2, . . . ,yn} forms a fundamen-
tal set of solutions.
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8.1 Application to constant coefficient
We now consider the nth order linear homogeneous differential equation with constant coeffi-
cients:

a0y(n) +a1y(n�1) + · · ·+an�1y0+any = 0, (8.14)

where a0,a1, . . . ,an are real constants and a0 6= 0.
If we guess the solution to Eq.(8.14) has the form y = ert , and we plug it into the equation to
obtain:

ert
⇥
a0rn +a1rn�1 + · · ·+an�1r+an

⇤
= 0.

Since ert 6= 0, we derive:

a0rn +a1rn�1 + · · ·+an�1r+an = 0. (8.15)

The Eq.(8.15) is called the characteristic equation, and the polynomial on the left side is called
the characteristic polynomial. Now we discuss how to solve the ODE(8.14) by solving the
corresponding characteristic equation:

All roots of Eq.(8.15) are real and distinct
In this case we have n distinct solutions er1t ,er2t , . . . ,ernt . If these functions are linearly indepen-
dent, the general solution of Eq.(8.14) is:

y = c1er1t + c2er1t + · · ·+ cnernt

And let’s establish the linear independence of er1t,er2t , . . . ,ernt by showing the Wronskian is
nonzero:

Proof.

W (er1t ,er2t , . . . ,ernt)(t) =

���������

er1t er2t · · · ernt

r1er1t r2er2t · · · rnernt

...
...

. . .
...

rn�1
1 er1t rn�1

2 er2t · · · rn�1
n ernt

���������

Since det(AAA) = det(AAAT) for any matrix AAA, we derive:

W (er1t ,er2t , . . . ,ernt)(t) =

���������

er1t r1er1t · · · rn�1
1 er1t

er2t r2er2t · · · rn�1
2 er2t

...
...

. . .
...

ernt rnernt · · · rn�1
n ernt

���������

(8.16)

We set the matrix on the right side of Eq.(8.16) to be BBB. In order to show the Wronskian is
nonzero, we only need to show BBB is nonsingular. Notice that

BBBa

a

a = 000 () a1erit +a2rierit + · · ·+anrn�1
i erit = 0 for i = 1,2, . . . ,n.

Or equivalently,

erit(a1+a2ri+ · · ·+anrn�1
i ) = 0 () a1+a2ri+ · · ·+anrn�1

i = 0 for i = 1,2, . . . ,n. (8.17)
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Assuming BBB is singular, there exists nonzero coefficients a1,a2, . . . ,an. We set

p(r) = a1 +a2r+ · · ·+anrn�1

to be the polynomial of degree n�1. On the one hand, we know that a polynomial with degree
n� 1 has n� 1 roots. On the other hand, the polynomial p(r) has n real and distinct roots
r1,r2, . . . ,rn, which is a contradiction. Hence BBB is nonsingular, and the Wronskian det(BBB) is
nonzero . ⌅

We use an example to show how to solve such kind of ODE:

⌅ Example 8.3 Find the general solution to

y(4)�7y000+6y00+30y0 �36y = 0 (8.18)

Solution. The characteristic equation for Eq.(8.18) is:

r4 �7r3 +6r2 +30r�36 = 0. (8.19)

How to solve this equation? If r = p
q is a root for general characteristic equation

a0rn +a1rn�1 + · · ·+an�1r+an = 0.

where p and q are coprime, then p must be a factor of an and q must be a factor of a0.
Hence for Eq.(8.19), the factors of a0 are ±1, the factors of an are ±1,±2,±3,±6,±9,±12.
By testing these possible roots, we find that �2 and 3 are actual roots. Hence we could
factorize Eq.(8.19) as:

(r�3)(r+2)(r2 �6r+6) = 0

Hence r1 =�2,r2 = 3,r3 = 3�
p

3,r4 = 3+
p

3. The general solution is given by:

y = c1e�2t + c2e3t + c3e(3�
p

3)t + c4e(3+
p

3)t .

⌅

⌅

Some roots of Eq.(8.15) are complex
If some roots of Eq.(8.15) are complex, they must occure in pairs, i.e. l ± iµ . In this case, we
could replace the complex-valud solutions e(l+iµ)t and e(l�iµ)t by the real-valued solutions:

el t cos µt, el t sin µt.

⌅ Example 8.4 Find the general solution to

y(4)� y = 0. (8.20)

Solution. The characteristic equation for Eq.(8.20) is:

r4 �1 = 0. (8.21)
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We derive that r = 1,�1,±i. And we take the real and imaginary part of the solution eit to
form real-valued solution:

eit = cos t + isin t =) ¬(eit) = cos t, ¡(eit) = sin t.

Hence {et ,e�t ,cos t,sin t} forms fundamental set of solutions. The general solution is given
by:

y = c1et + c2e�t + c3 cos t + c4 sin t.

⌅

⌅

Some roots of Eq.(8.15) are repeated
If one root r1 of Eq.(8.15) is repeated with multipicity s, then the corresponding solutions to
ODE(8.14) is:

er1t , ter1t , t2er1t , . . . , ts�1er1t .

Moreover, if r1 is complex, i.e. r1 = l + iµ , then the corresponding conjugate of r1, l � iµ is
also the root of Eq.(8.15) with multipicity s. In this case, we could replace the complex-valued
solutions e(l+iµ)t , . . . , ts�1e(l+iµ)t and e(l�iµ)t , . . . , ts�1e(l�iµ)t by the real valued solutions by
taking the real and imaginary part of {e(l+iµ)t , . . . , ts�1e(l+iµ)t} (or {e(l�iµ)t , . . . , ts�1e(l�iµ)t}):

Real part: el t cos µt, tel t cos µt, t2el t cos µt, . . . , ts�1el t cos µt

Imaginary part: el t sin µt, tel t sin µt, t2el t sin µt, . . . , ts�1el t sin µt

⌅ Example 8.5 Find the general solution of

y(4) +2y00+ y = 0 (8.22)

Solution. The characteristic equation for Eq.(8.22) is:

r4 +2r2 +1 = (r2 +1)(r2 +1) = 0. (8.23)

We derive that r = i, i,�i,�i. Hence the fundamental solution is:

eit , teit , e�it , te�it

We take the real and imaginary part of {eit , teit} or {e�i, te�it} to form real-valued solution:

Real part: cos t, t cos t
Imaginary part: sin t, t sin t

The general solution is given by:

y = c1 cos t + c2 sin t + c3t cos t + c4t sin t.
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⌅

⌅

How to solve some special characteristic equations ?
Some characteristc equations are difficult to solve. Here we introduce one kind of such equation:

rn +1 = 0. (8.24)

How to solve it? We find the roots of Eq.(8.24) must satisfy

r = (�1)1/n.

A useful way to compute (�1)1/n is to use Euler’s formula eip +1 = 0. It follows that

�1 = eip = cosp + isinp = cos(p +2mp)+ isin(p +2mp = exp[i(p +2mp)]

where m is arbitrary integer. Thus

(�1)1/n = exp


i
(p +2mp)

n

�
= cos

✓
(p +2mp)

n

◆
+ isin

✓
(p +2mp)

n

◆

The n roots of Eq.(8.24) are obtained by setting m = 0,1,2, . . . ,n�1:

r = cos
✓
(p +2mp)

n

◆
+ isin

✓
(p +2mp)

n

◆
for m = 0,1,2, . . .n�1.

8.2 The method of undetermined coefficients
Here we want to find s particular solution of the nonhomogeneous ODE with constant coeffi-
cients

a0y(n) +a1y(n�1) + · · ·+an�1y0+any = g(t) (8.25)

Before begin to solve it, we should make sure that our g(t) only belong to the class of functions
discussed below:

eat(exponential) sinat or cosat(triangle) Pn(t)(polynomial)

or the sums or the products of such functions above. Otherwise we cannot solve this ODE
using this method, we have to use variation of parameters discussed in the next lecture!
We want to find the particular solution Y (t) to Eq.(8.25) by guessing the forms of Y (t). We can
check the table below as the reference:

Note: Here a is a “root” means a is a root of the characteristic equation
a0rn +a1rn�1 + · · ·+an�1r+an = 0.

g(t) Y (t) The value for s

keat Atseat s =

(
0,if a is not a root.
m,if a = r1, r1is a root with multiplicity m

Pn(t)eat Qn(t)tseat Same as above

(
Pneat sinb t
Pneat cosb t

(
[Qn(t)cosb t

+Rn(t)sinb t]tseat s =

(
0,if a + ib is not a root.
m,if a + ib = r1, r1 is a root with mutlipliticym.
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After guessing the forms of Y (t), we derive Y 0,Y 00, . . . ,Y (n), then we plug them into our Eq.(8.25)
to determine the coefficients. Thus we obtain our particular solution Y (t).
The general solution to Eq.(8.25) is obtained as:

y = yc(t)+Y (t)

where yc(t) is the solution to the homogeneous part, Y (t) is the particular solution.
We use two examples to show how to implement this method:

⌅ Example 8.6 Find the general solution to the ODE

y000 �3y00+4y0 �2y = t2e2t (8.26)

Proof. • For its homogeneous part, the characteristic equation is given by:

r3 �3r2 +4r�2 = 0. =) (r�1)(r2 �2r+2) = 0.

Thus r1 = 1,r2 = 1+ i,r3 = 1� i. We take the real and imaginary part of the solution
e(1+i)t :

¬(e(1+i)t) = ¬(et(cos t + isin t)) = et cos t

¡(e(1+i)t) = ¡(et(cos t + isin t)) = et sin t

Hence the solution to the homogeneous part is:

yc = c1et + c2et cos t + c3et sin t

• Then we want to find the particular solution. Checking the table above, we guess the
form of Y (t) to be:

Y (t) = (At2 +Bt +C)e2t

It follows that

Y 0 = (2At +B)e2t +2(At2 +Bt +C)e2t

= [2At2 +(2A+2B)t +(B+2C)]e2t

Y 00 = [4At +(2A+2B)]e2t +2[2At2 +(2A+2B)t +(B+2C)]e2t

= [4At2 +(8A+4B)t +(2A+4B+4C)]e2t

Y 000 = [8At +(8A+4B)]e2t +2[4At2 +(8A+4B)t +(2A+4B+4C)]e2t

= [8At2 +(24A+8B)t +(12A+12B+8C)]

We plug the above formulas to Eq.(8.26) to obtain:

[8At2] �3[4At2]+4[2At2] �2[At2] = t2e2t

[(24A+8B)t] �3[(8A+4B)t]+4[(2A+2B)t] �2[Bt] = 0
[(12A+12B+8C)] �3[(2A+4B+4C)]+4[(B+2C)] �2C = 0.
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It follows that

8A�12A+8A�2A = 1
(24A+8B)�3(8A+4B)+4(2A+2B)�2B = 0

(12A+12B+8C)�3(2A+4B+4C)+4(B+2C)�2C = 0
=)

8
>>>><

>>>>:

A =
1
2

B =�2

C =
5
2

The particular solution is given by:

Y (t) =
✓

1
2

t2 �2t +
5
2

◆
e2t .

The general solution is obtained:

y = yc +Y (t) = c1e2t + c2et cos t + c3et sin t +
✓

1
2

t2 �2t +
5
2

◆
e2t .

In fact, if you are not sure whether your particular solution is correct when doing your
homework, you can open your MATLAB and enter the code:

The result is

Hence you only need to solve linear system of equation. Based on the result, you enter

You will get the corrsponding coefficients

A =
1
2
, B =�2, C =

5
2

which agrees with our result.
⌅

⌅

⌅ Example 8.7 Find the general solution to the ODE

y000 �3y00+2y0 = t + et = t · e0t + e2t (8.27)
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Solution. • For the homogeneous part, the characteristic equation is given by:

r3 �3r2 +2r = r(r�1)(r�2) = 0

Hence r1 = 0,r2 = 1,r3 = 2. The solution to the homogeneous part is:

yc(t) = c1 + c2et + c3e2t .

• Then we want to find the particular solution. Note that 0 is a root of the characteristic
equation. Hence we guess the first term of Y (t) is (At +B)t. Since 2 is a root of the
characteristic, we guess the second term of Y (t) is Cte2t . Hence

Y (t) = (At +B)t +Cte2t = At2 +Bt +Cte2t .

It follows that

Y 0 = 2At +B+C(2t +1)e2t

Y 00 = 2A+C(4t +4)e2t

Y 000 =C(8t +12)e2t

We plug the above formulas to Eq.(8.27) to obtain:

C(8t +12)e2t �3C(4t +4)e2t +2C(2t +1)e2t = e2t

0�3 · (2A)+2 · (2At +B) = t

It follows that

8C�12C+4C = 0
12C�12C+2C = 1

4A = 1
�6A+2B = 0

=)

8
>>>>><

>>>>>:

A =
1
4

B =
3
4

C =
1
2

Thus the particular solution is given by:

Y (t) =
1
4

t2 +
3
4

t +
1
2

te2t

The general solution is given by:

y = yc +Y = c1 + c2et + c3e2t +
1
4

t2 +
3
4

t +
1
2

te2t .

⌅

⌅

8.3 Variation of parameters
We could use variation of parameters to determine a particular solution of the inhomogeneous
nth order linear differential equation

y(n) + p1(t)y(n�1) + · · ·+ pn�1(t)y0+ pn(t)y = g(t) (8.28)
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⌅ Solution 8.1 Here we want to find the particular solution to Eq.(8.28). Suppose we have
known a fundamental set of solutions {y1,y2, . . . ,yn} to the corresponding homogeneous
ODE. Then the general solution to the homogeneous equation is:

yc = c1y1 + c2y2 + · · ·+ cnyn

The idea of variation of parameters is that we guess our particular solution to be:

Y (t) =C1(t)y1 +C2(t)y2 + · · ·+Cn(t)yn (8.29)

We take the derivative for Y (t) to obtain:

Y 0 = [C0
1y1 +C1y01]+ [C0

2y2 +C2y02]+ · · ·+[C0
nyn +Cny0n]

= [C1y01 +C2y02 + · · ·+Cny0n]+ [C0
1y1 +C0

2y2 + · · ·+C0
nyn]

And we set the first condition:

C0
1y1 +C0

2y2 + · · ·+C0
nyn = 0. (8.30)

It follows that

Y 0 =C1y01 +C2y02 + · · ·+Cny0n

And we continue to calculate Y 00, . . . ,Y (n�1) recursively. After each differentiation, we set the
sum of terms invoving C0

1,C
0
2, . . . ,C

0
n to be zero, i.e.

C0
1y(k�1)

1 +C0
2y(k�1)

2 + · · ·+C0
ny(k�1)

n = 0. for k = 1,2, . . . ,n�1. (8.31)

As a result, the kth order derivative for Y (t) could be expressed as:

Y (k)(t) =C1y(k)1 +C2y(k)2 + · · ·+Cny(k)n for k = 1,2, . . . ,n�1.

It follows that

Y (n)(t) = [C1y(n)1 +C2y(n)2 + · · ·+Cny(n)n ]+ [C0
1y(n�1)

1 +C0
2y(n�1)

2 + · · ·+C0
ny(n�1)

n ]
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Substituting y,y0, . . . ,y(n) in Eq.(8.28), we derive:

y(n) + p1(t)y(n�1) + · · ·+ pn�1(t)y0+ pn(t)y = g(t)

= [C1y(n)1 +C2y(n)2 + · · ·+Cny(n)n ]+ p1(t)[C1y(n�1)
1 +C2y(n�1)

2 + · · ·+Cny(n�1)
n ]

+ p2(t)[C1y(n�2)
1 +C2y(n�2)

2 + · · ·+Cny(n�2)
n ]+ . . .

+ pn(t)[C1y1 +C2y2 + · · ·+Cnyn]+ [C0
1y(n�1)

1 +C0
2y(n�1)

2 + · · ·+C0
ny(n�1)

n ]

=C1[y
(n)
1 + p1(t)+ y(n�1)

1 + · · ·+ pn�1(t)y01 + pn(t)y1]+ · · ·

+Cn[y
(n)
n + p1(t)+ y(n�1)

n + · · ·+ pn�1(t)y0n + pn(t)yn]

+ [C0
1y(n�1)

1 +C0
2y(n�1)

2 + · · ·+C0
ny(n�1)

n ]

=
n

Â
m=1

Cm[y
(n)
m + p1(t)+ y(n�1)

m + · · ·+ pn�1(t)y0m + pn(t)ym]

+ [C0
1y(n�1)

1 +C0
2y(n�1)

2 + · · ·+C0
ny(n�1)

n ]

Since y1,y2, . . . ,yn are solutions to the homogeneous part, Hence the term for summation in
the equation above is zero. Hence

y(n) + p1(t)y(n�1) + · · ·+ pn�1(t)y0+ pn(t)y = g(t)

=C0
1y(n�1)

1 +C0
2y(n�1)

2 + · · ·+C0
ny(n�1)

n

Thus we only need to solve the equation

g(t) =C0
1y(n�1)

1 +C0
2y(n�1)

2 + · · ·+C0
ny(n�1)

n (8.32)

We write the Eq.(8.31) and Eq.(8.32) together into compact matrix form:
0

BBB@

y1 y2 · · · yn
y01 y02 · · · y0n
...

...
. . .

...

y(n�1)
1 y(n�1)

2 · · · y(n�1)
n

1

CCCA

0

BBB@

C0
1

C0
2
...

C0
n

1

CCCA
=

0

BBB@

0
0
...
g

1

CCCA
(8.33)

We apply cramer’s rule to get C0
is in Eq.(8.33):

Ci =
AAAi

W (t)
for i = 1,2, . . . ,n

where AAAi is the determinant obtained by replacing the ith column of W (t) by the column
(0,0,0, . . . ,g). W (t) is the Wronskian of Eq.(8.28).
Moreover, to simplifty computation, we write AAAi as the product of Wi(t) and g(t):

AAAi = g(t)Wi(t)
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where Wi(t) is the determinant obtained by replacing the ith column of W (t) by the column
(0,0,0, . . . ,1).
Hence we derive:

C0
i(t) =

g(t)Wi(t)
W (t)

=) Ci(t) =
Z g(s)Wi(s)

W (s)
ds for i = 1,2, . . . ,n

Hence our particular solution is given by:

Y (t) =
n

Â
i=1

Ci(t)yi(t).

⌅

The part discussed above could be summarize into one theorem, which can be used directly in
exam:

Theorem 8.4 Assume that p1, p2, . . . , pn and g are c.n.t. on an open interval I, and {y1,y2, . . . ,yn}
are a fundamental set of solutions to homogeneous Eq.(8.28), then a particular solution to
Eq.(8.28) is

y0(t) =
n

Â
i=1

Z g(s)Wi(s)
W (s)

ds
�

yi

The general solution is given by

y(t) = c1y1 + c2y2 + · · ·+ cnyn| {z }
solution to homogeneous ODE

+ y0(t)|{z}
particular solution

for arbitrary constants c1,c2, . . . ,cn.

Here we show two examples on how to sovle inhomogeneous high order linear ODE:

⌅ Example 8.8 Find the general solution to equation:

y000 �3y00+4y0 �2y =
et

cos t
, t 2

⇣
�p

2
,
p

2

⌘
(8.34)

(Hint: you may use the formula
R 1

cos t dt = 1
2 ln |1+sin t

1�sin t |+C.)
It is easy to verify that the general solution to the corresponding homogeneous ODE is:

yc = c1et + c2et cos t + c3et sin t.

The formula for the particular solution is:

y0(t) =
3

Â
i=1

Z g(s)Wi(s)
W (s)

ds
�

yi

By the Abel’s theorem (Theorem(8.2)), we compute the Wronskian W (t):

W (t) = exp

�
Z
(�3)dt

�
= e3t .
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Or you may calculate the Wronskian directly:

W (t) =

������

et et cos t et sin t
et et(cos t � sin t) et(sin t + cos t)
et et(�2sin t) et(2cos t)

������
= e3t

������

1 cos t sin t
1 cos t � sin t sin t + cos t
1 �2sin t 2cos t

������
= e3t

And we derive:

W1(t) =

������

0 et cos t et sin t
0 et(cos t � sin t) et(sin t + cos t)
1 et(�2sin t) et(2cos t)

������
= e2t .

W2(t) =

������

et 0 et sin t
et 0 et(sin t + cos t)
et 1 et(2cos t)

������
=�e2t cos t

W3(t) =

������

et et cos t 0
et et(cos t � sin t) 0
et et(�2sin t) 1

������
=�e2t sin t

It follows that

Y (t) = et
Z et

cos t e2t

e3t dt + et cos t
Z et

cos t · (�e2t cos t)
e3t dt + et sin t

Z et

cos t · (�e2t sin t)
e3t dt

= et
Z 1

cos t
dt + et cos t

Z
(�1)dt + et sin t

Z
(� tan t)dt

= et · 1
2

ln
����
1+ sin t
1� sin t

����� tet cos t + et sin t ln |cos t|

Since t 2 (�p

2 ,
p

2 ), we obtain our particular solution:

Y (t) = et · 1
2

ln(
1+ sin t
1� sin t

)� tet cos t + et sin t ln(cos t)

Hence our general solution is given by:

y = yc(t)+Y (t)

= c1et + c2et cos t + c3et sin t + et · 1
2

ln(
1+ sin t
1� sin t

)� tet cos t + et sin t ln(cos t)

⌅

⌅ Example 8.9 Find the solution to the IVP:

y000 � y00+ y0 � y = g(t), y(0) = 0,y0(0),y00(0) = 0. (8.35)

It is easy to verify that the geneous solution to the corresponding homogeneous ODE is

yc = c1et + c2 cos t + c3 sin t.
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The formula for the particular solution is:

y0(t) =
3

Â
i=1

Z g(s)Wi(s)
W (s)

ds
�

yi

By Abel’s theorem, the Wronskian is obtained:

W (t) = exp

�
Z
(�1)dt

�
= et

Or you may calculate it directly:

W (t) =

������

et cos t sin t
et �sin t cos t
et �cos t �sin t

������
=

������

et cos t sin t
0 �sin t � cos t cos t � sin t
0 �2cos t �2sin t

������
= 2et

And we derive:

W1(t) =

������

0 cos t sin t
0 �sin t cos t
1 �cos t �sin t

������
= 1

W2(t) =

������

et 0 sin t
et 0 cos t
et 1 �sin t

������
= et(sin t � cos t)

W3(t) =

������

et cos t 0
et �sin t 0
et �cos t 1

������
= et(�sin t � cos t)

It follows that

Y (t) = et
Z g(t) ·1

2et dt + cos t
Z g(t) · et(sin t � cos t)

2et dt + sin t
Z g(t) · et(�sin t � cos t)

2et dt

=
1
2

et
Z

g(t)e�t dt +
1
2

cos t
Z

g(t)(sin t � cos t)dt � 1
2

sin t
Z

g(t)(sin t + cos t)dt

Hence the general solution to Eq.(8.35) is given by:

y = y0(t)+Y (t)

= c1et + c2 cos t + c3 sin t +
1
2

et
Z

g(t)e�t dt

+
1
2

cos t
Z

g(t)(sin t � cos t)dt � 1
2

sin t
Z

g(t)(sin t + cos t)dt

And we find that

y(0) = c1 + c2 +
1
2

Z
g(t)e�t dt

�

t=0
+

1
2

Z
g(t)(sin t � cos t)dt

�

t=0
= 0.

Warning: Remember that you should consider the indefinite integration as the function
with respect to t and think about the derivative of this indefinite integration.
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y0(0) = c1 + c3 +
1
2

Z
g(t)e�t dt

�

t=0
+

1
2
⇥
g(0)e�0 dt

⇤

+
1
2
[g(0)(0�1)]� 1

2

Z
g(t)(sin t + cos t)dt

�

t=0

= c1 + c3 +
1
2

Z
g(t)e�t dt

�

t=0
� 1

2

Z
g(t)(sin t + cos t)dt

�

t=0
= 0.

y00(0) = c1 � c2 +
1
2

Z
g(t)e�t dt

�

t=0
� 1

2

Z
g(t)(sin t � cos t)dt

�

t=0
= 0.

It follows that
8
>>>>>>><

>>>>>>>:

c1 =�1
2

Z
g(t)e�t dt

�

t=0

c2 =�1
2

Z
g(t)(sin t � cos t)dt

�

t=0

c3 =
1
2

Z
g(t)(sin t + cos t)dt

�

t=0

Thus the solution to the IVP is given by:

y =�1
2

et
Z

g(t)e�t dt
�

t=0
� 1

2
cos t

Z
g(t)(sin t � cos t)dt

�

t=0
+

1
2

sin t
Z

g(t)(sin t + cos t)dt
�

t=0

+
1
2

et
Z

g(t)e�t dt +
1
2

cos t
Z

g(t)(sin t � cos t)dt � 1
2

sin t
Z

g(t)(sin t + cos t)dt

=
1
2

et
⇢Z

g(t)e�t dt �
Z

g(t)e�t dt
�

t=0

�

+
1
2

cos t
⇢Z

g(t)(sin t � cos t)dt �
Z

g(t)(sin t � cos t)dt
�

t=0

�

� 1
2

sin t
⇢Z

g(t)(sin t + cos t)dt �
Z

g(t)(sin t + cos t)dt
�

t=0

�

=
1
2

et
Z t

0
g(s)e�s ds+

1
2

cos t
Z t

0
g(s)(sins� coss)ds� 1

2
sin t

Z t

0
g(s)(sins+ coss)ds

=
1
2

Z t

0
g(s)et�s � sin(t � s)� cos(t � s)ds

⌅
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9.1 Introduction to 1st order system ODE
The nth order linear ODE could be transformed into 1st order linear system ODE. For example,
given the ODE

y(n) + p1(t)y(n�1) + p2(t)y(n�2) + · · ·+ pn�1(t)y0+ pn(t)y = g(t) (9.1)

we want to reduce it into a system, setting x1 = y,x2 = y0, . . . ,xn = yn�1, we could transform this
high order ODE as:

8
>>>>>>>>>>><

>>>>>>>>>>>:

x01 = x2

x02 = x3

...

...

x0n�1 = xn

x0n =�p1(t)xn � p2(t)xn�1 � · · ·� pn(t)x1 +g(t)

Or equivalently, we could write this ststem as compact matrix form:

xxx0 = AAA(t)xxx+ggg(t) (9.2)

where

xxx =
⇥
x1 x2 · · · xn

⇤T

AAA(t) =

2

666664

0 1 0 0 0 · · · 0
0 0 1 0 0 · · · 0
...

...
...

... · · ·
...

0 0 0 0 0 · · · 1
�pn(t) �pn�1(t) �pn�2(t) �pn�3(t) �pn�4(t) · · · �p1(t)

3

777775
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ggg(t) =
⇥
0 0 · · · 0 g(t)

⇤T
.

One reason why we study system of first order equations is that equations of high order can always
be transformed into systems. So if you face lots of calculation for a high order ODE, transforming
it into system and using techniques related to systems to solve it is a goog idea.

Definition 9.1 The general form of first order ODE could be expressed as:
8
>>><

>>>:

x01 = F1(t,x1,x2, . . . ,xn)

x02 = F2(t,x1,x2, . . . ,xn)

· · ·
x0n = Fn(t,x1,x2, . . . ,xn)

(9.3)

where xi : C 7! C is a function of t, Fi : Cn+1 7! C for i = 1,2, . . . ,n. t 2 C.
Also, we could write the system into matrix form:

xxx0 = fff (t,xxx). (9.4)

where xxx : C 7! Cn⇥1 is a function of t, f : Cn+1 7! Cn is a function of t and xxx. ⌅

Consider the IVP:

xxx0 = fff (t,xxx), fff (t0) = ccc0 (9.5)

When does such problem exist a unqiue solution? We consider this problem under the assumption
below:
Assumption: On a rectangle region R = {(t,xxx) : |t � t0| a, |xxx� xxx0| b}, where a and b are
two positive numbers, we have:

1. t 2 R.
2. All entries of xxx and fff (t,xxx) are real-valued.
3. All entries of ∂ fff

∂xxx are continuous. i.e.

∂Fi

∂x j
are continuous for i, j 2 {1,2, . . . ,n}.

Then we obtain the existence and uniqueness theorem:

Theorem 9.1 — Existence and Uniqueness theorem.
Under the assumption above, there exists a unqiue solution xxx0 = (f1(t),f2(t), . . . ,fn(t)) of
Eq.(9.5) on the interval |t � t0|< a.

The proof for this theorem is skipped.
It is easy to find solutions to a specific kind of system of ODE. That is the first order lienar
ODE:
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Definition 9.2 The general form of first order linear ODE could be expressed as:
8
>>>>><

>>>>>:

x01 = p11(t)x1 + p12(t)x2 + · · ·+ p1n(t)xn +g1(t)
x02 = p21(t)x1 + p22(t)x2 + · · ·+ p2n(t)xn +g2(t)
...

x0n = pn1(t)x1 + pn2(t)x2 + · · ·+ pnn(t)xn +gn(t)

(9.6)

Also, we could write it into compact matrix form:

xxx0 = AAA(t)xxx+ggg(t) (9.7)

where

xxx =
⇥
x1 x2 · · · xn

⇤T

AAA =

2

6664

p11(t) p12(t) · · · p1n(t)
p21(t) p22(t) · · · p2n(t)

...
...

. . .
...

pn1(t) pn2(t) · · · pnn(t)

3

7775

ggg(t) =
⇥
g1(t) g2(t) · · · gn(t)

⇤T

⌅

If g1(t) = g2(t) = · · ·= gn(t) = 0, the system(9.6) is called homogeneous system, otherwise it
is inhomogeneous.
In the following lectures we will talk about how to find solutions to such kind of system of ODEs.
But now let’s talk about when does this system exist unique solution first.
Consider the IVP:

xxx0 = AAA(t)xxx+ggg(t), xxx(t0) = xxx0 (9.8)

Assumption: On a open interval I = {t : a < t < b}, where a and b are two real nu,bers, we
have:

All entries of AAA(t) and all entries of ggg(t) are continuous

Then we obtain the existence and uniqueness theorem:

Theorem 9.2 — Existence and Uniqueness theorem for linear system.
Under the assumption above, there exists a unqiue solution xxx0 =

⇥
f1(t) f2(t) · · · fn(t)

⇤

of the Eq.(9.8) on the interval I : a < t < b .
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9.2 Review of Matrices
9.2.1 Linearly dependent/independent vectors

Consider k vectors

aaa1 =

0

BBB@

a11
a21
...

an1

1

CCCA
, , · · · , ,aaak =

0

BBB@

a1k
a2k
...

ank

1

CCCA

A collection of vectors aaa1,aaa2, . . . ,aaak is said to be linearly dependent if 9 constants x1, . . . ,xk 2
Rn that are not all zero s.t.

x1aaa1 + x2aaa2 + · · ·+ xkaaak = 000.

Otherwise they are linearly independent.
Moreover, aaa1,aaa2, . . . ,aaak is linearly dependent if and only if AAAxxx = 000 has non-zero solution,
where

AAA =
⇥
aaa1 aaa2 . . . aaak⇤ ,

xxx =
�
x1 x2 · · · xk

�
.

9.2.2 Inverse, nonsingular / invertible
Square matrix AAA is called nonsingular or invertible if 9 BBB s.t.

AAABBB = III and BBBAAA = III

where III is identity matrix.
If AAA is nonsingular, its inverse is denoted by AAA�1. Then we have

AAAxxx = 000 =) AAA�1AAAxxx = 000 =) xxx = 000

Thus column vectors of AAA are linearly independent.

Theorem 9.3 These statements are equivalent:
1. AAA is nonsingular
2. AAAxxx = 000 has zero solution only
3. AAAxxx = bbb has unique solution
4. column vectors of AAA are linearly independent.
5. det(AAA) 6= 0.

Theorem 9.4
These statements are equivalent:

1. AAA is singular
2. AAAxxx = 000 has nonzero solution
3. column vectors of AAA are linear dependent
4. det(AAA) = 0.
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9.2.3 Determinant
We list some nice properties about determinant:

• det(AAABBB) = det(AAA)det(BBB) for any AAA,BBB 2 Rm⇥m.
• det(AAA) = det(AAAT).
• det(aAAA) = a

m det(AAA) for any a 2 R,AAA 2 Rm⇥m.
• det(AAA�1) = 1

det(AAA) for any nonsingular AAA.
• det(BBB�1AAABBB) = det(AAA) for any nonsingular BBB.
• If AAA 2 Rm⇥m is triangular, either upper or lower,

det(AAA) =
m

’
i=1

aii

Proof. Apply cofactor expansion inductively. ⌅

• If AAA 2 Rm⇥m takes a block upper triangular form:

AAA =


BBB CCC
000 DDD

�

where BBB and DDD are square, then

det(AAA) = det(BBB)det(DDD).

9.2.4 Gaussian Elimination
The inverse of a matrix could be derived by elementary row operations:

[AAA|III] =) elementary row operations[III|AAA�1]

Let me show you an example:

⌅ Example 9.1 Find the inverse of

AAA =

0

@
1 2 �3
�2 �2 3
2 4 6

1

A

Solution.

[AAA|III] =

2

4
1 2 �3 1 0 0
�2 �2 3 0 1 0
2 4 6 0 0 1

3

5 Add 2⇥Row 1 to Row 2
===============)
Add (�2)⇥Row 1 to Row 3

2

4
1 2 �3 1 0 0
0 2 �3 2 1 0
0 0 12 �2 0 1

3

5

Row 2⇥ 1
2======)

Row 3⇥ 1
12

2

4
1 2 �3 1 0 0
0 1 � 3

2 1 1
2 0

0 0 1 � 1
6 0 1

12

3

5 Add 3⇥Row 3 to Row 1
=============)
Add 3

2⇥Row 3 to Row 2

2

4
1 2 0 1

2 0 1
4

0 1 0 3
4

1
2

1
8

0 0 1 � 1
6 0 1

12

3

5

Add (�2)⇥Row 2 to Row 1
===============)

2

4
1 0 0 �1 �1 0
0 1 0 3

4
1
2

1
8

0 0 1 � 1
6 0 1

12

3

5

⌅
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⌅

9.2.5 Eigenvalues & Eigenvectors
Definition 9.3 We want to study a Key Problem:
Given a AAA 2 Rn⇥n (or Cn⇥n), we want to find a vector vvv 2 Cn with vvv 6= 000 such that

AAAvvv = lvvv for some l 2 C (9.9)

• (9.9) is called an eigenvalue problem or eigen-equation.
• Let (vvv,l ) be a solution to Eq.(9.9), we say

– (vvv,l ) is an eigen-pair of AAA.
– l is an eigenvalue of AAA; vvv is an eigenvector of AAA associated with l

• If (vvv,l ) is an eigen-pair of AAA, (avvv,l ) is also an eigen-pair of AAA associatd with l .
⌅

But how to find eigenvalues and eigenvectors?

• From the eigenvalue problem we see that

AAAvvv = lvvv for some vvv 6= 000 () (AAA�l III)vvv = 000 for some vvv 6= 000.
() det(AAA�l III) = 0

We let p(l ) = det(AAA�l III), which is called the characteristic polynomial of AAA.
Solving for det(AAA�l III) = 0, which is called the characteristic equation, we could derive
n eigenvalues of AAA.

• For n eigenvalues of AAA, l1,l2, . . . ,ln, we can solve for

AAAvvvi = livvvi for i = 1,2, . . . ,n

to derive eigenvectors associated with n eigenvalues.

⌅ Example 9.2 Let’s try to derive the eigenvalue and eigenvector of

AAA =


1 0
1 2

�

The characteristic equation is given by:

det(AAA�l III) =
����
1�l 0

1 2�l

����= (1�l )(2�l ) = 0.

Thus l1 = 1,l2 = 2.
When l = 1, we have to solve

(AAA�l III)vvv1 = 000 =)


0 0
1 1

�
vvv1 = 000 =) vvv1 = c

✓
�1
1

◆

When l = 2, we have to solve

(AAA�l III)vvv2 = 000 =)

�1 0
1 0

�
vvv2 = 000 =) vvv2 = c

✓
0
1

◆
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Hence (l1,vvv1) and (l2,vvv2) are two eigen-pairs of AAA. ⌅

⌅ Example 9.3 Fact: Eigenvalues and eigenvectors of AAA could be complex even if AAA is real.
For example, consider

AAA =


0 �1
1 0

�

We derive det(AAA�l III) = l

2 +1 = 0 Hence l1 = i,l2 =�i.
When l = i, we find

(AAA�l III)vvv1 = 000 =)
✓
�i �1
1 �i

◆
vvv1 = 000 =) vvv1 = c1

✓
i
1

◆
.

When l =�i, we find

(AAA�l III)vvv2 = 000 =)
✓

i �1
1 i

◆
vvv2 = 000 =) vvv2 = c2

✓
�i
1

◆
.

Hence (i,vvv1) and (�i,vvv2) are two eigen-pairs of AAA. ⌅

Definition 9.4 — Multiplicity.
Suppose matrix AAA 2 Rn⇥n has distinct eigenvalues li for i = 1,2, . . . ,k.

• The algebraic multiplicity of an eigenvalue li, i 2 {1,2, . . . ,k} is defined as the num-
ber of times that li appears as a root of the det(AAA�l III). We denote the algebraic
multiplicity of li as mi. In other words, we denote mi as the number of repeated
eigenvalues of li.

• The geometric multiplicity of an eigenvalue li, i 2 {1,2, . . . ,k} is defined as the
maximal number of linearly independent eigenvectors associated with li. And we
denote the geometric multiplicity of li as qi. Note that qi = dim(N(AAA�liIII)).

⌅

Proposition 9.1 We have mi � qi for i = 1,2, . . . ,k.

The implication is that The number of repeated eigenvalues of li � The number of linearly
independent eigenvectors associated with li.
And mi > qi is possible, let’s raise an example:

⌅ Example 9.4

AAA =

2

4
0 0 1
0 0 0
0 0 0

3

5

We can verify that the roots of det(AAA�l III) are l1 = l2 = l3 = 0. Thus we have k = 1,m1 = 3.
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However, we can also verify that

N(l �l1III) = N(AAA) = span

8
<

:

0

@
1
0
0

1

A ,

0

@
0
1
0

1

A

9
=

;

And consequently, q1 = dim(N(AAA�l1III)) = 2. Thus m1 > q1. ⌅

Proof for proposition. For convenience, we let l0 2 {l1, . . . ,lk} be any eigenvalue of AAA, and
we denote q = dim(N(AAA�l0III)). We only need to show that det(AAA�l III) has at least q repeated
roots for l = l0.
Firstly, let’s focus on real eigenvalues and real eigenvectors:

• From concepts for subspace, we can find a collection of orthonormal vectors vvv1, . . . ,vvvq 2
N(AAA�l0III) and a collection of vectors vvvq+1, . . . ,vvvn 2 Rn such that

VVV =
⇥
vvv1 vvv2 · · · vvvn

⇤
is orthogonal.

Let VVV 1 =
⇥
vvv1 vvv2 · · · vvvq

⇤
, VVV 2 =

⇥
vvvq+1 vvvq+2 · · · vvvn

⇤
and note VVV =

⇥
VVV 1 VVV 2

⇤
.

Thus we have

VVV TAAAVVV =


VVV T

1
VVV T

2

�⇥
AAAVVV 1 AAAVVV 2

⇤
=


VVV T

1 AAAVVV 1 VVV T
1 AAAVVV 2

VVV T
2 AAAVVV 1 VVV T

2 AAAVVV 2

�

Since AAAvvvi = l0vvvi for i = 1,2, . . . ,q, we get AAAVVV 1 = l0VVV 1. By also noting that VVV T
1VVV 1 = III

and VVV T
2VVV 1 = 000, we can simplify the above matrix equation into:

VVV TAAAVVV =


l0III VVV T

1 AAAVVV 2
000 VVV T

2 AAAVVV 2

�

It follows that

det(AAA�l III) = det(VVV T(AAA�l III)VVV ) = det(VVV TAAAVVV �l III)

= det
✓
(l0 �l )III VVV T

1 AAAVVV 2
000 VVV T

2 AAAVVV 2 �l III

◆

= (l0 �l )q det(VVV T
2 AAAVVV 2 �l III)

Here det(VVV T
2 AAAVVV 2 �l III) is a polynomial of degree of n�q. From the above equation we

see that det(AAA�l III) has at least q repeated roots for l = l0.
Secondly, the complex eigenvalues and eigenvectors could be proved by extending orthogonal
matrix into unitary matrix.
The proof is complete. ⌅
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10.1 Basic Theory for linear systems of ODEs
It is convenient to write the linear system of ODEs into compact matrix form:

8
<

:

d
dt

xxx = AAA(t)xxx+ggg(t)

xxx(t = t0) = xxx0

And it is meaning to consider the corresponding homogeneous equation:

d
dt

xxx = AAA(t)xxx (10.1)

Once this equation has been solved, there are several methods that could be used to solve the
nonhomogeneous equation, which will be introduced in the end of this chapter. But in this
lecture, let’s talk about some basic theory about the homogeneous equation:

Theorem 10.1 — Principle of superposition.
If the vector xxx(1) and xxx(2) are solutions to Eq.(10.1), then the linear combination c1xxx(1) +c2xxx(2)

is also a solution for c1,c2 2 R.

The proof is easy to verify. As a result, we could conclude that if xxx(1),xxx(2), . . . ,xxx(k) are solutions
of Eq.(10.1), then

xxx = c1xxx(1) + c2xxx(2) + · · ·+ ckxxx(k)

is also a solution to Eq.(10.1) for ci 2 R.

10.1.1 Linear independent
Since any linear combinations is the solution to Eq.(10.1), we want to ask can all solution of
Eq.(10.1) be expressed in this way?
The statement is true if xxx1,xxx2, . . . ,xxxn are n linearly independent vectors:
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Theorem 10.2 If xxx1,xxx2, . . . ,xxxn are n linearly independent solutions to Eq.(10.1) for t 2 I,
where I is an open interval, then every solution xxx = y

y

y(t) could be expressed as the unique
linear combination of xxx1,xxx2, . . . ,xxxn:

y

y

y(t) = c1xxx1 + c2xxx2 + · · ·+ cnxxxn

Proof. The result is obtained if there is a unique solution to the system of equation

AAAxxx = y

y

y(t)

where

AAA =
⇥
xxx1 xxx2 · · · xxxn

⇤

Or equivalently, AAA is invertible. And we know that AAA is invertible if and only if all columns of AAA
are linearly independent. Since xxx1,xxx2, . . . ,xxxn are n linearly independent solutions, the proof
is complete. ⌅

Definition 10.1 If xxx1(t),xxx2(t), . . . ,xxxn are linearly independent solutions to Eq.(10.1), then
{xxx1(t),xxx2(t), . . . ,xxxn} is said to form a fundamental set of solutions of Eq.(10.1). And the
linear combination

xxxc = c1xxx1 + c2xxx2 + · · ·+ cnxxxn

is called the general solution of Eq.(10.1). ⌅

10.1.2 Abel’s Theorem
But how to determine the linear independence of xxx1(t),xxx2(t), . . . ,xxxn(t)? We only need to consider
the determinant of the matrix XXX(t) whose columns are the vectors xxx1,xxx2, . . . ,xxxn:

Definition 10.2 — Wronskian. For solutions to system(10.1), xxx1,xxx2, . . . ,xxxn, the Wronskian
is given by:

W (xxx1,xxx2, . . . ,xxxn)(t) =
��xxx1 xxx2 · · · xxxn

��

The solutions xxx1,xxx2, . . . ,xxxn are lienarly independent at t = t0 if and only if W (xxx1,xxx2, . . . ,xxxn)(t)
is nonzero at t = t0. ⌅

But it is messy to determine the independence of xxx1,xxx2, . . . ,xxxn on interval I if we have to
determine whether the Wronskian is nonzero in the whole interval. We could simplify this
problem by Abel’s theorem:

Theorem 10.3 — Abel’s theorem. For systems of ODE

xxx0 = AAA(t)xxx
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with fundamental set of solutions xxx1,xxx2, . . . ,xxxn, the Wronskian formula is given by:

W (xxx1,xxx2, . . . ,xxxn)(t) = cexp
Z

tr[AAA(t)]dt
�

(10.2)

Proof. We set

XXX(t) =
⇥
xxx1 xxx2 · · · xxxn

⇤
=

2

6664

XXX11 XXX12 · · · XXX1n
XXX21 XXX22 · · · XXX2n
...

...
. . .

...
XXXn1 XXXn2 · · · XXXnn

3

7775

• Firstly, we show that d
dt W (t) = tr(AAA)W (t): We set

W (t) = det[XXX(t)] =
n

Â
i=1

Ci jXXXi j, where Ci j is the corresponding cofactor.

It follows that

∂

∂XXXi j
W =

∂

∂XXXi j
det[XXX(t)] =

∂

∂XXXi j

 
n

Â
i=1

Ci jXXXi j

!
=Ci j, i, j 2 {1,2, . . . ,n}

Thus

d
dt

W (t) =
d
dt

det[XXX(t)] =

"
n

Â
i=1

n

Â
j=1

∂

∂XXXi j
det[XXX(t)]

#
d
dt

XXXi j(t) =
n

Â
i=1

n

Â
j=1

Ci jXXX 0
i j(t). (10.3)

Then we set

CCC =

2

6664

CCC11 CCC12 · · · CCC1n
CCC21 CCC22 · · · CCC2n
...

...
. . .

...
CCCn1 CCCn2 · · · CCCnn

3

7775

It follows that Eq.(10.3) could be expressed as:

d
dt

W (t) = tr(CCCTXXX 0) (10.4)

Since xxxi are solutions of (10.1), we obtain:

xxx0i = AAAxxx for i = 1,2, . . . ,n

Or equivalently,

XXX 0 =
⇥
xxx01 xxx02 · · · xxx0n

⇤
=
⇥
AAAxxx1 AAAxxx2 · · · AAAxxxn

⇤
= AAAXXX . (10.5)

Plugging Eq.(10.5) into Eq.(10.4), we obtain:

d
dt

W (t) = tr(CCCTAAAXXX) = tr
⇥
(CCCTAAA) · (XXX)

⇤

Since tr(AAABBB) = tr(BBBAAA) for arbitrary matrix AAA and BBB, we derive:

d
dt

W (t) = tr
⇥
(XXX) · (CCCTAAA)

⇤
= tr

⇥
(XXXCCCT) · (AAA)

⇤
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By the definition of determinant, we find:

XXXCCCT =

0

BBB@

XXX11 XXX12 · · · XXX1n
XXX21 XXX22 · · · XXX2n
...

...
. . .

...
XXXn1 XXXn2 · · · XXXnn

1

CCCA

0

BBB@

CCC11 CCC21 · · · CCCn1
CCC12 CCC22 · · · CCCn2
...

...
. . .

...
CCC1n CCC2n · · · CCCnn

1

CCCA
=

0

B@
det(XXX)

. . .

det(XXX)

1

CA= III det(XXX)

Hence we derive:

d
dt

W (t) = tr[III ·det(XXX) ·AAA(t)] = tr[AAA(t)]det(XXX) = tr[AAA(t)]W (t). (10.6)

• It is easy to obtain the formula for W (t) from the Eq.(10.6):

W (xxx1,xxx2, . . . ,xxxn)(t) = cexp
Z

tr[AAA(t)]dt
�
.

⌅

R This theorem guarentees that either the Wronskian is zero for all t 2 I or else is never zero
in I.



10.2 Linear ststem with constant coefficients (2⇥2 system) 99

10.2 Linear ststem with constant coefficients (2⇥ 2
system)
We will focus on systems of homogeneous linear equations with constant coefficients, that is,
the systems of the form

xxx0 = AAAxxx (10.7)

where AAA 2 Rn⇥n is a constant matrix.
Let’s focus on 2⇥2 system first:

2⇥2 system:
Specifically speaking, we want to solve for the system:

x01 = a11x1 +a12x2

x02 = a21x1 +a22x2

⌅ Solution 10.1 Firstly, we talk about a case where a21 = 0, the system is given as:

x01 = a11x1 +a12x2 (10.8)
x02 = a22x2 (10.9)

By the Eq.(10.9), we derive:

x2 = c1 exp(a22t)

Substituting x2 into the first equation, we obtain:

x01 = a11x1 + c1a12 exp(a22t)

Solving for this first order ODE, we derive:

x1 = exp(a11t)
Z

exp{(a22 �a11)t} dt
�
= c1

✓
a12

a22 �a11

◆
exp(a22t)+ c2 exp(a11t)

Hence we write the solution in vector valued form:

xxx =
✓

x1(t)
x2(t)

◆
= c1

✓ a12
a22�a11

1

◆
ea22t + c2

✓
1
0

◆
ea11t

If we set r1 = a22,r2 = a11, x

x

x

1 =

✓ a12
a22�a11

1

◆
,xxx 2 =

✓
1
0

◆
, the result could be written as:

xxx = c1x

x

x

1er1t + c2x

x

x

2er2t

⌅

R Concentrating on the result, we find that (r1,xxx
1) and (r2,xxx

2) are two eigen-pairs of AAA.
The solution is given by:

xxx = c1x

x

x

1er1t + c2x

x

x

2er2t
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⌅ Solution 10.2 If a21 6= 0, we want to solve for system

x01 = a11x1 +a12x2 (10.10)
x02 = a21x1 +a22x2 (10.11)

For Eq.(10.11), we solve for x1 in terms of x2:

x1 =
1

a21
(x02 �a22x2). (10.12)

Substituting x1 into Eq.(10.10), we obtain:

1
a21

(x002 �a22x02) = a11 ·
1

a21
(x02 �a22x2)+a12x2

Or equivalently,

x002 � (a11 +a22)x02 +(a11a22 �a21a12)x2 = 0.

The characteristic equation is given by:

r2 � (a11 +a22)r+(a11a22 �a21a12) = 0. (10.13)

Suppose r1 and r2 are roots to this characteristic equation.
• For r1,r2 2 R and r1 6= r2, we solve for x2(t) first:

x2(t) = c1er1t + c2er2t .

By Eq.(10.12), we derive

x1(t) =
1

a21
(c1r1er1t + c2r2er2t � c1a22er1t � c2a22er2t)

= c1

✓
r1 �a22

a21

◆
er1t + c2

✓
r2 �a22

a21

◆
er2t

Hence we write the solution in vector-valued form:

xxx =
✓

x1(t)
x2(t)

◆
= c1x

x

x

1er1t + c2x

x

x

2er2t .

where

x

x

x

1 =

✓ r1�a22
a21

1

◆
, x

x

x

2 =

✓ r2�a22
a21

1

◆

Notice that (r1,xxx
1) and (r2,xxx

2) are two eigen-pairs of AAA.
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• For r1,r2 2 C, i.e. r1 = r̄2, we suppose r1 = l + iµ, r2 = l � iµ .
We write one of the fundamental solution in previous case into complex-valued form:

x

x

x

1er1t =

✓ r1�a22
a21

1

◆
er1t =

 
l+iµ�a22

a21

1

!
el t(cos µt + isin µt)

=

" 
l�a22

a21

1

!
cos µt �

✓
µ

a21

0

◆
sin µt

#
el t + i

" 
l�a22

a21

1

!
sin µt +

✓
µ

a21

0

◆
cos µt

#
el t

We take real and imaginary parts as two linearly independent solutions, then we could
obtain the real-valued solutions:

xxx = c1

" 
l�a22

a21

1

!
cos µt �

✓
µ

a21

0

◆
sin µt

#
el t +c2

" 
l�a22

a21

1

!
sin µt +

✓
µ

a21

0

◆
cos µt

#
el t .

• For r1 = r2 = r 2R, due to the characteristic equation(10.13), we could solve for x2(t):

x2(t) = c1ert + c2tert

By Eq.(10.12), we derive

x1(t) =
1

a21
(c1rert + c2ert + c2rtert � c1a22ert � c2a22tert)

= c1
r�a22

a21
ert + c2

r�a22

a21
tert + c2

1
a21

ert .

Hence we write the solution in vector-valued form:

X(t) =
✓

x1(t)
x2(t)

◆
= c1

✓ r�a22
a21

1

◆
ert + c2

✓ r�a22
a21

1

◆
t +

✓ 1
a21

0

◆�
ert

⌅

Then we summarize how to solve the 2⇥2 system of ODE:

R
• For r1,r2 2 R and r1 6= r2,

AM = GM (algebraic multiplicity=geometric multiplicity). Suppose (r1,xxx
1) and

(r2,xxx
2) are two eigen-pairs of AAA. The solution is given by:

x(t) = c1x

x

x

1er1t + c2x

x

x

2er2t .

• For r1 = l + iµ,r2 = l � iµ ,
AM = GM. We need to take real and imaginary parts of x

x

x

1er1t or x

x

x

2er2t, as another
pair of two linearly independent solutions.

• For r1 = r2 = r 2 R,

r is eigenvalue of AAA with AM = 2. Suppose x

x

x =

✓ r�a22
a21
1

◆
is the eigenvector associ-

ated with r, GM = 1.
The first solution is x

x

x ert , the second solution is not x tert! but to be (xxx t +h

h

h)ert ,
where h

h

h is generalized eigenvector such that

(AAA� rIII)hhh = x

x

x =) h =

✓ 1
a21
0

◆

Further more, the more generalized eigenvector is z s.t.

(AAA� rIII)hhh = z

z

z
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⌅ Example 10.1 Solve xxx0 =
✓

1 1
�1 3

◆
xxx:

For AAA =

✓
1 1
�1 3

◆
, the eigenvalues satisfy:

det(AAA� rIII) = 0 =

����
1� r 1
�1 3� r

����= r2 �4r+4. =) r1 = r2 = 2.

For r = 2, the corresponding eigenvector x

x

x satisfies

(AAA� rIII)xxx =

✓
�1 1
�1 1

◆
x

x

x = 000 =) x

x

x = c
✓

1
1

◆
.

Hence the first solution is given by:

x

x

x ert =

✓
1
1

◆
e2t .

The generalized eigenvector h associated with r = 2 satisfies

(AAA� rIII)hhh = x

x

x =)
✓
�1 1
�1 1

◆
h

h

h =

✓
1
1

◆
=) h

h

h = c
✓

0
1

◆

Hence the second solution is given by:

(xxx t +h

h

h)ert =

✓
1
1

◆
t +

✓
0
1

◆�
e2t .

Hence the general solution is given by:

xxx = c1

✓
1
1

◆
e2t + c2

✓
1
1

◆
t +

✓
0
1

◆�
e2t .

⌅

⌅ Example 10.2 Solve xxx0 =
✓
�1

2 1
�1 �1

2

◆
xxx:

For AAA =

✓
� 1

2 1
�1 � 1

2

◆
, the eigenvalues satisfy:

det(AAA� rIII) = 0 =

����
� 1

2 � r 1
�1 � 1

2 � r

����= r2 + r+
5
4
. =) r1 =�1

2
+ i, r2 =�1

2
� i.

We find the corresponding eigenvector of r1:

(AAA� r1III)xxx 1 = 000 =)
����
�i 1
�1 �i

����xxx
1 = 000 =) x

x

x

1 =

✓
1
i

◆
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The first solution is given by:

xxx(1)(t)= x

x

x

1er1t =

✓
1
i

◆
e(�

1
2+i)t =

✓
1
i

◆
e�t/2(cos t+isin t)=

✓
cos t
�sin t

◆
e�t/2+i

✓
sin t
cos t

◆
e�t/2

We take the real and imaginary part of xxx(1) to form two linearly independent fundamental set
of solutions:

uuu =

✓
cos t
�sin t

◆
e�t/2, vvv =

✓
sin t
cos t

◆
e�t/2.

Thus the general solution is given by:

xxx = c1

✓
cos t
�sin t

◆
e�t/2 + c2

✓
sin t
cos t

◆
e�t/2.

⌅
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11.1 Linear system with constant coefficients (3⇥ 3
system)
Now we have learnt how to solve a 2⇥ 2 linear system with constant coefficients. Let’s talk
about the 3⇥3 case:

xxx0 = AAA3⇥3xxx (11.1)

But notice that in this lecture we will not talk about the case where AAA has three repeated
eigenvalue in Eq.(11.1). This is because in the section, we will introduce a much easier and
much beautiful technique to solve this case.

11.1.1 Matrix A has real, distinct eigenvalues
In this case, we just need to find three eigen-pairs (ri,xxx

i) for i = 1,2,3. The general solution is
given by:

xxx = c1x

x

x

1er1t + c2x

x

x

2er2t + c3x

x

x

3er3t

⌅ Example 11.1 Solve xxx0 =

0

@
0 1 1
1 0 1
1 1 0

1

A.

The eigenvalues of AAA must satisfy:

det(AAA�rIII)=

������

�r 1 1
1 �r 1
1 1 �r

������
=�(r+1)(r�1)(r�2)= 0 =) r1 = 2, r2 =�1, r3 = 1.
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The eigenvector corresponding to r1 = 2 must satisfy:

(AAA� rIII)xxx 1 = 000 =)

0

@
�2 1 1
1 �2 1
1 1 �2

1

A
x

x

x

1 = 000 =) x

x

x

1 = c

0

@
1
1
1

1

A .

We could find another two eigen-pairs (r2,xxx
2) and (r3,xxx

3) similarly, where

x

x

x

2 =

0

@
1
0
�1

1

A , x

x

x

3 =

0

@
0
1
�1

1

A

Thus the general solution is:

xxx = c1

0

@
1
1
1

1

Ae2t + c2

0

@
1
0
�1

1

Ae�t + c3

0

@
0
1
�1

1

Ae�t .

⌅

11.1.2 Matrix A has complex eigenvalues
In this case we have two complex eigen-pairs (r1,xxx

1),(r2,xxx
2) and one real eigen-pair (r3,xxx

3).
One solution to system(11.1) is

x

x

x

3er3t

In order to obtain another two real-valued solutions, we need to take the real and complex part
of complex-valued solution x

x

x

1er1t or x

x

x

2er2t .

⌅ Example 11.2 Solve xxx0 =

0

@
1 0 0
2 1 �2
3 2 1

1

A.

The eigenvalues of AAA must satisfy:

det(AAA� rIII) = (r�1)(r2 �2r+5) = 0 =) r1 = 1, r2 = 1+2i, r3 = 1�2i.

The eigenvector corresponding to r1 = 1 must satisfy:
0

@
0 0 0
2 0 �2
3 2 0

1

A
x

x

x

1 = 000 =) x

x

x

1 = c

0

@
2
�3
2

1

A

The eigenvector corresponding to r2 = 1+2i must satisfy:
0

@
�2i 0 0

2 �2i �2
3 2 �2i

1

A
x

x

x

2 = 000 =) x

x

x

2 = c

0

@
0
i
i

1

A
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We select the real and imaginary part of x

x

x

2:

xxx(2) =

0

@
0
i
1

1

Ae(1+2i)t =

0

@
0
i
1

1

Aet(cos2t + isin2t) =

0

@
0

�et sin2t
et cos2t

1

A+ i

0

@
0

et cos2t
et sin2t

1

A

Thus the general solution is given by:

xxx = c1

0

@
2
�3
2

1

Aet + c2

0

@
0

�sin2t
cos2t

1

Aet + c3

0

@
0

cos2t
sin2t

1

Aet .

⌅

11.1.3 Matrix A has two repeated eigenvalues
In this case we have two real eigen-pairs (r1,xxx

1) and (r2,xxx
2), where r1 is the eigenvalue of AAA

with multiplicity 2.
Two solutions to system(11.1) is:

x

x

x

1er1t , x

x

x

2er2t

In order to obtain another one solution, firstly we should find a generalized eigenvector h

h

h by
solving the equation

(AAA� rIII)hhh = x

x

x

1

Then the third solution is given by:

xxx(3) = (txxx 1 +h

h

h)er1t

Hence the general solution is given by:

xxx = c1x

x

x

1er1t + c2x

x

x

2er2t + c3(txxx
1 +h

h

h)er1t

⌅ Example 11.3 Solve xxx0 =

0

@
1 1 1
2 1 �1
0 �1 1

1

Axxx.

The eigenvalue of AAA must satisfy

det(AAA� rIII) =�(r+1)(r�2)2 = 0 =) r1 =�1,r2 = r3 = 2.

The eigenvector corresponding to r1 =�1 must satisfy:
0

@
2 1 1
2 2 �1
0 �1 2

1

A
x

x

x

(1) = 000 =) x

x

x

(1) = c

0

@
�3
4
2

1

A

The eigenvector corresponding to r2 = 2 must satisfy:
0

@
�1 1 1
2 �1 �1
0 �1 �1

1

A
x

x

x

(2) = 000 =) x

x

x

(2) = c

0

@
0
1
�1

1

A



108 Week11

The generalized eigenvector of r2 = 2 must satisfy:
0

@
�1 1 1
2 �1 �1
0 �1 �1

1

A
h

h

h = x

x

x

(2) =

0

@
0
1
�1

1

A =) h

h

h = c

0

@
1
1
0

1

A

In conclusion, the general solution is

xxx = c1

0

@
�3
4
2

1

Ae�t + c2

2

4

0

@
0
1
�1

1

A te2t +

0

@
1
1
0

1

Ae2t

3

5+ c3

0

@
0
1
�1

1

Ae2t

= c1

0

@
�3
4
2

1

Ae�t + c2

0

@
1

t +1
�t

1

Ae2t + c3

0

@
0
1
�1

1

Ae2t .

⌅
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11.2 Fundamental solution matrix
This lecture we will study the solutions of systems of ODE in detail.

Definition 11.1 Suppose that xxx(1)(t), . . . ,xxx(n)(t) form a fundamental set of solutions for the
equation

XXX 0 = PPP(t)XXX (11.2)

on open interval I. Then

Y(t) =
⇥
xxx(1)(t) xxx(2)(t) . . . xxx(n)(t)

⇤

is called the fundamental matrix for system(11.2). Note that a fundamental matrix is
nonsingular since its columns are linearly independent. ⌅

Our question is that how to use fundamental matrix to solve IVP

xxx0 = AAAxxx (11.3)
xxx(t = t0) = xxx0 (11.4)

⌅ Solution 11.1 The general solution to Eq.(11.3) is given by:

xxx = ccc1xxx(1)(t)+ · · ·+ cnxxx(n)(t)

Or equivalently,

xxx = Y(t)ccc (11.5)

where ccc = (c1,c2, . . . ,cn)T.
Since xxx(t = t0) = xxx0, the Eq.(11.5) should satisfy:

Y(t = t0)ccc = xxx0

Since Y(t0) is nonsingular, we derive:

ccc = Y�1(t0)xxx0

The solution to the IVP(11.3) and (11.4) is given by:

xxx = Y(t)Y�1(t0)xxx0 (11.6)

⌅

Next, we want to construct another fundamental matrix f(t) such that f(t0) = III. Let’s construct
it by using f(t) to derive the solution to the previous IVP:

⌅ Solution 11.2 Since f(t) is a fundamental solution matrix to Eq.(11.3), the solution to the
IVP (11.3) and (11.4) could be expressed as:

xxx = f(t)f�1(t0)xxx0
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Since f(t0) = III, we find f

�1(t0) = III. Thus the solution is given as:

xxx = f(t)xxx0 (11.7)

Comparing Eq.(11.6) and Eq.(11.7), the matrix f(t) must satisfy:

f(t) = Y(t)Y�1(t0). (11.8)

⌅

⌅ Example 11.4 For xxx0 =
✓

1 1
4 1

◆
xxx, we want to find the fundamental matrix f(t) s.t. f(t0) =

III.
We have two eigenpairs (r1,xxx 1) and (r2,xxx 2), where

r1 = 3,xxx 1 =

✓
1
2

◆
; r2 =�1,xxx 2 =

✓
1
�2

◆
.

Then we find

xxx(1)(t) = x

x

x 1er1t , xxx(2)(t) = x

x

x 2er2t

Thus we obtain the fundamental matrix

Y(t) =


e2t e�t

2e2t �2e�t

�

It follows that

f(t) = Y(t)Y�1(t0).

⌅

For linear system ODE with constant coefficients, we want to find a matrix f(t) s.t.

d
dt

f(t) = AAAf(t)

f(t = 0) = III.

• Case 1: for n = 1, we have
d
dt

f(t) = af(t)

f(0) = 1.

The solution is f(t) = eat .
• Case 2: for n > 1, is f(t) = eAAAt?

Our first question is how to define eAAAt?
Recall that for a 2 C,

eat = 1+at +
(at)2

2!
+ . . .

=
•

Â
n=0

(at)n

n!
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Definition 11.2 — Exponential of matrix. If AAA 2 Rn⇥n, the exponential of AAAt is given
by:

eAAAt =
•

Â
n=0

(AAAt)n

n!

= III + tAAA+
t2

2!
AAA2 + . . .

⌅

Let’s show that eAAAt is well-defined first: (the related definitions and theorems are listed
below)

Definition 11.3 — Matrix Norm. The norm of a matrix AAA is the number

||AAA||= sup
xxx 6=000

||AAAxxx||
||xxx||

Or equivalently,

||AAA||= sup
||xxx||=1

||AAAxxx||

the sphere ||AAAxxx|| for ||xxx||= 1 is compact, and ||AAAxxx|| is continuous, thus 0 < ||AAA||< •.
⌅

Theorem 11.1 — The Weierstrass Criterion. For a series Â•
i=1 fi of functions fi : X 7!M,

if we have

|| fi|| ai,
•

Â
i=1

ai is convergent, ai 2 R,

then Â•
i=1 fi is uniformly convergent.

Let’s show the validity of eAAAt by showing the uniform convergence of it:

Theorem 11.2 For an open interval I, the series eAAAt uniformly converges for any AAA and
any t 2 I.

Proof. Since t is bounded, there exists a 2 R such that

||AAAt|| a.

Since the numerical series Â•
n=0

an

n! converges to ea, by Weierstrass criterion theorem, the
exponential eAAAt is uniformly convergent for ||AAAt|| a. ⌅

After showing eAAAt is well-defined, we could show that eAAAt is exactly f(t):
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Let f(t) = eAAAt , then we obtain:

d
dt

f(t) =
d
dt

"
•

Â
n=0

(AAAt)n

n!

#
=

•

Â
n=0

⇢
d
dt

(AAAt)n

n!

�

= 0+AAA+ tAAA2 + . . .

= AAA
✓

III + tAAA+
t2

2!
AAA2 + . . .

◆

= AAAeAAAt = AAAf(t).

Also, for f(t = 0), we derive

f(t = 0) =
•

Â
n=0

(AAA ·0)n

n!
= III.

Note that the derivative and summation sign could be exchanged due to the uniform
convergence of the series.

Then we show some interesting properties of eAAA:

Proposition 11.1 1. exp(000n⇥n) = III.
2. If AAABBB = BBBAAA, then exp(AAA+BBB) = eAAAeBBB.
3. (eAAA)�1 = e�AAA

4. For non-singular matrix PPP, we have

exp(PPPAAAPPP�1) = PPPeAAAPPP�1.

Proof. For (2), we have

exp(AAA+BBB) =
•

Â
n=0

(AAA+BBB)n

n!
=

•

Â
n=0

1
n!

n

Â
j=0

✓
n
j

◆
AAA jBBBn� j By condition AAABBB = BBBAAA.

It follows that

exp(AAA+BBB) =
•

Â
n=0

1
n!

n

Â
j=0

n!
j!(n� j)!

AAA jBBBn� j

=
•

Â
n=0

n

Â
j=0

n!
j!(n� j)!

AAA jBBBn� j

=
•

Â
n=0

n

Â
j=0

AAA j

j!
BBBn� j

(n� j)!

=
•

Â
j=0

•

Â
n= j

AAA j

j!
BBBn� j

(n� j)!

=
•

Â
j=0

AAA j

j!

"
•

Â
n= j

BBBn� j

(n� j)!

#

=
•

Â
j=0

AAA j

j!
eBBB

= eAAAeBBB.

For (3), we only need to show eAAAe�AAA = III. Since

eAAA(eAAA)�1 = III = exp(000n⇥n) = eAAA�AAA = eAAAe�AAA. since AAA(�AAA) = (�AAA)AAA.
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For (4), we observe

exp(PPPAAAPPP�1) =
•

Â
n=0

(PPPAAAPPP�1)n

n!

=
•

Â
n=0

PPPAAAnPPP�1

n!

= PPP

"
•

Â
n=0

AAAn

n!

#

= PPPeAAAPPP�1

⌅

By this proposition, we derive:
• f(t + s) = f(t)f(s).

eAAA(t+s) = eAAAt+AAAs = eAAAt · eAAAs.

• f(t � s) = f(t)f�1(s).

eAAA(t�s) = eAAAte�AAAs = eAAAt(eAAAs)�1.

Since the fundamental matrix could be computed as eAAAt , our question is that is there any efficient
way to compute eAAAt? We will talk about it in the next lecture.
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12.1 Matrix Factorization
We want to find a fundamental solution matrix f(t) such that f(0) = III.
The question in this lecture is how to compute eAAAt , i.e.

eAAAt = III +AAAt +
t2

2
AAA2 + · · ·=

•

Â
n=0

(AAAt)n

n!
.

In this lecture we only focus on the 2⇥ 2 and 3⇥ 3 matrix. Let’s talk about three cases for
computing the exponential of AAAt:

12.1.1 A is a diagonal matrix
If AAA 2 Rm⇥m could be written as

AAA = diag(a1,a2, . . . ,am)

It follows that

AAAk = diag(ak
1,a

k
2, . . . ,a

k
m) for k 2 N+.

Thus the exponential of AAAt is given by:

eAAAt =
•

Â
k=0

(AAAt)k

k!

= diag

 
•

Â
k=0

(a1t)k

k!
,

•

Â
k=0

(a2t)k

k!
, . . . ,

•

Â
k=0

(amt)k

k!

!

= diag
�
ea1t ,ea2t , . . . ,eamt� .
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⌅ Example 12.1 Find the fundamental solution matrix and the general solution for system

xxx0 =

0

@
1 0 0
0 2 0
0 0 3

1

Axxx

The fundamental solution matrix is given by:

f(t) = eAAAt =

0

@
et 0 0
0 e2t 0
0 0 e3t

1

A

The general solution is given by:

xxx = c1

0

@
et

0
0

1

A+ c2

0

@
0

e2t

0

1

A+ c3

0

@
0
0

e3t

1

A

⌅

12.1.2 A is diagonalizable
AAA 2 Cn⇥n is diagonalizable if and only if it has n linearly independent eigenvectors.

• Let me show you how to diagonalize AAA (if we can):
Suppose (r1,xxx

(1)), . . . ,(rn,xxx
(n)) are n eigen-pairs of AAA. (since we have assumed AAA has n

independent eigenvectors)
It follows that

AAAx

x

x

(i) = rixxx
(i) for i = 1,2, . . . ,n.

Hence we derive:

AAA
h
x

x

x

(1)
x

x

x

(2) · · · x

x

x

(n)
i
=
h
x

x

x

(1)
x

x

x

(2) · · · x

x

x

(n)
i
0

B@
r1

. . .

rn

1

CA

If we set VVV =
h
x

x

x

(1)
x

x

x

(2) · · · x

x

x

(n)
i
, LLL =

0

B@
r1

. . .

rn

1

CA, we obtain:

AAAVVV =VVV LLL

Sinc VVV has n independent columns, we find VVV is invertible. Hence we obtain the diagonal-
ization of AAA:

AAA =VVV LLLVVV�1

• Once AAA is diagonalizable, we could compute eAAAt . Recall that for any matrix QQQ,

exp(PPP�1QQQPPP) = PPP�1eQQQPPP.

Hence we obtain:

eAAAt = e(VVV LLLVVV�1)t =VVV eLLLtVVV�1
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where

eLLLt =

0

B@
er1t

. . .

ernt

1

CA

Actually, if you don’t want to get eAAAt (the fundamental solution matrix f(t) satisfying
f(t) = III), if you only want to get a common fundamental solution matrix Y(t), you can
verify that Y(t) =VVV el t is also a fundamental solution matrix.

⌅ Example 12.2 Find the fundamental solution matrix f(t) satisfying f(0) = III and
the general solution for system

xxx0 =

0

@
0 1 1
1 0 1
1 1 0

1

Axxx

You can verify that the three eign-pairs of AAA is (r1,xxx
(1)),(r2,xxx

(2)),(r3,xxx
(3)), where

r1 = 2,xxx (1) =

0

@
1
1
1

1

A ; r2 =�1,xxx (2) =

0

@
1
0
�1

1

A ; r3 =�1,xxx (3) =

0

@
0
1
�1

1

A ;

Hence we set

LLL = diag(r1,r2,r3), VVV =
h
x

x

x

(1)
x

x

x

(2)
x

x

x

(3)
i

One fundamental solution matrix of this system is given by:

Y(t) =VVV eLt =
h
x

x

x

(1)er1t
x

x

x

(2)er2t
x

x

x

(3)er3t
i

For fundamental solution matrix satisfying f(t) = III, we have:

f(t) = eAAAt =VVV eLLLtVVV�1 =

0

@
1 1 0
1 0 1
1 �1 �1

1

A

0

@
e2t 0 0
0 e�t 0
0 0 e�t

1

A

0

@
1 1 0
1 0 1
1 �1 �1

1

A
�1

=

0

@
e2t e�t 0
e2t 0 e�t

e2t �e�t �e�t

1

A

0

@
1
3

1
3

1
3

2
3 � 1

3 � 1
3

� 1
3

2
3 � 1

3

1

A

=

0

@
1
3 e2t + 2

3 e�t 1
3 e2t � 1

3 e�t 1
3 e2t � 1

3 e�t

1
3 e2t � 1

3 e�t 1
3 e2t + 2

3 e�t 1
3 e2t � 1

3 e�t

1
3 e2t � 1

3 e�t 1
3 e2t � 1

3 e�t 1
3 e2t + 2

3 e�t

1

A .

⌅

12.1.3 A has only one distinct eigenvalue
In this part we introduce the S�N decomposition:
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Theorem 12.1 — S-N decomposition. Let AAA be a 2⇥ 2 or 3⇥ 3 matrix which has only one
distinct eigenvalue r. Then AAA could be decomposed as AAA = SSS+NNN such that

1. SSS = rIII.
2. NNN = AAA�SSS.
3. NNN2 = 000 or NNN3 = 000.
4. SSSNNN = NNNSSS

We skip the proof for this theorem, if you are interested in this kind of decomposition (which
is much easier than Jordan form), you could check the book “Basic Theory of Ordinary
Differential Equations” (shown in Figure(12.1))

Figure 12.1: The book for S-N decomposition in detail

If AAA admits S-N decomposition, let’s show how to compute the fundamental matrix eAAAt :

⌅ Solution 12.1 For AAA 2 Cn⇥n with eigenvalues r, we decompose it as

AAA = SSS+NNN,

where SSS = rIII, NNN = AAA�SSS, NNN2 = 000 or NNN3 = 000.
It follows that

eAAAt = e(SSS+NNN)t = eSSSt+NNNt .

Since SSSNNN = NNNSSS, we derive:

eAAAt = eSSSteNNNt
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where

eSSSt = eIII(rt) = diag(ert ,ert , . . . ,ert
| {z }

n terms

) = ert III.

and

eNNNt =
•

Â
k=0

(NNNt)k

k!
=

2

Â
k=0

(NNNt)k

k!
= III +NNNt +

1
2

NNN2t2.

Hence the exponential eAAAt could be computed as:

eAAAt = ert


III +NNNt +
1
2

NNN2t2
�
.

⌅

⌅ Example 12.3 Find a fundamental solution matrix of

xxx0 =
✓

1 �1
1 3

◆
xxx.

The eigenvalues of AAA must satisfy:

det(AAA� rIII) =
����
1� r �1

1 3� r

����= (r�2)2 =) r = 2.

We perform the S-N decompositon for AAA:

AAA = SSS+NNN =

✓
2 0
0 2

◆
+

✓
�1 �1
1 1

◆

And we observe

eSSSt = e2t
✓

1 0
0 1

◆

and

NNN2 = 000 =) eNNNt = III +NNNt =
✓

1 0
0 1

◆
+

✓
�t �t
t t

◆
=

✓
1� t �t

t 1+ t

◆

The fundamental matrix is given by:

eAAAt = eSSSteNNNt = e2t
✓

1� t �t
t 1+ t

◆
.

The general solution is given by:

xxx = c1

✓
1� t

t

◆
e2t + c2

✓
�t

1+ t

◆
e2t .

⌅



120 Week12

⌅ Example 12.4 Find a fundamental solution matrix of

xxx0 =

0

@
5 �3 �2
8 �5 �4
�4 3 3

1

A

The eigenvalues of AAA must satisfy:

det(AAA� rIII) =

������

5� r �3 �2
8 �5� r �4
�4 3 3� r

������
=�(r�1)3 =) r = 1.

We perform the S-N decompositon for AAA:

AAA = SSS+NNN =

0

@
1 0 0
0 1 0
0 0 1

1

A+

0

@
4 �3 �2
8 �6 �4
�4 3 2

1

A

And we observe

eSSSt = et

0

@
1 0 0
0 1 0
0 0 1

1

A

and

NNN2 = 000 =) eNNNt = III+NNNt =

0

@
1 0 0
0 1 0
0 0 1

1

A+

0

@
4t �3t �2t
8t �6t �4t
�4t 3t 2t

1

A=

0

@
4t +1 �3t �2t

8t �6t +1 �4t
�4t 3t 2t +1

1

A

Thus the fundamental solution matrix is given by:

xxx = c1

0

@
4t +1

8t
�4t

1

Aet + c2

0

@
�3t

�6t +1
3t

1

Aet + c3

0

@
�2t
�4t

2t +1

1

Aet .

⌅

⌅ Example 12.5 Find a fundamental solution matrix of

xxx0 =

0

@
1 1 1
2 1 �1
�3 2 4

1

A

The eigenvalues of AAA must satisfy:

det(AAA� rIII) =

������

1� r 1 1
2 1� r �1
�3 2 4� r

������
=�(r�2)3 =) r = 2.
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We perform the S-N decompositon for AAA:

AAA = SSS+NNN =

0

@
2 0 0
0 2 0
0 0 2

1

A+

0

@
�1 1 1
2 �1 �1
�3 2 2

1

A

And we observe

eSSSt = e2t

0

@
1 0 0
0 1 0
0 0 1

1

A

and

NNN2 =

0

@
0 0 0
�1 1 1
1 �1 �1

1

A ,NNN3 = 000

It follows that

eNNNt = III +NNNt +
1
2

NNN2t2 =

0

@
1 0 0
0 1 0
0 0 1

1

A+

0

@
�t t t
2t �t �t
�3t 2t 2t

1

A+

0

B@
0 0 0

� t2

2
t2

2
t2

2
t2

2 � t2

2 � t2

2

1

CA

=

0

B@
1� t t t

2t � t2

2 1� t + t2

2 �t + t2

2
�3t + t2

2 2t � t2

2 1+2t � t2

2

1

CA .

Thus the fundamental solution matrix is given by:

xxx = c1

0

B@
1� t

2t � t2

2
�3t + t2

2

1

CAe2t + c2

0

B@
t

1� t + t2

2
2t � t2

2

1

CAe2t + c3

0

B@
t

�t + t2

2
1+2t � t2

2

1

CAe2t .

⌅
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12.1.4 Nonhomogeneous linear system
Finally, we intend to solve the nonhomogeneous linear system:

d
dt

xxx = PPP(t)xxx+GGG(t) (12.1)

where Y(t) is a fundamental matrix to the system d
dt xxx = PPP(t)xxx.

Theorem 12.2 The general solution for system(12.1) is given by:

xxx = Y(t)ccc+ xxxparticular

where

xxxparticular = Y(t)
Z

Y�1(t)GGG(t)dt

and ccc is a coefficient column vector.

Here we could use variation of parameters to show the formula for the particular solution of
system(12.1):

Proof. We assume the particular solution of system(12.1) to be

xxx = YYY(t)uuu(t) (12.2)

It follows that
d
dt

xxx = YYY0(t)uuu(t)+YYY(t)uuu0(t) (12.3)

= PPP(t)xxx+GGG(t) = PPP(t)YYY(t)uuu(t)+GGG(t) (12.4)

Since YYY(t) is a fundamental matrix, YYY0(t) = PPP(t)YYY(t). We plug it into Eq.(12.3) to derive:

YYY(t)uuu0(t) = GGG(t)

Since YYY(t) is invertible, we obtain:

uuu0(t) = YYY�1(t)GGG(t) =) uuu(t) =
Z

YYY�1(t)GGG(t)dt.

Hence the particular solution of system(12.1) is:

xxx = YYY(t)
Z

YYY�1(t)GGG(t)dt.

⌅

⌅ Example 12.6 Solve the system

xxx0 =
✓

4 8
�2 �4

◆
xxx+

✓
t�3

�t�2

◆
, t > 0.

The eigenvalues of AAA must satisfy:

det(AAA� rIII) =
����
4� r 8
�2 �4� r

����= r2 = 0 =) r1 = r2 = 0.
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And we find that

AAA2 = 000 =) f(t) = eAAAt = III +AAAt =
✓

4t +1 8t
�2t �4t +1

◆

Thus the solution to the homogeneous part is

xxxc = c1

✓
4t +1
�2t

◆
+ c2

✓
8t

�4t +1

◆
.

It follows that

f

�1(t) =
✓
�4t +1 �8t

2t 4t +1

◆

f

�1(t)GGG(t) =
✓
�4t +1 �8t

2t 4t +1

◆✓
t�3

�t�2

◆
=

✓
8t�1 �4t�2 + t�3

�4t�1 + t�2

◆
.

Z
f

�1(t)GGG(t)dt =
✓

8ln t +4t�1 � 1
2 t�2

�4ln t � t�1

◆

The particular solution is given by:

xxxparticular =

✓
4t +1 8t
�2t �4t +1

◆✓
8ln t +4t�1 � 1

2 t�2

�4ln t � t�1

◆
=

✓
8+8ln t +2t�1 � 1

2 t�2

�4�4ln t

◆

The general solution is given by:

xxx = c1

✓
4t +1
�2t

◆
+ c2

✓
8t

�4t +1

◆
+

✓
8
�4

◆
+

✓
8
�4

◆
ln t +2

✓
1
0

◆
t�1 � 1

2

✓
1
0

◆
t�2.

⌅

12.1.5 Method of undetermined coefficients
We could also use undetermined coefficients method to solve a nonhomogeneous system if

• The coefficient matrix PPP is constant
• The components of GGG(t) are polynomial, exponential, or sinusodial functions, or prod-

ucts and sum of these functions.
There is a main difference between system and single equation when applying this method:
If GGG(t) has the form uuuert , where r is the eigenvalue of the coefficient matrix, we should assume
the solution to be aaatert +bbbert instead of aaatert .

⌅ Example 12.7 Find the general solution to the system

xxx0 =
✓

2 3
�1 �2

◆
xxx+

✓
et

t

◆
(12.5)

The eigenvalues of AAA must satisfy

det(AAA� rIII) =
����
2� r 3
�1 �2� r

����= r2 �1 = 0 =) r1 = 1, r2 =�1.
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It is easy to verify the eigen-pairs are (r1,xxx
(1)) and (r2,xxx

(2)), where

x

x

x

(1) =

✓
3
�1

◆
, x

x

x

(2) =

✓
1
�1

◆

Thus the solution to the homogeneous part is:

xxxc = c1

✓
3
�1

◆
et + c2

✓
1
�1

◆
e�t .

The nonhomogeneous term GGG(t) has the form:

GGG(t) =
✓

1
0

◆
et +

✓
0
1

◆
t.

Hence we guess the particular solution to be:

xxx0 = aaatet +bbbet + ccct +ddd.

It follows that

xxx00 = aaatet +(aaa+bbb)et + ccc.

Substituting xxx0 and xxx in Eq.(12.5), we obtain:

aaatet +(aaa+bbb)et + ccc = AAAaaatet +

✓
AAAbbb+

✓
1
0

◆◆
et +

✓
AAAccc+

✓
0
1

◆◆
t +AAAddd.

It follows that
8
>>>>>>>><

>>>>>>>>:

AAAaaa = aaa

AAAbbb+
✓

1
0

◆
= aaa+bbb

AAAccc+
✓

0
1

◆
= 000

AAAddd = ccc

We can see that aaa is the eignvector corresponding to r = 1. We set aaa = q1

✓
3
�1

◆
. From the

second equation, we find this system could be solved only when q1 =
1
2 . Thus aaa =

✓ 3
2
�1

2

◆
.

In this case, we choose bbb to be

bbb =

✓1
2
0

◆

Solving for third and fourth equation, we derive

ccc =
✓
�3
2

◆
, ddd =

✓
0
�1

◆
.
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Hence the particular solution is given by:

xxxparticular =

✓ 3
2
�1

2

◆
tet +

✓ 1
2
0

◆
et +

✓
�3
2

◆
t +

✓
0
�1

◆
.

The general solution is given by:

xxx = xxxc+xxxparticular = c1

✓
3
�1

◆
et +c2

✓
1
�1

◆
e�t +

✓ 3
2
� 1

2

◆
tet +

✓1
2
0

◆
et +

✓
�3
2

◆
t+

✓
0
�1

◆
.

⌅
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13.1 Linear System and the Phase Plane
Consider equation

XXX 0 = f (XXX) (13.1)

, the critical point satisfies

f (XXX0) = 0,

XXX0 is called critical points or equilibrium solution of Eq.(13.1).

Definition 13.1 — Stability. A critical point XXX0 of Eq.(13.1) is called stable if for 8e > 0,
there 9d > 0 such that for any solution

XXX = f(t) satisfying ||f(0)�XXX0||< d .

we have ||f(t)�XXX0||< e for 8t > 0. ⌅

Definition 13.2 — Asymptotically stable. A critical point XXX0 is called asymptotically stable
if it is stable and for solution X = f(t), there 9d > 0 such that ||f(0)�XXX0||< d , we have

lim
t!•

f(t) = XXX0.

⌅

Consider XXX 0 = AAAXXX , where AAA 2 R2⇥2.
• Case 1: AAA has two real and distinct eigenvalues of the same sign.

r1,r2 > 0, x

x

x

111 and x

x

x

2 are eigenvectors associated with r1 and r2.

We have:

XXX(t) = c1x

x

x

1er1t + c2x

x

x

2er2t .
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– r1 < r2 < 0. The illustration is shown in Figure(13.1)

XXX(t) = er2t
h
c1x

x

x

1e(r1�r2)t + c2x

x

x

2
i

Figure 13.1: Node, r1 < r2 < 0

As t ! •, XXX(t)! c2x

x

x

2er2t .
Direction: x

x

x

2.
XXX(t)! 0 as t ! •.
Critical point: (0,0) is asymptotically stable, which is called a Node.

– r1 > r2 > 0. The illustration is shown in Figure(13.2)

XXX(t) = er1t
h
c1x

x

x

1 + c2x

x

x

2e(r2�r1)t
i

Figure 13.2: Node, r1 > r2 > 0

As t ! •, XXX(t)! c1x

x

x

1er1t .
Direction: x

x

x

1

XXX(t)! • as t ! •.
Critical point: (0,0) is unstable, which is called a Node.
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• AAA has two real distinct eigenvalues of the opposite sign, r1 > 0 > r2. The illustration is
shown in Figure(13.3)

XXX(t) = er1t
h
c1x

x

x

1 + c2x

x

x

2e(r2�r1)t
i

Figure 13.3: saddle point, r1 > 0 > r2

As t ! •, XXX(t)! c1x

x

x

1er1t .
Direction: x

x

x

1, XXX(t)! •.
Critical point: (0,0) is unstable, which is called a saddle point.

• AAA hsa two repeated eigenvalues r1 = r2 = r.
– two lienarly independent eigenvectors.

XXX(t) = ert
⇣

c1x

x

x

1 + c2x

x

x

2
⌘

Each trojectory in the phase plane must be a straight line.
⇤ when r > 0, (0,0) is unstable. The illustration is shown in Figure(13.4)

Figure 13.4: Unstable, r1 = r2 = r > 0 (two linearly independent eigenvectors)
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⇤ when r < 0, (0,0) is AS, which is called a proper node. The illustration is
shown in Figure(13.5)

Figure 13.5: Proper node, r1 = r2 = r < 0 (two linearly independent eigenvectors)

– One linearly independent eigenvector x

x

x associated with r.

XXX(t) = c1x

x

x ert + c2 [xxx t +h

h

h ]ert = ert [c1x

x

x + c2 (xxx t +h

h

h)]

As t ! •, XXX(t)! ertC2x

x

x t.
Direction: x

x

x

⇤ r > 0, XXX(t ! •),(0,0) is unstable. The illustration is shown in Figure(13.6)

Figure 13.6: Unstable, r1 = r2 = r > 0, (only one linearly independent eigenvector)

⇤ r < 0, XXX is stable, which is called a improper node. The illustration is shown
in Figure(13.7)

Figure 13.7: Node, r1 = r2 = r < 0, (only one linearly independent eigenvector)
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⌅ Example 13.1 XXX 0 =


�1 1
�1 �3

�
, we get

det(AAA� rIII) = (r+2)2.

Thus r1 = r2 =�2, x

x

x =

✓
�1
1

◆
, h

h

h =

✓
�1
0

◆
.

XXX(t) = e�2t
⇢

c1

✓
�1
1

◆
+ c2

✓
�1
1

◆
t +

✓
�1
0

◆��

⌅

• Case 4: AAA has two complex eigenvalues, r1 = a + ib , r2 = a � ib , a 6= 0.

x

x

x

1 = uuu+ ivvv, x

x

x

2 = uuu� ivvv.

XXX(t) = c1¬(xxx 1er1t)+ c2¡(xxx 1er1t) Notice that

x

x

x

1er1t = (uuu+ ivvv)eat(cos(b t)+ sin(b t))
= eat [(uuucos(b t)� vvvsin(b t))+ i(uuusin(b t)+ vvvcos(b t))]

Thus

XXX(t) = c1 [uuucos(b t)� vvvsin(b t)]eat + c2 [uuusin(b t)+ vvvcos(b t)]eat

XXX(t) rotates. When b > 0, from uuu to �vvv, clockwise. When b < 0, from uuu to vvv, anticlock-
wise.
When a > 0, the XXX(t) expands, when a < 0, the XXX(t) shrinks.

– When a > 0,b > 0, unstable. The illustration is shown in Figure(13.8).

Figure 13.8: Unstable, a > 0,b > 0

– When a < 0,b > 0, AS. The illustration is shown in Figure(13.9).
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Figure 13.9: AS, a < 0,b > 0

– When a > 0,b < 0, unstable. The illustration is shown in Figure(13.10).

Figure 13.10: unstable, a > 0,b < 0

– When a < 0,b < 0, AS. The illustration is shown in Figure(13.11).
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Figure 13.11: AS, a < 0,b < 0

These points are all called sprial point.

• Case 5: AAA has two complex eigenvalues with pure imaginary parts. r1 = ib ,r2 =�ib .

XXX(t) = c1 [uuucos(b t)� vvvsin(b t)]+ c2 [uuusin(b t)+ vvvcos(b t)]

stable but not AS!
– when b > 0, the illustration is shown in Figure(13.12).

Figure 13.12: Center, b > 0

– When b < 0, the illustration is shown in Figure(13.13).
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Figure 13.13: Center, b < 0

(0,0) is a center!

R Summary:
• When Re(r1)< 0 and Re(r2)< 0, AS!
• When Re(r1)> 0 or Re(r2)> 0, unstable!
• Purely imaginary, stable but not AS!
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13.2 Locally linear system
xxx0 = fff (xxx) (13.2)

suppose xxx0 is a critical point, i.e.

fff (xxx0) = 000.

System(13.2) is called locally linerar near critical point xxx0 if
8
<

:

fff (xxx) = AAA(xxx� xxx0)+ggg(xxx), det(AAA) 6= 0

lim
xxx!xxx0

||ggg(xxx)||
||xxx� xxx0||

= 0.

In particular, if xxx0 = 000, then system(13.2) is locally linear near 000 if

fff (xxx) = AAAxxx+ggg(xxx), det(AAA) 6= 0.

lim
xxx!xxx0

||ggg(xxx)||
||xxx|| = 0.

The linear system of (13.2) is

xxx0 = AAA(xxx� xxx0)

near critical point xxx0.
If fff is continuously differentiable near xxx0, then AAA =5 fff (xxx).

⌅ Example 13.2 Consider the system
8
><

>:

dx
dt

= y

dy
dt

=�w2 sinx� gy
(r > 0,w > 0)

Solution. • Firstly, we find the critical point:
(

y = 0

�w2 sinx� gy = 0.
=)

(
x = kp, k = 0,±1,±2, . . .
y = 0

It follows that

f (x,y) =
✓

y
�w2 sinx� gy

◆
=) 5 f (x,y) =

✓
0 1

�w2 cosx �g

◆

Hence

5 f (kp,y) =
✓

0 1
(�1)k+1w2 �g

◆

The linearized system near (kp,0) is
✓

x
y

◆0
=

✓
0 1

(�1)k+1w2 �g

◆✓
x� kp

y

◆



136 Week13

– For k = 0, critical point is (0,0).
✓

x
y

◆0
=

✓
0 1

�w2 �g

◆✓
x
y

◆

The eigenvalues are computed as:

0 =

����
�l 1
�w2 �g �l

����= l

2 + gl +w2

If g

2 �4w2 > 0,

l1 =
�g +

p
g

2 �4w2

2
,l2 =

�g �
p

g

2 �4w2

2

If g

2 �4w2 < 0,

l1 =
�g + i

p
4w2 � g

2

2
,l2 =

�g � i
p

4w2 � g

2

2

If g

2 �4w2 = 0,

l1 = l2 =�g

2
.

In conclusion, (0,0) is AS!
– For k = 1, critial point is (p,0).

✓
x
y

◆0
=

✓
0 1

w2 �g

◆✓
x�p

y

◆

It follows that

0 =

����
�l 1

w2 � g �l

����= l

2 + gl �w2

If g

2 +4w2 > 0,

l1 =
�g +

p
g

2 +4w2

2
,l2 =

�g �
p

g

2 +4w2

2

In conclusion, (p,0) is unstable and...
If k is an even integer, then (kp,0) are AS. If k is an odd integer, then (kp,0) are
unstable.

⌅

⌅

R Conclusion:
1. If eigenvalues are not purely imaginary, then stability & type of the original locally

linear system = stability & type of linearized system.
2. If the critial points of lineraized system is a center, then stability & type of original

locally linear system cannot be drawn from its lienarized system.
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