
Lecture Notes for CIE6128

Suggested Citation: Ruoyu Sun, Mingyi Hong, and Jie Wang. (2019) Lecture Notes
for CIE6128: Understanding Deep Learning from a Theoretical Perspective. Available at
the link https://walterbabyrudin.github.io/

Lecturer
Ruoyu Sun

Assistant Professor, University of Illinois
sundirac@gmail.com

Lecturer
Mingyi Hong

Assistant Professor, University of Minnesota
poborskypaul@gmail.com

Tex Written By
Jie Wang

Undergraduate Student, CUHK(SZ)
116010214@link.cuhk.edu.cn

ENJOY MATH!

https://walterbabyrudin.github.io/

Contents

1 Introduction to Deep Learning 2
1.1 Motivation . 2
1.2 Outline . 3
1.3 Neural Network Basis . 4
1.4 Gradient Explosion/Vanishing 6

2 Back Propagation and Initialization 8
2.1 Review . 8
2.2 Back Propagation . 9
2.3 Initialization methods for handling Training Difficulty . . . 16

3 Taming Explosion/Vanishing: Initialization 19
3.1 Reviewing . 19
3.2 Motivation . 19
3.3 General Activation . 23
3.4 Dynamical Isometry . 26

4 Three Tricks in Training of Neural Network 29
4.1 Reviewing . 29
4.2 Intialization: Dynamical Isometry 30
4.3 Batch Normalization . 32
4.4 ResNet . 38

5 ResNet Initialization and Landscape Analysis 42
5.1 Reviewing . 42
5.2 Initialization for ResNet 43
5.3 Landscape of Neural-Nets 47

6 Landscape Analysis and Representation 53
6.1 Reviewing . 53
6.2 Landscape analysis for non-linear neural-nets 54
6.3 Over-Parameterized Networks 56
6.4 Representation Power . 59

7 Representation and GAN 61
7.1 Reviewing . 61
7.2 Representation: depth separation 62
7.3 GAN . 67

8 Adversarial Learning 71
8.1 Introduction to Adversarial Learning 71
8.2 Mathematical Formulation of Adversary Attack 73
8.3 Adversarial Defense . 76
8.4 Optimization Algorithms 78

9 Optimization Algorithms 81
9.1 Reviewing . 81
9.2 Variants of Gradient Descent (GD) Method 81
9.3 Momentum-based Method 87
9.4 Nonconvex nonconcave minimax optimization 89

Appendices 91

Basic Algorithms for Nonlinear Programming 92
.1 Gradient Algorithms . 92
.2 The Pure Newton’s Method 99
.3 Practical Implementation of Newton’s method 102

References 106

Lecture Notes for CIE6128

ABSTRACT

How does deep learning work? Without any guidance, it is
very difficult to find the correct setting that makes a deep
neural network perform well. Researchers have spent a few
decades to find the right combination of choices that lead to
recent success of deep neural-nets. However, most, if not all,
existing courses and textbooks did not discuss the underly-
ing theory in depth. In this course, we will go through the
current theoretical understanding of neural networks based
on research in recent years. Topics include the theory of
training dynamics (smart initialization and dynamical isom-
etry, normalization methods), popular algorithms (SGDR,
Adam, etc.), landscape of non-convex optimization, adver-
sarial attacks and robustness, GANs (generative adversarial
networks), etc.)

1
Introduction to Deep Learning

1.1 Motivation

Example: is AI like Alchemy? A core of deep learning is to optimize a
loss function with respect to a collection of model parameters. In NIPS
2017 talk, Rahimi gives a typical example for choosing parameters for a
2-layer neural network.

Figure 1.1: Numerical Results for solving minW1,W2 Ê‖W1W2x−Ax‖2

The gradient descent for solving this problem gets stuck at the
objective value (error) around 400. In particular,

• It does not converge to a stationary point

• This phenomenon is not due to the statistical noise floor of the

2

1.2. Outline 3

dataset. Computing the expectation of the loss and directly mini-
mize it leads to the same result.

Rahimi reveals that gradient descent cannot usually solve a 2-layer linear
network. However, we expect it to solve a 1000-layer neural-net with 1
million data. It seems we don’t understand neural-net optimization at
all.

LeCun has a different pespective. He thinks that having theory for
deep learning is important, but another goal is to invent new methods,
new tricks, etc. Perhaps we don’t have or don’t need theory for neural
networks.

Comment from Ruoyu Sun

1. Do we need to study deep learning?

For application researchers, there is no doubt. For applications,
Neural-nets (not necessarily current deep learning) will prob-
ably become fundamental tool in many fields. For theoretical
researchers such as optimizers, mathematicians, statisticians, this
is still a big question. Deep learning is possible to become a
theoretical field.

2. Do we need theory for deep learning?

Yes, since we need to udnerstand why deep learning works. There
are tons of hard deep learning problems, and we need to solve
them. Moreover, theory can help deep learning work for other
fields such as reinforcement learning, physics, biology, etc.

3. This course tries to offer answers to these questions, but it cannot
answer them completely, not even a 20% answer. We will analysis
deep learning from the perspective of optimization, and understand
why some heuristics can help.

1.2 Outline

Pre-requisite

4 Introduction to Deep Learning

• Pre-requisites: Calculus, Linear Algebra, Probability, Optimiza-
tion, and Basics of Deep Learning.

• Related Subjects (helpful but not required): Basic knowledge from
compute vision and NLP, the trend of Deep Learning and Artificial
Intelligence.

Course Objective and Audience This course will talk about optimiza-
tion theory of deep learning. This is not intended for practitioners with
little interest in theory, and want to know how to tune parameters.
Intended audience:

• Theorists (e.g., optimizers, machine learners, statisticians, mathe-
maticians, theoretical computer scientists) who want to work on
or interested in theory of deep learning;

• Practitioners interested in theory;

• Those who curious about frontiers of optimization in deep learning.

Also note that the theory discussed in this course does not necessarily
solve real problems in deep learning, but it offers the logic of thinking
that is the most helpful.

1.3 Neural Network Basis

Firstly, we will give mathematical descriptions of fully-connected neu-
ral networks. The Figure (1.2) gives a demostration of 3-layer fully-
connected neural network. Neural networks give a function f : Rdx →
Rdy parameterized with θ ∈ Rdθ :

• Input: x ∈ Rdx ;

• Output: y ∈ Rdy ;

• A L-layer fully connected neural network consists of L− 1 hidden
layers.

1.3. Neural Network Basis 5

Figure 1.2: Example of a 3-layer fully-connected neural network.

• The values of the next hidden layer are a linear transformation of
previous values, and then followed by a non-linear function:

pre-activiation : h` = W `z`−1, ` = 1, . . . , L
post-activation : z` = φ(h`), ` = 1, . . . , L

Here W ` ∈ Rd`×d`−1 denotes the weight matrix, and φ denotes
the nonlinear function.

Using the notions above, the function fθ can be written as

fθ(x) = WLφ(WL−1φ(· · ·φ(Wx))) (1.1)

Remark 1.1. The bias of the neural network is skipped. In general, it
should be z` = φ(W `z`−1 + b`).

Remark 1.2. There are other kinds of neural network, such as CNN,
RNN, and ResNet.

Why & When & How do we need neural-nets? Consider the image
classificaiton scenario. Imagine there is an orcle telling you the label

6 Introduction to Deep Learning

of the input image, say f∗. The motivation for using deep learning is
that it can approximate such a function very well. The classical way for
applying deep learning is the supervised learning:

Given data (xi, yi) for i = 1, . . . , n, we need to find
a model fθ from a set of model candiates F such that
fθ(xi) ≈ yi, i = 1, . . . , n.

This problem is often formulated as a finite-sum optimization problem:

min
θ

1
n

n∑
i=1

`(fθ(xi), yi),

where `(·, ·) denotes the loss function.

1. When the representation model fθ(x) = Wx, and the loss is
quadratic, the problems becomes a least-square linear regression
problem

2. When the representation is a 2-layer neural network, say fθ(x) =
W 2W 1x and the loss is quadratic, the problem becomes

min
W 2,W 1

∑
i

‖yi −W 2W 1xi‖2 = ‖Y −W 2W 1X‖2F

When X = I, this problem reduces to the matrix factorization
problem:

min
U,V
‖Y − UV ‖2F (1.2)

For matrix Y ∈ Rm×n and decision variables U ∈ Rm×p, V ∈
Rp×n, if p < rank(Y), then the optimal solution

U∗ =
(√

σ1u1 · · · √σpup
)
, V ∗ =

(√
σ1v1 · · · √σpvp

)T

where {ui, vi, σi}1:p are from the first p terms of the SVD decom-
position of Y .

1.4 Gradient Explosion/Vanishing

Consider minimizing a quadratic loss for multi-layer neural network
with scalar input:

min
w1,...,wL

F (w) , 1
2(1− w1 · · ·wL)2

1.4. Gradient Explosion/Vanishing 7

Solving by Classical Gradient Descent If applying gradient descent,
the step size should be bounded by 1 over the Lipschitz constant β of
the objective function. Here we compute this constant:

∂F

∂w1
= −(1− w1 · · ·wL)w2 · · ·wL

∂2F

∂w2
1

= (w2 · · ·wL)2

Note that L ≈ λmax(∇2
wF). Here we simply use ∂2F

∂w2
1
to loosely study

how large (small)β is.

• When w2 = · · · = wL = 2, then β = 2O(L)

• When w2 = · · · = wL = 1
2 , then β = 2−O(L)

Take L = 100 as an example. For the first initialization, the step-size
is too big; for the second initialization, the step size is too small. This
issue is called Lipschitz constant explosion/vanishing.

2
Back Propagation and Initialization

2.1 Review

• Neural-net and formulation; (section 1.3)

• Training difficulty; (section 1.4)

Example 2.1. Consider the multi-layer (L = 7) linear neural
network with scalar input. The function shape of the loss function
y(w) , (w7 − 1)2 is presented in Figure (2.1)

−1 −0.5 0.5 1

5

10

15

20

25

x

y
y = (w7 − 1)2

Figure 2.1: Function Shape of (w7 − 1)2

8

2.2. Back Propagation 9

From Figure (2.1) we can see that when x ∈ [−0.5, 0.5], the gradi-
ent of the loss function nearly vanishes; when x > 1.2, the gradient
exploses into infinite. These two bad region makes the training (op-
timization) process of such neural network very difficult.

How to rescue the gradient vanishing/explosion during DL training?
The “good” region of the loss function is small. There are two ways to
rescue this phenomenon:

1. By proper initialization, it’s possible to find a good region;

2. By techniques such as Batch Normalization, we can change the
landscape of the loss function.

2.2 Back Propagation

Suppose that the loss function is of finite-sum form:

F (θ) , 1
n

n∑
i=1

`(fθ(xi), yi)

with fθ(xi) = WL(φ(WL−1φ(· · ·φ(W (x))))), and the weight matrices
W ` are parameterized by θ. The direct motivation of back propagation
is to apply gradient descent 1 to minimize the loss function:

θ(t+ 1) = θ(t)− αt∇F (θ(t)).

The non-trivial part during this process is how to tuning parameters αt
and how to compute ∇F (θ(t)). The back propagation (BP) technique
is one efficient strategy to compute the gradient by chain rule, since it
avoids repeating the same computations.

Understanding BP in Level I: Scalar Form of Gradient Most courses/blogs
teach how to do BP in scalar version, i.e., to compute the derivative of
a scalar-valued function over a scalar variable, which are based on two
rules:

1Usually we use stochastic gradient descent method in DL since this method is
more efficient

10 Back Propagation and Initialization

• Chain Rule: f(g(w)) with f, g ∈ R,
df(g(w))

dw = df
dg

dg
dw

• Sum rule: g(w) , f1(w) + f2(w) with w ∈ R,
dg
dw = df1

dw + df2
dw

We give an example on how to apply these two rules to compute the
scalar form of the gradient of the loss function:

Example 2.2. Consider a 2-layer neural network with scalar output.
We are interested in computing the derivative of this output ŷ over a
scalar parameter w. This function w.r.t. w can be represented in graph:

The computation of ∂ŷ
∂w can be summarized as follows:

Step 1: Decompose into multiple paths The path from the parameter
w to the output ŷ undergoes two paths:

w → A→ B → ŷ

w → A→ D → ŷ

Step 2: Take gradient of each path by Chain rule These paths
corresponds to the functions (w.r.t. w) as follows:

f1(w) = b · φ(a · φ(w · x)
f2(w) = d · φ(c · φ(w · x)

2.2. Back Propagation 11

The derivative of f1(w) is computed by the Chain rule:

∂f1
∂w

= [b · φ′(a · φ(w · x1)] · [a · φ′(w · x)] · [x]

The derivative of f2(w) can be computed similarly.

The coding is doable in this understanding level.

Understanding BP in Level II: Matrix Form of Gradient Firstly let’s
review some matrix calculus knowledge by an example.

Example 2.3. Consider a 2-layer linear network2 fθ(x) = UV x. Given
n data points (xi, yi), the goal is to minimize the loss function

F ,
1
n

n∑
i=1
‖UV xi − yi‖2,

with U, V to be determined. The question is how to take gradient of F
w.r.t. the matrix V ? Or even simpler, how to compute ∂F

∂V with F ,
‖UV − Y ‖2F ? Here suppose that U ∈ Rdy×d1 , V ∈ Rd1×dx , Y ∈ Rdy×dx .

• Let’s try to compute the gradient by “standard” Chain rule. Define
H = U · V , E = H − Y , and F = ‖E‖2F .

∂F

∂V
= ∂F

∂E

∂E

∂H

∂H

∂V

= (2E) · I · (U)

Then check the dimension. We find E ∈ Rdy×dx and U ∈ Rdy×d1 .
The matrix-multiplication is undefined! If we want to make the
dimension matched, we should write

∂F

∂V
= 2UTE.

Sometimes it’s problematic to write gradient by checking matrix di-
mensions. For instance, if dy = dx in practice, this method is invalid.

2The weight matrices U, V are parameterized by θ

12 Back Propagation and Initialization

Another way is to write down scalar-input scalar-output derivatives and
then form the whole matrix3. However, this way is tedious in practice.

The reason why our method is problematic is that we probably
applied the Chain rule incorrectly. Wikipedia provides the Chain rule
for vector-valued functions:

Proposition 2.1 (Vector-Function Chain Rule). For vector-input vector-
output functions

x ∈ Rn → g(x) ∈ Rm → F (x) , f(g(x)) ∈ Rk,

the chain rule is
∂F

∂x
= ∂f(g(x))

∂g(x)
∂g(x)
∂x

,

where

∂f(g(x))
∂x

=
[
∂fi(g(xj))

∂xj

]
ij

∈ Rk×m,
∂g(x)
∂x

=
[
∂gi
∂xj

]
ij

∈ Rm×n

denotes the Jacobian matrices.

• Consider the objective function F = ‖UV x− y‖2F . The goal is to
apply proposition (2.1) to write ∂F

∂V .

Figure 2.2: Diagram for the operator F

As a result,
∂F

∂V
= ∂F

∂e

∂e

∂ŷ

∂ŷ

∂h

∂h

∂V

3LeCun, CS224 Note, https://web.stanford.edu/class/cs224n/

https://web.stanford.edu/class/cs224n/

2.2. Back Propagation 13

In this formula, the LHS is of the form (∂ scalar/∂ matrix), which
should be a matrix; the first term in RHS is of the form (∂ scalar/∂
vector), which should be a vector; the second and third term in
RHS are of the form (∂ vector/∂ vector), which should be a
matrix; the forth term is of the form (∂ vector/∂ matrix), which
should be a tensor. Here we discuss the issues for computing these
derivatives:

1. Issue 1: computing derivative of a scalar over a vector.
The issue for computing ∂F

∂e is on the confusion of the different
notions of derivatives.
– By definition of Jacobian matrices from proposition (2.1),

∂F
∂e ∈ Rfan-out×fan-in = R1×dy , which is a row vector;

– By definition of gradient, we assume ∂F
∂e is a column

vector instead, i.e., a vector of dimension dy × 1.
– Moreover, the notion of Jacobian and gradient coincides4

for the case fan-out > 1, e.g.,
∂(Wx)
∂x

= W.

Based on the issues above, one solution is to define the general
Jacobian to unify the notions of gradient and Jacobian. Before
that, from now on, we define ∂f

∂x as a row vector if f is scalar-
valued, otherwise ∂f

∂x denotes the Jacobian matrix. Moreover,
define the general Jacobian

∂̃f

∂̃x
=


∂f

∂x
, if fan-out> 1 and fan-in> 1(

∂f

∂x

)T
, if fan-out = 1

The proposition (2.1) always holds for general Jacobian. In-
termediately,

∂̃F

∂̃h
= ∂̃F

∂̃e

∂̃e

∂̃h
=⇒

(
∂̃F

∂̃h

)T

=
(
∂̃e

∂̃h

)T(
∂̃F

∂̃e

)T

4At least in some references, e.g., Matrix Differentiation, available at https:
//atmos.washington.edu/~dennis/MatrixCalculus.pdf

https://atmos.washington.edu/~dennis/MatrixCalculus.pdf
https://atmos.washington.edu/~dennis/MatrixCalculus.pdf

14 Back Propagation and Initialization

Or equivalently,
∂F
∂h =

(
∂e
∂h

)T (
∂F
∂e

)
↑ ↑ ↑
∂ scalar
∂ vector

∂ vector
∂ vector

∂ scalar
∂ vector

(2.1)

2. Issue 2: computing derivative of a vector over a matrix.
There are two ways to solve this issue:
– The first way is to reduce matrix into vectors, i.e., in

order to compute ∂F
∂V , it suffices to consider ∂F

∂V (:,k) and
then combine to form a tensor.

– The other is to use Lemma (2.1) that deals vector-matrix
derivative into the vector-vector cases.

Let’s consider the second way in this lecture.

Lemma 2.1. For g(V) , φ(V x) with x ∈ Rd×1 and V ∈
Rk×d, define h = V x. Then

∂g

∂V
= ∂φ

∂h
xT

Now we give an example for applying Lemma (2.1) to com-
pute ∂F

∂V :
∂F

∂V
= ∂F

∂h
xT (2.2a)

=
(
∂e

∂h

)T (∂F
∂e

)
xT (2.2b)

=
(
∂e

∂ŷ

∂ŷ

∂h

)T (∂F
∂e

)
xT (2.2c)

= (I · U)T2e · xT (2.2d)
= 2UTexT

where (2.2a) is because of Lemma (2.1) and F (V) = F (V x);
(2.2b) is by the substitution of (2.1); (2.2c) is by the Chain
rule stated in proposition (2.1); (2.2d) is by direct calculation.

Exercise:
∂‖AWB + C‖2F

∂W
= 2AT(AWB + C)BT

2.2. Back Propagation 15

BP for General Deep Non-linear Network Now derive the gradient
of fully-connected neural network with quadratic loss. The objective fθ
is defined based on the following diagram:

Figure 2.3: Diagram for the operator F

Then the derivative ∂F
∂W 1 is computed as follows:

∂F

∂W 1 = ∂F

∂h1x
T (2.3a)

=
(
∂e

∂h1

)T (∂F
∂e

)
xT (2.3b)

=
(
∂e

∂h1

)T
2e · xT

=
(
∂e

∂hL
∂hL

∂zL−1 · · ·
∂h1

∂z1
∂z1

∂h1

)T

2e · xT (2.3c)

=
(
WLDL−1WL−1DL−2 · · ·W 2D1

)T
2e · xT (2.3d)

where (2.3a) is by Lemma (2.1); (2.3b) follows the similar trick as in
(2.1); (2.3c) is by the Chain rule stated in proposition (2.1); in (2.3d)
the matrix D` , diag(φ′(h`i))

d`
i=1, with φ′ denotes the derivative of φ.

The general formula ∂F
∂W ` is left as exercise:

∂F

∂W `
= 2(WLDL−1 · · ·W `+1D`)T · 2e · (z`−1)T

This formula can be expressed in a recursive way, which is the mechanism
of the BP technique. BP is an efficient way to compute all gradients

16 Back Propagation and Initialization

∂F
∂W ` for ` = 1, . . . , L. The navie computation complexity is O(d2L2);
while the BP complexity is O(d2L).

2.3 Initialization methods for handling Training Difficulty

We have discussed the gradient explosion or vanishing issue. The step
size for the gradient descent method is one over the Lipschitz constant,
which will be super-small/super-large in gradient explosion/vanishing
cases. From the landscape in Fig. (2.1), we can see that w7 grows more
active compared with the input x = 1. To solve this problem, the direct
idea is to control the “energy” of output compared with the input, i.e.,
for linear network y = WLWL−1 · · ·W 1 · x, we want to have

‖WLWL−1 · · ·W 1 · x‖ ≈ ‖x‖.

Or even simpler, maybe it’s enough to let ‖W `x‖ ≈ ‖x‖ for ` = 1, . . . , L.
Assume W ` is initialized to be a random matrix. After simulation we
found that the energy (`2 norm) for the output after activation is much
larger than the previous input.

clear;
d = 100; % dimension for weight matrix W
maxit = 10; % maximum iteration number

x = ones(d,1); norm0 = norm(x);
for i = 1:maxit

W = randn(d,d);
x = W*x;
rato = norm(x)/norm0

end

There are different ways to deal with this problem:

• Sparsity Solution: Set many entries of W to be 0;

• Orthogonalization: Generate orthogonal random weight matrix;
(to be discussed in the future)

• Scalization: Normalize each entry of W by some constant C.

2.3. Initialization methods for handling Training Difficulty 17

We find that if each entry of W (assume to be square matrix first) is
divided by

√
d, then the energy of ‖W · x‖ is very close to ‖x‖.

Informal Xavier Initialization: for the special case where
d = dx = d1 = · · · = dL−1 = dL, initialize

W `
i,j ∼ N (0, 1) · 1√

d

Supporting Analysis

1. Claim 1: For fixed x, if entries of W are i.i.d. such that

Wi,j ∼ N (0, 1/d), 5 (2.4)

then
E‖Wx‖2 = ‖x‖2.

Proof. Two-line proof: E‖Wx‖2 = xTE[WTW]x and evaluate the
term E[WTW].

Sometimes x are also initialized as random number. Therefore,
there is a stronger version of claim 1.

2. Claim 2: if xi’s are i.i.d., and previous conditon holds6, and x is
independent of W , then

E‖Wx‖2 = ‖x‖2.

Remark 2.1. 1. If the input and the output dimension are not the
same, there is an in-consistency in (2.4). In this case, we tryW `

i,j ∼
N (0, 2/(dfan-in + dfan-out)). This is the formal Xavier Initialization.

2. The claims 1 and 2 are only about feed-forward neural network.
For the back-ward case, i.e., e1 = (WLWL−1 · · ·W 1)Te, we need
to have Wij ∼ N (0, 1/dfan-in).

5for the case fan-in 6= fan-out, use Wi,j ∼ N (0, 1/dfan-out)
6Again, for the case fan-in 6= fan-out, follow the setting in claim 1.

18 Back Propagation and Initialization

3. The conditions for claims 1 and 2 can be weakened a little bit,
e.g., the Gaussian assumptions of W are not needed but only the
mean and variance assumptions.

4. For non-linear activation such as relu function, the He Initial-
ization / Kaming Initialization is needed. The initution is that
E[Relu(w2)] = 1/2. In this case, initialize

EW `
ij = 0, Var(W `

ij) = 2
fan-in or 2

fan-out

3
Taming Explosion/Vanishing: Initialization

3.1 Reviewing

1. Does Xevier intialization allow W `
ij ∼ C · rand?

No. From the assignment we know that EW `
ij should be zero.

2. How to pick variance of Wi,j for non-linear activation functions?

• Relu activiation: twice the variance.
• other types of activiation: to be discussed today

3. Does the Chain rule work for derivative of matrix over vector?
Not directly. We need to derive a different form

3.2 Motivation

Three topics to be discussed today:

• The difference for training wide versus narrow neural network

• Mean-field approximation

• Dynamical Isometry (spectrum analysis)

19

20 Taming Explosion/Vanishing: Initialization

The motivation is that engineers believe that the initialization for
training a neural network is important, otherwise the gradient explo-
sion/vanishing will happen. These topics discuss the initialization with
connection to gradient explosion/vanishing from different perspectives.

Example 3.1. Review the code in section (2.3). This experiment has
seveal limitations:

• It only shows the signal strength does not change too much over
linear networks, but what will happen if the signal undergoes a
non-linear activation.

• It only shows that the signal strength does not change too much
after one-layer. Does it assert that after more layers, the signal
strength still remains nearly the same?

– Last time we have shown that E(‖z`‖2) ≈ E(‖z`−1‖2). There-
fore, it seems to be true that

E(‖zL‖2) ≈ E(‖zL−1‖2) ≈ · · · ≈ E(‖x‖2)

– However, we can run a simulation to verify the cases. If we set
L← 100, d← 10, and run the following code in MATLAB:

clear;
L = 100;
d = 10; % dimension for weight matrix W
maxit = 1; % maximum iteration number

x = ones(d,1); norm0 = norm(x);
for i = 1:maxit

for l = 1:L
W = randn(d,d)/sqrt(d);
x = W*x;

end
rato = norm(x)/norm0

end

Then we find that the ratio of output signal strength over
the input signal strength is below 10−3.

3.2. Motivation 21

We should give some more precise theoretical analysis.

1. Firstly we give a rigorous proof for that the signal strength af-
ter one-layer linear network keeps nearly the same for Xaiver
Initialization. Consider the input vector x = 1 ∈ Rd and after one-
layer linear network, z = Wx ∈ Rd such that Wi,j ∼ N (0, 1/d).
Therfore,

z =


∑d
j=1W1,j∑d
j=1W2,j

...∑d
j=1Wd,j

 =⇒ ‖z‖2 =
d∑
i=1

 d∑
j=1

Wi,j

2

︸ ︷︷ ︸
ξi

where d · ξi is the sum of the square of d i.i.d standard normal
random variables, i.e., d · ξi ∼ χ2(d). Therefore,

E[ξi] = 1.

Moreover,

P(|ξi − 1| ≤ ε) = P(|χ2(d)− d| ≤ ε · d)
, 1− F ((1− ε)d, d)− (1− F ((1 + ε)d, d))
≥ 1− ((1− ε)eε)d/2 − ((1 + ε)e−ε)d/2

where F (x, d) denotes teh cdf of the random variable χ2(d), and
the last inequality follows from the Chernoff bounds on the lower
and upper tails of F (·, d). Therefore, we conclude that the sig-
nal strength after one-layer is close to the original with high
probability.

2. Then consider the signal strength after multi-layer linear network.
Unrigorously, suppose that in each layer ξi ≈ 1 + ε, and ‖z`‖2 =
‖z`−1‖2(1 + ε). Therefore, the final signal strength

‖zL‖2 ≈ ‖zL−1‖2(1 + ε) ≈ · · · ≈ ‖x‖2(1 + ε)L

Here the parameter ε depends on d, i.e., the number of neuros in
each layer. Roughly speaking, ε = O(1/d). As a result,

‖zL‖2 = ‖x‖2(1± 1
d

)L ≈ ‖x‖2eL/d.

22 Taming Explosion/Vanishing: Initialization

Remark 3.1. 1. The signal strength ratio ‖zL‖2/‖x‖2 = O(exp(L/d)),
where L is the depth of the layers, d is the number of neuros in
each layer. Therefore, L/d controls the width of the neural net-
work. When L/d is very large, i.e., the neural network is very
narrow, it’s likely that gradient explosion/vanishing will happen.

2. For the toy example of fully connected linear network we have
tried before, i.e., in Example (3.1), when L/d > 10, the gradient
explosion/vanishing will happen; it works well if we set L/d <
1/10.

3. This theoretical analysis also depends on other factors such
as input data and architecture. For instance, if we train CI-
FAR10/MINST using super-small L/d (e.g., d = 3million neurals
in the widest layer, L > 50 layers, and L/d small), we still cannot
train it well. This is different from our prediction that when L/d
is small then one can train it well. It might be related to CNN,
but could also be related to other issues such as landscape.

Bibliography For different neural network architectures such as CNN,
we need to perform the similar experiments but with “fair” criteria. The
paper (Glorot and Bengio, 2010) checked the CNN architecture. No one
have ever performed the similar verifications for SOTA architecture.

The paper (Hanin and Rolnick, 2018) gives total regiorous proof for
previous theoretical analysis based on the martingale theory:

• Failure mode 1: the signal strength normalized by the size in each
layer scale in the final layer increases/decreases exponentially with
the depth, i.e., E[ML] , E[1/d‖zL‖2]→ 0 or ∞ as L→∞

• Failure mode 2: The empirical variance of the signal strength
normalized by the size in each layer, say Var{M1:L}, grows expo-
nentially with the depth. More precisely,

E [Var{M1:L}] = O
(

exp
(

L∑
i=1

1
di

))
In particular, if all di’s are the same, then E [Var{M1:L}] =
O(exp(L/d)).

3.3. General Activation 23

There is some gap between Ruoyu Sun’s claim and the work in this
paper. What Ruoyu Sun claimed is that the variance of ML depends
on exp(L/d); but this paper claims that the empirical variance of M1:L
depends on exp(L/d). Nevertheless, the paper actually proved that the
variance of ML depends on exp(L/d) in their theorem, but they did not
advertise this result in the abstract and introduction. In summary, this
paper and others give a formal theory of why super-deep & super-narrow
neural networks are hard to train.

3.3 General Activation

Now we discuss the answer to Question 2 raised at the beginning of this
lecture.

Problem Setting Given input vector X ∈ Rd×1 and random weight
matrix W ∈ Rd×d. Define the output vector z = φ(Wx), where φ :
R→ R is a given activation function. We are interested in the sufficient
condition ensuring E[‖z‖2] = E[‖x‖2].

3.3.1 The scalar-input one-layer case

Consider the case where d = 1 and L = 1. Then x ∈ R and z = φ(wx)
with w ∼ N (0, c). We want to choose c such that E[z2] = x2. This
problem reduces to solving a non-linear equation in terms of c:

x2 = E[z2] = Ew[(φ(wx))2] =
∫

(φ(tx))2 dt 1√
2π
e−1/2t2

3.3.2 The vector-input one-layer case

Then consider the case where d > 1 and L = 1. First write down z

explicitly in terms of x and w:

z = φ(Wx) =⇒


z1
...
zd

 =


φ(
∑d
j=1w1jxj)

...
φ(
∑d
j=1wdjxj)



24 Taming Explosion/Vanishing: Initialization

As a result,

‖z‖2 =
d∑
i=1

φ

 d∑
j=1

wijxj

2

,

which implies

E[‖z‖2] = E

 d∑
i=1

φ

 d∑
j=1

wijxj

2


= d · E

φ
 d∑
j=1

wijxj

2
 = ‖x‖2

where the last inequality is because that
{
φ
(∑d

j=1wijxj
)2
}
i=1:d

are
i.i.d. This is a single equation on scalar c, which is solvable.

3.3.3 The vector-input multi-layer case

We cannot apply the techniques similar as in the previous two cases.
For instance, consider the case where d = 1 and L = 2. If we have

z2 = σ(w2σ(w1x))

Then we know the pdf of w1x for fixed x, but it’s hard to know the
pdf of z1 , σ(w1x). It’s even harder to know the pdf of z2 = σ(w2z1).
Instead, for the linear activation case, we have

Eξ1ξ2ξ3 = Eξ1Eξ2Eξ3, provided that ξ1:3 are independent

However, the expectation E(ξ1(φ(ξ2(φ(ξ3))))) is hard to compute.

Mean-field approximation The solution is to apply the mean-field ap-
proximation, the idea in which is to approximate intermediate variabeles
by Gaussian random variables.

Proposition 3.1 (Informal Claim). Suppose that the (` − 1)-th layer
has d`−1 neurons, which is denoted as h`−1

1:d`−1
. The variables for the

pre-activation in `-th layer, denoted as h` = W `φ(h`−1) (or h`i =∑d`−1
j=1 W

`
ijφ(h`−1

j) for i = 1 : d`) can be approximated by Gaussian

3.3. General Activation 25

random variables, provided that d`−1 is very large. As d`−1 →∞, the
variable h`1:d` converge to Gaussain.

This method is first applied in the paper (Poole et al., 2016) to anal-
ysis the propagation of the variance of pre-activations. This technique
is a novel application of the central limit theorem (Billingsley, 1986):

Theorem 3.1 (Lyapunov Central Limit Theorem). The sum of n inde-
pendent random variables X1, . . . , Xn converges to a Gaussian random
variable as n→∞, provided that Lyapunov’s condition is satisfied.

Now we apply the mean-field approximation technique in some
examples, although the ∞-width neural network assumption is not
satisfied:

Example 3.2. Consider the case where d = 1 and L = 3. We have

h1 = w1φ(x), h2 = w2φ(h1), h3 = w3φ(h2)

with w1:3 ∼ N (0, σ2
w) and x ∼ N (0, qin). In order to control the signal

strength of h3, it suffices to control its variance (why?).
By the hint in the note1, we have

E[h1] = 0, Var(h1) = E[‖wx‖2] = σ2
w

∫ ∞
−∞

φ(t√qin)2 1√
2π

exp
(
− t

2

2

)
dt

Similarly, we have

q2 = σ2
w

∫ ∞
−∞

φ(t
√
q1)2 1√

2π
exp

(
− t

2

2

)
dt,

where qi , Var(hi) for i = 1, 2.
The general form for q` can be computed recursively:

q` = T (q`−1) , σ2
w

∫ ∞
−∞

φ(t
√
q`−1)2 1√

2π
exp

(
− t

2

2

)
dt

Remark 3.2. It’s not true for the case d = 1, since h` are actually
not Gaussian. In multi-dimension case, this statement becomes more

1Ruoyu Sun, Mean-field Approximation: Step-by-Step Approach

26 Taming Explosion/Vanishing: Initialization

rigorous. For neural network with infinite-width, if Ew`ij = 0 and
Var(w`ij) = σ2

w/fan-out, then

q` = T (q`−1;σ2
w) , σ2

w

∫
φ(t
√
q`−1)2 1√

2π
exp

(
− t

2

2

)
dt (3.1)

Example 3.3. We can use the Eq. (3.1) to find proper σ2
w such that

{q`} does not explode or vanish.

• For linear neural network, Eq. (3.1) reduces to

q` = σ2
wq

`−1.

Therefore, we choose σ2
w = 1, which is the Xavier initialization.

• For relu activation, Eq. (3.1) reduces to

q` = 1
2σ

2
wq

`−1

Therefore, we choose σ2
w = 2, which is the Kaiming initialization.

• For other types of activation, e.g., q` = (q`−1)2σ2
w, it’s difficult to

pick σ2
w only to get the desired result. In this case, we pick σ2

w = 1
and q1 = 1. Note that q1 = σ2

w‖x‖2 1
d0
. One key message here is

that to achieve the desired stability of signal propagation, one
needs to properly choose the input strength q0 such that q1 is the
fixed point of the propagation equation (3.1). We just gave a toy
example that the fixed point is q1 = 1, but in general, the fixed
point q∗ = T (q∗) has no closed-form and needs to be computed
by other methods.

3.4 Dynamical Isometry

The motivation is that for neural network with input x ∈ X and output
y =W(x) ∈ Y, we want to have ‖x‖ ≈ ‖y‖.

Bibliography Dynamical Isometry has gain popularity in the research
of deep learning. It is first raised in the paper (Pennington et al., 2017)
to analysis the behavior of deep non-linear networks. Following the

3.4. Dynamical Isometry 27

previous work, the same authors also extends the dynamical isometry
theory to a large number of activation functions (Pennington et al.,
2018). This theory also has some applications in practical training. The
paper (Xiao et al., 2018) applies dynamical isometry theory to train
10000-layer vanilla CNN without tricks such as Batch Normalization
or ResNet. The paper (Li and Nguyen, 2019) applies this theory to
tranin a deep autoencoder without any other tricks as well. The paper
(Gilboa et al., 2019) applies this theory to train 10000-long LSTM. The
Dynamical Isometry is the peak of the design of initialization. There are
other examples for the smart design of initalization. The paper (Zhang
et al., 2019) proposes a FixUp Initialization scheme to train ResNet
without Batch Normalization, which is based on another analysis.

3.4.1 Dynamical Isometry for Linear Networks

For linear network case, given y = WL · · ·W 1x, the goal is to ensure
‖y‖ ≈ ‖x‖. The previous technique is to choose W ` to be a Gaussain
matrix.

There is another perspective from singular values. It suffices to let
singular values of W ` to be close to 1. The simplest solution (Saxe et al.,
2014) is to set W ` is an orthogonal matrix, provided that d0 = · · · = dL,
and the intuition is that the norm is orthogonal invariant.

Proposition 3.2 (Key Observation for Orthogonality). If W ` are orthog-
onal matrices for ` = 1, . . . , L, and d , d0 = · · · = dL, then

‖z`‖ = ‖x‖, ∀`
‖e`‖ = ‖e‖, ∀`∥∥∥∥ ∂F∂W `

∥∥∥∥ = 2‖e‖‖x‖, ∀`

The paper (Saxe et al., 2014) also runs simulation and finds that
the orthogonal initialization in deep neural linear network, unlike the
case for Gaussian initialization, enjoys depth-independent training time.

The goal that we want to achieve, i.e., all singular values ofWL · · ·W 0

are close to 1, is called the dynamical isometry.

Remark 3.3. There are two reasons that people prefer not to use
orthogonal initialization. The first is that the initialization for CNN is

28 Taming Explosion/Vanishing: Initialization

totally different since it is not a fully connected neural network; the
second is that the case for non-linear network will change a lot.

In the next lecture we will talk about the non-linear network. In
particular, we will talk about the DeltaOrthogonal frequently used in
tensorflow.

4
Three Tricks in Training of Neural Network

4.1 Reviewing

• Why Kaiming initialization is not good enough for deep narrow
network (i.e., large L/d)?
Answer: Error accumulation, i.e.,

error ∼ exp(L/d)

• Besides random initialization, what else is possible?
Answer: orthogonalization.

• Besides weight matrices W 1:L, what eles can be tuned at initial-
ization?
Answer: Input strength (size) ‖x‖2.

Motivation Up to today, there are three tricks to train a deep neural
network:

1. Intialization;

2. Batch Normalization;

29

30 Three Tricks in Training of Neural Network

3. Residual units (architecture)

Back to 2012, there were 6-10 tricks to train the AlexNet. As time goes
by, scientists found that many of these tricks are not necessary. In this
lecture, we will talk about highlights in these three tricks.

4.2 Intialization: Dynamical Isometry

Up to now, Dynamical Isometry is the peak of initilization theory for
deep learning. Given a neural network NN : X → Y such that

y = NN(x;W),

the goal is to choose W such that ‖y‖ ≈ ‖x‖, ∀x. More precisely, we
want to make singular values of the input-output Jacobian J all close
to 1. Following the notation setting in section (1.3), we have

J = ∂zL

∂z0 =
L∏
`=1

∂z`

∂z`−1 =
L∏
`=1

(D`W `)

with D` = diag(φ′({h`i}
d`i
i=1)).

The key turns to the understanding of the distribution of eigenvalues
of the matrix JJT (i.e., singular values of J). There is a classical theory
for the eigenvalues of random matrix, which claims that its distribution
is like a semi-circle:

Figure 4.1: The pdf of eigenvalues for the scaled (symmetric) random ma-
trix 1√

N
W with N = 1000 and wi,j follows normal distribution.The simulation

code is in https://www.mathworks.com/matlabcentral/fileexchange/46464-wigner-s-
semicircle-law

4.2. Intialization: Dynamical Isometry 31

Theorem 4.1 (Wigner’s semi-circle law). Given a symmetric matrix
W ∈ RN×N whose entries Wi,j , i ≥ j are independent random variables,
the asymptotic distribution (as N →∞) of the eigenvalues of W is like
a semi-circle.

The semi-circle law is related to our problem: The Jacobian J is a
random matrix, This semi-circle law is related to our problemm where
the randomness comes from W . More precisely, it is a product of non-
linear function of random matrices. In order to resolve the nonlinearity,
we need to use the free probability(i.e., S-transform) tool to calculate
the distribution of singular values of J .

The possibility of dynamical isometry The paper (Pennington et
al., 2017) gives possibility for realizing dynamical isometry for deep
nonlinear neural networks in different scenarios.

Table 4.1: Summarization of the results for the possibilities for realizing dynamical
isometry for deep neural networks with different types of activations and initializations

Scenarios possibilities

Section (2.5.1) Guassian Initialization
+Relu Activation No

Section (2.5.1) Guassian Initialization
+Hard-tanh Activation No

Section (2.5.2) Orthogonal Initialization
+Relu Activation No

Section (2.5.2) Orthogonal Initialization
+Hard-tanh Activation Yes

In particular, for the last scenario, one can achieve dynamical isom-
etry by tuning ‖x‖2, σ2

w, σ
2
b properly1. In this case, the deep neural

network enjoys depth-independent training time.
The mechanism for dynamical isometry is to realize three goals

simultaneously, i.e., relies on solving three types of equations:

• Feedforward propagation: keep variance
1Here σ2

w , 1
d
var(w`i,j) and σ2

b refers to the variance of bias for pre-activation

32 Three Tricks in Training of Neural Network

• Backforward propagation: keep variance

• Eigenvalues of JTJ close to 1.

The realization relies on choosing ‖x‖2, σ2
w, σ

2
b . The failure of first three

scenarios in Table (4.1) is due to the loss of freedom of these variables.

Why “Orthogonal” is “Difficult” Before the paper (Xiao et al., 2018)
comes out, the orthogonal initialization for CNN is difficult, One reason
is that the orthogonality for this architecture is not well-defined:

• For fully connected neural network, we say the weight matrix is
orthogonal if WTW = I.

• For CNN, consider the pre-activation process, i.e., y = W ⊗ x,
it is unclear how to define the orthogonality for tensor product.
To resolve this issue, the paper (Xiao et al., 2018) defines the
orthogonality as ‖y‖ = ‖x‖,∀x.

After designing the orthogonal weights for CNN, they are able to train
10000-layer-net for CIFAR10. This result indicates that initialization is
enough for training ultra-deep neural network.

4.3 Batch Normalization

Motivation Previous data analysis knowledage tells us that the suc-
cess of data processing also depends on the input normalization (pre-
processing of data), even for linear regression. It’s nature to do the
similar thing for the training of neural networks.

Example 4.1. Review the linear regression problem. Given the data
points (xi, yi) for i = 1, . . . , n, one wants to select parameter w∗ such
that the quadratic loss is minimized:

w∗ = arg min
w∈Rd

1
n

n∑
i=1

(wTxi − yi)2

For the data matrix X = [x1, x2, . . . , xn], one should always do the row
normalization: [

x1 x2 · · · xn
]
η−→
[
x̃1 x̃2 · · · x̃n

]

4.3. Batch Normalization 33

where x̃i , xi−µ
σ with µ =

[
1
n

∑
i xi,j

]
j
and σ =

[
1/n ·

∑
i(ai,j − µ)2]

j .
Here the minus and division operator is performed component-wisely.

From the perspective of optimization, this opertion improves the
convergence speed, since the operator η will reduce the condition number2
of the data matrix.

From the experience of linear regression, we gain some knowledge
for the training of neural nets:

• It is necessary to do pre-processing of the input.

• Besides, for each layer, we might have the same issue that the
condition number for variables before activation is large or small.

Before (Glorot and Bengio, 2010), people uses the layerwise-per training
technique, which also brings up some problems such as the inefficiency
of training. Therefore, we need other techniques to solve the issue.

Consider the neural network represented in the figure below:

[x(1 : n)] [z1(1 : n)] [z2(1 : n)] · · ·

where z`’s are variables before activation. The goal is to make matrices

Z` =
(
z`(1) · · · z`1(n)

)
=


z`1(1) · · · z`1(n)
...

z`d(1) · · · z`d(n)


become well-conditioned for each ` = 1, . . . , L, i.e., each row has zero
mean and unit variance.3

To fully understand how the batch normalization achieves the row
normalization for each data matrices Z`, consider the toy example
presented below:

2 κ(X) = λmax(X)/λmin(X) denotes the condition number of X, see Prof. Luo’s
Note Lecture 2 for more detailed explanations.

3The i-th row denotes the data points for the i-th feature, and the row normal-
ization makes these data points well-scaled

34 Three Tricks in Training of Neural Network

Example 4.2 (Toy Example). Consider an aritificial problem defined as

minh F (h) ,
∑n
i=1 g(hi)

with
∑
i hi = 0∑
i h

2
i = 1

(4.1)

Combining with gradent descent method, there are at least 3 ways to
deal with it:

Method 1: Pure Algorithmic Correction The intuitive way is that in
each iteration one performs the gradent descent, and then project the
new iterates within the constraint set. However, the projection into this
constraint set could be diffucult due to its non-convexity. Therefore, we
modify the projection step with the normalization operator η:

η(h1:n) , h1:n−µ
σ

with µ = 1
n

∑
i hi

σ = 1
n

∑
i ‖hi − µ‖2

The whole algorithm is presented below:h
t+1/2 ← h−∇F (h)
ht+1 ← η(ht+1/2)

Method 2: Constrained optimization Consider this problem as a
constrained optimization problem, and thus it’s natural to solve this
problem from its dual (or solve primal and dual simultaneously), e.g.,
applying Lagrangian method or ADMM.

Remark 4.1. The method 1 solves the problem in an algorithmic way,
i.e., modify the gradient project method in a heuristic way; The method 2
is more about reformulation, i.e., reformulate this problem from its dual
and therefore solve the new convex problem instead. We observe that
both of them don’t work well in practice. The method 3 reformulates
this problem in another way and we found it works well.

Method 3: New way of Formulation We reformulate this problem
into unconstrained optimization, by substituting the constraint into the

4.3. Batch Normalization 35

objective function:
minh F (η(h)) (4.2)

Then the optimal solution of the origin problem (3.1) is tractable by
setting h∗ = η(arg minh F (η(h))). For this unconstrained optimization
problem, we can apply the gradient descent to solve it.

Motivation for Batch Normalization (BN) The insights of BN is
similar to that in Method 3. Consider a 2-layer neural network computing

e = F2(F1(x,W1),W2) (4.3)
where F1, F2 are arbitary transformations, and the parameters W1,W2
are to be chosen so as to minimize the loss e. Learning W2 can be
viewed as if the inputs z , F1(x,W1) are fed into the sub-network

e = F2(z,W2).

The goal for BN is to ensure the distribution of nonlinearity inputs (i.e.,
z) remains more stable during the training process, i.e., pick W2,W2 to
minimize the loss function and within the constraint set

E[x] = 0,Var[x] = 1, E[z] = 0,Var[z] = 1.

From the experience of Method 3, it suffices to reformulate (4.3) by
adding the normalization process before the non-linear activation in
each layer.

Figure 4.2: Adding the Bacth Normalization process in the second layer

36 Three Tricks in Training of Neural Network

The normalization process can be changed in different scenarios,
e.g., for capsule-net, change it with the clustering process.

Gradient Computation if adding the BN The standard one-layer
neural network can be described as a non-linear parametric function

z = g(Wu),

where g is the non-linear transformation, W is the weight matrix. By
adding the BN, the standard function is replaced with

z = g(BN(Wu)),

where the BN transform is applied independently to each dimension of
x = Wu. We set h = Wu, then we show how to compute ∂z

∂h :

1. Step 1: decompose the transformation from h to z into paths.
Note that z = z(h, µ(h), σ(h)). Therefore, the paths could be:

h→ z; provided that µ, σ are fixed
h→ µ→ z;
h→ σ → z.

2. Step 2: Apply the Chain Rule.

∂̃z

∂̃h
= ∂̃z

∂̃h

∣∣∣∣∣
µ,σ fixed

+ ∂̃z

∂̃µ

∂̃µ

∂̃h
+ ∂̃z

∂̃σ

∂̃σ

∂̃h

in which the notion of generalized Jacobian is adpoted.

Remark 4.2 (Representation Power). Re-consider the formula (4.1). We
find that

{F (h) | h ∈ Rn} ⊇ {F (ĥ) |
∑
i

ĥ = 0,
∑
i

ĥ2 = 1}.

Therefore, the minF (h) is not necessarily equivalent to minF (η(h)). In
order to resolve this issue, we need to “store” the representation power
by scale and shift η(h) in (4.2), i.e., introducing γ, β to form a new
problem

min
h,γ,β

F (γ · η(h) + β) (4.4)

Now the set {F (h) | h ∈ Rn} = {F (γ · η(h) + β) | h ∈ Rn, γ, β ∈ R}.

4.3. Batch Normalization 37

In the remaining of this section, let’s discuss more about applying BN
in practice.

Remark 4.3. Batch Normalization is applied before the non-linear
activation in each layer.

Remark 4.4. The function BNγ,β(·) is applied to each row of the matrix(
h1(1) · · · h1(n)

)
.

Remark 4.5. In practice, the BN is applied for mini-batch with batch
size B. In other words, the total n inputs are separated into N batches,
where each batch contains B inputs. The BN is performed on each
single batch. This technique changes the problem form:

Standard Formulation minθ 1
n

∑n
i=1 `(fθ(xi), yi)

Mini-Batch Formulation minθ 1
N

∑N
i=1

˜̀(f̃θ(xi,1:B), (yi,1:B))

Previously, the neural network is a single-input-single-output (SISO)
function:

xi
fθ−→ ŷi

Now, with mini-batch BN, the neural network is a multi-input-multi-
output (MIMO) function:

xi,1:B
f̃θ−→ ŷi,1:B

Remark 4.6. In each batch i, f̃θ is also dependent on the parameter
µ̄i, σ̄i. Therefore, for the whole neural network f̃θ(µ̄, σ̄), there could be
an issue about how to select the parameters µ̄ and σ̄.

38 Three Tricks in Training of Neural Network

Remark 4.7. For the problem (4.4), if we choose γ = ‖h‖ and β =
1
n

∑
i hi, then the representation power is strong, but we may have

difficulty in training, i.e, solving this optimization problem; if we choose
γ = 1 and β = 0, it will lead to the weak representation power. Therefore,
the choice of γ, β is a trade-off.

Remark 4.8. An reasonable mini-bacth size is needed to calculate µ, σ
in each single bacth, i.e., B ≥ 16, 32, For non-ImageNet tasks, it
will be an issue on how to choose B.

Remark 4.9. Besides BN, there are other types of normalization meth-
ods:

• Layer normalization; (which is standard in language processing)

• Instance normalization;

• Weight normalization;

• Group normalization; (Wu and He, 2018)

• Column normalization. The intuition is that there are lots of
headache come from normalizing rows, it may be better to nor-
malize columns instead. We skip the discussion for column nor-
malization in this lecture.

4.4 ResNet

Recommended Reading: (He et al., 2016).

Motivation It is intuitive that more layers for neural networks will
lead smaller traning error. However, some numerical experiments show
it is not true in general:

4.4. ResNet 39

Figure 4.3: Training error (left) and test error (right) on CIFAR-10 with 20-layer
and 56-layer “plain” networks. The deeper network has higher training error, and
thus test error. Similar phenomena on ImageNet is also observed.

Let’s analysis what is the most possible reason leading to this
phenomena. Let’s introduce few terminologies first. In data science, the
testing error can be separated into three types of errors:

• Representation Error, which is related to the representation power
of the fitting model.

• Optimziation Error, which is related to how well we minimize the
loss function.

• Generalization Error, which is related to the over-fitting issue.

In Fig. 4.3 we observe that the training error for 56-layer network is
larger. There are two factors related to the training error:

Tranining error =
{
Representation Error+

Optimziation Error

It seems that the high training error for deeper neural network is because
of the optimziation error, since deeper neural network admits stronger
power in representation.

The optimization error for solving minθ F (θ) using iteration formula
can also be decomposed into two types of errors:

[F (θ̂)− F ∗]︸ ︷︷ ︸
Optimization Error

= [F (θ̂)− F (θ∞)]︸ ︷︷ ︸
Convergence Error

+ [F (θ∞)− F ∗]︸ ︷︷ ︸
Global-optimality Gap

Here θ∞ is the solution we can obtain if given ∞ many iterations, i.e.,
the limit point where the optimiztion algorithm converge to.

40 Three Tricks in Training of Neural Network

• If F (θ∞)−F ∗ is large, one often needs reformulation of the original
problem and smart initialization. Check (Frankle and Carbin,
2019) with its comments (How to comment the paper "The Lottery
Ticket Hypothesis" n.d.) in Zhihu.

• If F (θ̂) − F (θ∞) is large, one often improves his algorithm to
accelerate, such as momentum-based acceleration.

It seems that the global-optimality gap is large for our training, and
therefore some smart initialization is needed. Moreover, one may ask
does 56-layer have more “representation power” than 20-layer networks?
Not neceesarily, unless the extra 36-layer can be approximated to the
identity operator.

It’s known that the deep neural network is sensitivity to initialization,
i.e., we can only travel a small region around the initialization. Therefore,
it seems that the high training error for deep neural network is because
that we may never travel have chance to travel to the identity operator
for the extra 36-layer operations.

Solution The solution for solving this issue is to design the architecture
to recover the identity operator. The Resnet is designed:

fθ(x) = F(x, {Wi}) + x,

where x is the input vectors of the layers. More generally, for same-width
network in the layer ` = 1, . . . , L,

z` = φ(W `z`−1) + z`−1,

Remark 4.10. The dimension of input and output does not always
match. Two tricks may be needed:

• Perform a linear projection Ws by the shortcut connections to
match the dimensions:

fθ(x) = F(x, {Wi}) +Wsx.

• Use pooling to change the dimension.

Remark 4.11. ResNet uses 2-layer and 3-layer net as residual module.

4.4. ResNet 41

Remark 4.12. Motivated by LSTM, the paper (Srivastava et al., 2015)
uses “gate” to resolve this issue, but their performance is no better than
ResNet.

5
ResNet Initialization and Landscape Analysis

5.1 Reviewing

• Three major tricks for State-of-The-art (SoTa) Deep Learning
Training:

– Initialization;
– Batch Normalization (BN);
– ResNet (or other architectures).

• Key ideas of Batch Normalization:

– Motivation: Reduce condition number by normalization.
– Treat Normalization as φ, a non-linear transformation.

• Error Decomposition (An perspective from Prof. Ruoyu Sun):

Testing Error =
{
Representation Error
Optimization Error

Optimization Error =
{
Finite-time Error
∞-time Error

42

5.2. Initialization for ResNet 43

• How to train a 10000-layer neural network with only one trick
“initilization”?

– Special Orthogonal Initial point (DeltaOrthogonal);
– Based on the idea of Dynamical Isometry.

5.2 Initialization for ResNet

The architecture for classic ResNet is presented below:

Figure 5.1: ResNet framework with Relu activation

How to initialize the ResNet architecture? Can we follow the pre-
vious knowleage for handling FNN? Let’s give some analysis by first
considering the simple linear network (with the same width).

Example 5.1. Let’s consider the L-layer linear network with the same
width d, i.e., the nonlinear activation is an identity operator. As a result,
the output-input function is expressed as:

y = (I +WL) · · · (I +W 1)x, where W ` ∈ Rd×d

By the Lecture 2 knowledge, we know that Xavier initialization works for
fully connected linear neural networks. Now we perform the simulation
of Xavier initialization for ResNet. The matlab code for the toy example
where L = 10, d = 100, and input x is all-one vector, is presented below.

44 ResNet Initialization and Landscape Analysis

clear;
L = 10;
d = 100; % dimension for weight matrix W
maxit = 10; % maximum iteration number

x = ones(d,1); norm0 = norm(x);
for i = 1:maxit

for l = 1:L
W = randn(d,d)/sqrt(d);
x = W*x + x;

end
rato = norm(x)/norm0

end

Unfortunately, we find that ‖y‖/‖x‖ ≈ 1014 in this case. Now the
question is the following:

1. Why does (He et al., 2016) succeed?
It seems that combining the trick Batch Normalization saves him

2. Why does our simulation fail?
In previous toy example, Xavier initialization works when the
output in each layer is the multiplication of the input with a
Gaussian matrix, but in our example, (I +W `) is not Gaussian.

Therefore, we need to re-derive the whole initialization theory for ResNet,
i.e., for what kind of W `, we have ‖y‖/‖x‖ ≈ O(1)?

1. Choose W ` = N (0, 1/d)− I, then the original case for linear FNN
is recovered, but we no longer enjoy the advantage of the new
architecture.

2. Consider the case where d = 1 first, i.e., the output-input function
is expressed as

y = (1 + wL) · · · (1 + w1)x

It’s feasible to choose w` = 0 for all `, but it does not have much
representation power, since any point near this initial point will

5.2. Initialization for ResNet 45

be strongly attracted to it.1 It’s reasonable to assume that w`
follows Gaussian distribution, i.e., w` = N (0, ·c). The question
turns to the choice of c. In this case,

E[‖y‖2] = (1 + c)L‖x‖2

Therefore, we should choose c = 1
L , which implies E[‖y‖2] =

O(‖x‖2).

For more general d, we should make W `
i,j = N (0, 1

d ·
1
L). The proof

outline is as follows:

• Consider how the term E[‖y‖2] scales with ‖x‖2. Observe that

E[‖z`‖2 | z`−1] = (z`−1)T
[
E(I +W `)2

]
(z`−1)

• It’s easy to show that when W `
i,j = N (0, 1

d ·
1
L),

E(I +W)2 = E(I + 2W +W 2) = I + EW 2 = (1 + 1/L)I.

• Therefore,

E[‖y‖2] = (1 + 1/L)LI · ‖x‖2 = O(‖x‖2).

Bibilogrphy In practice, people notice that ResNet performs much
better than standard architectures when networks are very deep. The
paper (Balduzzi et al., 2017) gives (partial) explanations for this phe-
nomenon, and claims that one reason is that the gradients in ResNet
(with BN) are far more resistant to shattering, which decays sublinearly.
Then this paper proposes a new initialization scheme accordingly, which
outperforms the classic He-initialization for standard architectures.

Scaling of the Residuals The formal analysis in the paper (Balduzzi
et al., 2017) is as follows. Consider a (variant of) ResNet2 framework
for Batch Normalization Disabled case:

z`+1 = α(z` + β ·W ` · relu(z`−1))

where α and β are rescaling factors.
1 The formal definition of the strong attraction is presented in the paper (Zhang

et al., 2000).
2There are several variants of classic ResNet.

46 ResNet Initialization and Landscape Analysis

1. With classic initilization without batch normalization trick, set
α = β = 1, then the variance of the gradient at z`[i] is 2L.

2. α-scaling: A solution to the exploding variance of resnets is to
rescale layers α = 1/

√
2, then Var(z`[i]) = 1.

3. β-scaling: In practice, α-rescaling is not used. Instead, combining
the bacth normalization trick and β-scaling3 gives Var(z`[i]) =
β2(L− 1) + 1. Furthermore, when β = 1/

√
L− 1, we see that the

variance keeps constant:

Var(z`[i]) ≡ 2.

Is normalization fundamental? It’s believed that normalization trick
is fundamental in state-of-the-art training. The paper (Zhang et al.,
2019) challenges this belief by proposing fixed-update initialization
scheme on ResNet to achieve state-of-the-art performance in image
classification and machine translation. This initialization is motivated
by solving the gradient explosion/vanishing problem at the beginning
of training via properly rescaling a standard initialization. This is the
only work that achieves such good results without the normalization
method

This work is amazing for two reasons:

1. Batch Normalization can be annoying, since its practical imple-
mentation can have many bugs, especially for ResNet.

2. It shows the importance of basic logic, i.e., the combination of
previous work could have gained more advantages. The paper
(Glorot and Bengio, 2010) first proposes Xavier-initialization; and
the same authors propose Relu function in (Glorot et al., 2010).
Combining these two tricks, the Kaiming initialization is proposed
in (He et al., 2015); and the same authors propose ResNet in (He
et al., 2016). Moreover, this paper proposes the Fixup initialization
by combining these two tricks that enjoy more advantages.

The theme of this course so far: discussion on how the theory shaped
the current practice.

3It’s suggested in (Szegedy et al., 2016) that β ∈ [0.1, 0.3]

5.3. Landscape of Neural-Nets 47

5.3 Landscape of Neural-Nets

Motivation We are interested in when and why the non-convexity is
not a big issue for the training of neural-nets. To answer this question,
recall that the Optimization Error is decomposed into two kinds of
errors:

Optimization Error
{
finite-time error
∞-time error

It’s believed that the major issue is due to the ∞-time error, since in
practice most algorithms do converge in a reasonable time. The ∞-time
error is about the optimality gap between the global minima and the
local minima that the algorithm has converged, which is related to
the landscape of the loss function for the training of neural-nets. This
lecture will talk about both positive and negative results about the
landscape of the loss function.

5.3.1 Positive Result: Linear Network has nice landscape

Consider the loss function for linear neural network with depth L:

F (θ) = ‖y −WLφ(WL−1(φ(· · ·W 1x)))‖2

The non-convexity of this loss function comes from the multi-layer and
the non-linear activation. The case for L = 2 reduces to the Matrix
Factorization problem:

F (θ) = ‖Y −W 2W 1x‖2F .

The landscape for matrix factorization is well-studied:

Scalar Case Analysis The loss function for the scalar case is given by:

F (u, v) = (1− uv)2, u, v ∈ R.

The 3-D plot for this loss function is in Fig. 5.2.

48 ResNet Initialization and Landscape Analysis

−4 −3 −2 −1 0 1 2 3 4 −4

−2

0

2

4

0

50

100

150

200

250

u

v

F
(u
,v
)

0
100
200

Landscape

Figure 5.2: 3-D plot for the loss function F (u, v) = (1− uv)2

From the landscape we can see that every local minima is a global-
minima, i.e., there is no bad local minima. We give a proof for this
claim:

1. Step 1: By taking gradient equal to zero, we find stationary points
must satisfy

either uv = 1 or u = v = 0

2. Step 2: It suffices to show that (u, v) = (0, 0) is not a local-minima.
Note that

F (ε1, ε2) = (ε1ε2 − 1)2 < 1
When (ε1, ε2) > 0 are sufficiently small, we find the function value
decreases, i.e., (0, 0) is not a local-minima.

Remark 5.1. However, starting from (u, v) = (0, 0), the gradient descent
gets stuck. Is this finding bad enough? Actually not. The paper (Lee et
al., 2016) shows that gradient descent, if converges, it only converges to
a local minimizer, almost surely with random initialization. The recent
trend for non-convex optimization is not satisfied with the convergence
to first order stationary point4, but the convergence to second order

4ε-First order stationary point (FOSP) means ‖∇f(x)‖ ≤ ε

5.3. Landscape of Neural-Nets 49

stationary point.5 The reason is that empirically second order stationary
point is as good as global minima. The tutorial (Understanding noncon-
vex optimization n.d.) in ISIT2019 gives summarization on the recent
progress in non-convex optimization, which is highly recommended to
read.

However, for people working on optimization, focusing on second
order stationary point is not good enough, since high-order saddle
points do exist for deep neural-nets. Now let’s focus on the second order
stationary point only.

Proposition 5.1. Consider the function F (u) = ‖M − uuT‖2F , where
M is PSD, any SOSP of this function is global-minima.

Proof. 1. Step 1: Check the gradient:

∇uF = 4(M − uuT)u = 0 =⇒ Mu = (uTu)u

Therefore, if u is SOSP, then (‖u‖2, u) is an eigen-pair of M .

2. Check the Hessian of the SOSP u:

∇2F (u) = 4(uuT + ‖u‖2I −M) � 0.

Combining these steps, we can show that ‖u‖2 = λmax(M), i.e., u
is a global-minima.

Re-thinking Convexity From this proof we can partially answer why
many people work on convex optimization, and why non-convex opti-
mization is not scary:

1. By sub-gradient inequality, we can show that FOSP together with
convexity implies global-minima. Therefore, it suffices to design
algorithms searching for FOSP.

2. Define G , {SOSP implies global-minima}. We find many in-
stances belong to the set G:

{convex problems} ⊆ G, {min
u
‖M − uuT‖2F } ⊆ G.

Therefore, for non-convex problems belonging to the set G, it
suffices to design algorithms searching for SOSP.

5Second order stationary point (SOSP) means ∇f(x) = 0 and ∇2f(x) � 0.

50 ResNet Initialization and Landscape Analysis

Bibliography The paper (Baldi and Hornik, 1989) shows that any
SOSP for the 2-layer linear network quadratic loss function is global-
minima under mild conditions; the paper (Kawaguchi, 2016) shows
that any SOSP for the deep linear network quadratic loss function
is global-minima under mild conditions. There are many later works
extending to other loss functions. Up to now, we find that multi-layer
may not be an issue.

5.3.2 Negative Result: Nonlinearity doesn’t necessarily imply Global-
optimality for SOSP

Now consider the non-linear activation. For the 1-dimension case, sup-
pose the loss function F (w) = (y − φ(wx))2. W.l.o.g., x = y = 1, which
follows that

F (w) = (1− φ(w))2.

We are interested in whether all SOSP are global-minimas.

Relu Activation Now we draw the landscape of F (w) if φ(w) =
max{w, 0}:

−6 −4 −2 0 2 4 6

0

5

10

15

w

F
(w

)

F (w) = (1−max{w, 0})2

Figure 5.3: 2-D plot for the loss function F (w) = (1− w+)2

We find that for w < 0, w is still a SOSP, but no longer a global-
minima. Let’s try other kinds of activation functions.

5.3. Landscape of Neural-Nets 51

• When φ(w) = w2, we find SOSPs are still the global-minima:

−1.5 −1 −0.5 0 0.5 1 1.5

0

0.5

1

1.5

w

F
(w

)

F (w) = (1− w2)2

Figure 5.4: 2-D plot for the loss function F (w) = (1− w2)2

• When φ(w) = sigmoid(w) = 1
1+e−w , we find SOSP is still the

global-minima:

−1.5 −1 −0.5 0 0.5 1 1.5

0

0.2

0.4

0.6

w

F
(w

)

F (w) = (1− sigmoid(w))2

Figure 5.5: 2-D plot for the loss function F (w) = (1− sigmoid(w))2

Therefore, we conclude that the landscape of loss function is fine for
most non-linear activations. but ReLu is not good in terms of landscape.
Prof. Ruoyu Sun suggests that we can try Leaky Relu or Softplw if

52 ResNet Initialization and Landscape Analysis

Relu fails (e.g., for GAN training).
In the next lecture we will try the sum of loss functions, i.e.,

F (w) = (y1 − φ(w)x1)2 + (y2 − φ(w)x2)2.

The question is that if two functions both have good landscapes, does
the summation still have a good landscape?

6
Landscape Analysis and Representation

6.1 Reviewing

1. For ResNet, what should be the right initialization?
β-scaling: scale the variance of the weight matrix W by 1/L.

Remark 6.1. Summarization for initialization tricks of the weight
matrix W `:

• Gaussian random W `

• Orthogonal W `

• For W ` of the form Identity + Gaussian matrix H, scale the
variance of the Gaussian matrix by 1/L.

Remark 6.2. The insights behind the hw1, question 5 are close to
the initialization tricks for ResNet. In order to gurantee ‖zL‖/‖x‖ =
O(1), the trick for the ResNet is to make E[(I + H)L] = O(I);
In order to gurantee E[‖Wx‖2] = E[‖x‖2], it suffices to make
E[WWT] = I, or more specifically,

• W and x are independent; Wi,j ’s are independent;
• EWi,j = 0,∀i, j;

∑
j E(W 2

i,j) = 1.

53

54 Landscape Analysis and Representation

2. When does the non-convexity not scary?

When the objective funciton has no sub-optimal local minima,
i.e., each second order stationary point is global minima.

3. Under which condition, a deep neurel-net loss function has no
sub-optimal local minima?

• Mutli-layer is not an issue.

• Most non-linear activation functions seems not an issue;
However, for ReLU function, there do exists sub-optimal
local minima. Therefore, the non-linearity sometimes does
cause an issue.

Outline

• Non-linear neural-nets landscape analysis

• Universal Approximation Theorem

6.2 Landscape analysis for non-linear neural-nets

6.2.1 Negative Result: The sum of two good-landscape function
have good landscape

A function with good-landscape means that there exists sub-optimal lo-
cal minima. It’s reasonable to think that the sum of two good-landscape
function has a good landscape, since convex functions have good land-
scape, and the convexity holds under summation.

Unfortunately, the paper (Auer et al., 1996) gives counter-examples
for this statement. Consider the error functions

E1(w) = (y1 − φ(wx1))2, E2(w) = (y2 − φ(wx2))2,

then it’s possible that the error function E , E1 + E2 contains the
local minimas of E1 and E2. In this way more local minimas can be
produced, which may lead to bad landscape.

6.2. Landscape analysis for non-linear neural-nets 55

0 2 4 6
−4

−2

0

2

4

w

E
rr
o
r
F
u
n
ct
io
n

E1

E2

E = E1 + E2

Figure 6.1: Illustraion of a counter-example for 1-dimension case

We made the assumption that the loss function is bounded1, then the
paper (Auer et al., 1996) further shows that the number of local minima
of the error function grows can grow exponentially in the dimension.

Theorem 6.1 (Theorem 3.4 in (Auer et al., 1996)). Let φ and `(·, ·)
satisfy the assumption; then for all n ≥ 1, there exists data {(xi, yi)}ni=1
such that

F (w) = 1
n

n∑
i=1

`(yi, φ(wxi))

has bn/dcd distinct local minima.

This seems a negative result, but we consider adding some extra
conditions to make it positive. First introduce the notion of minimum-
containing set:

Definition 6.1. Let f : Rd → R be a continuous function. Then an
open and bounded set U ∈ Rd is called a minimum-containing set for
f if for each w on the boundary of U , there is a w∗ ∈ U such that
f(w∗) < f(w).

1but ReLU does not satisfy this assumption

56 Landscape Analysis and Representation

Graphically speaking, the minimum-containing set for a loss function
is its “hole” part. In Fig. 6.1 we can see that E1 and E2 has different
holes, which makes E has two distinct holes, which results in two distinct
local minima.

The question is that does this phenomena happen frequently? In
other words, is it possible to add mild (practical) conditions to eliminate
extra minimum-containing set?

Theorem 6.2 (Theorem 5.1 in (Auer et al., 1996)). Let φ and ` satisfy
the previous condition, and further assume that φ is monotone and `
is qusi-motonone, i.e., L(y, y + r1) ≤ L(y, y + r2) for 0 ≤ r1 ≤ r2 or
r2 ≤ r2 ≤ 0. Given a sequence of data {(xi, yi)}ni=1, assume that there
exists parameter w such that φ(wxi) = yi for all i. As a result, there is
only one minimum-containing set in the loss function F (w).

Remark 6.3. In the 1-layer neural net with non-linear activation, we
can see that the loss function has a good landscape only if each dataset
is realizable 2, i.e., there exists parameter w such that φ(wxi) = yi. The
intuition is that in this case each component of the loss function share
the same minimizer w∗. Therefore, the necessary condition for a loss
function to have a good landscape is that representation power of the
neural net is “enough”.

6.3 Over-Parameterized Networks

It’s a common sense that deep (over-parameterized) networks are effiec-
tive descriptors for our physical world. However, it requires long com-
putation time, large storage space and otherwise. Due to the limited
resource, it is popular to do the network pruning of a large network to
get a reasonable effiective descriptor. See (Frankle and Carbin, 2019)
and (Han et al., 2015) for related work.

Train
Network
Pruning

Fine-
Tuning

2This condition is recently also called the interpolation property

6.3. Over-Parameterized Networks 57

However, it is not effiective to train a small network directly. One
possible reason is that bigger networks may have better landscape. The
evidence is that training larger network is in general “easier” than
smaller one in practice.

Does Current Neural-net have too many parameters? This is not
clearly understood now. Prof. Ruoyu Sun makes an analogy from the
function fitting example. To fit an underlying function Rd → R given n
samples, tuning n parameters are enough. However, to fit an underlying
function Rd → Rdy given n samples, it seems at least we need n · dy
samples. From this analogy, we infer that given n samples, each layer has
n degree of freedom, and we call the phenomena that, training neural
network with more than n neuros each layer, the over-parametrization.

Bibliography There are three classical works on the over-parametrization
issue of neural networks before 2000. The paper (Baldi and Hornik,
1989) simply shows that the landscape for the loss function of 1-hidden
layer linear neural network is good; following this work, however, the
paper (Auer et al., 1996) shows that adding non-linearity activation can
create many bad local minima; suprisingly, (Xiao-Hu Yu and Guo-An
Chen, 1995) shows that under the assumption of over-parametrization,
1-hidden layer nonlinear neural network has good landscape. However,
Prof. Ruoyu Sun claims that the statement from this paper is wrong.
He gives extension work in (Li et al., 2018).

Let’s discuss the work (Xiao-Hu Yu and Guo-An Chen, 1995) in
detail. Consider quadratic loss for 1-hidden layer nonlinear neural net-
work under the assumption that the number of hidden neuron in each
layer is more than the number of samples:

min
W1,W2

‖Y −W2σ(W1X)‖2F

To understand thir work, define the following properties:

• Property [PT]: Starting from any initial point, there exists a small
perturbation ∆ and a strictly decreasing path from θ + ∆ to a
global minima

58 Landscape Analysis and Representation

• Property [P]: Starting from any initial point, there exists a strictly
decreasing path from θ to a global minima, which further implies
that there is no bad sub-optimal local minima.

Their work essentially shows the over-parameterized problem has the
property [PT] instead of the property [P]. The paper (Li et al., 2018) is
the first one that finds this mistake. We can easily see that hte property
[PT] does not necessarily imply no bad local minima exist by considering
the counter-example in the Figure 6.2.

In fact, the property [PT] only implies that no suboptimal strict
local minimum exists, but suboptimal local minima can possibly exist.
We say the existence of strict local minimum as the existence of bad
basin:

Figure 6.2: No bad basin Figure 6.3: Example of bad basin

What we really need to worry about is the existence of bad basin in
our loss function, i.e., exitence of strict local minima. However, such
cases are rara in neural-nets due to its symmetry. For instance, matrix
factorization is one of the cores in the deep learning training:

min
X,Y
‖A−XY ‖2F

As long as we pick the solution pair (X,Y), the solution pair (XT, T−1Y)
admits the same objective value for any orthogonal matrix T .

6.4. Representation Power 59

6.3.1 Empirical Evidence for Landscape

There is some evidence that large neural nets have nice landscape, but
whether it is true, or how this can help us design better netowkr are
still open problems. Since these results are empirical, the details are
skipped, but only few works are listed.

Bibliography The paper (Goodfellow et al., 2015b) examines that, on a
straight path from initialization to solution, a variety of state-of-the-art
neural networks never encounter any significant obstacles (basins). The
paper (Garipov et al., 2018) and (Gotmare et al., 2018) empirically finds
that the optima of neural network loss functions are connected by simple
curves over which training and test accuracy are nearly constant, which
is called the Mode Connectivity phenomena. These empirical findings
may potentially help us understand the landscape of loss functions, and
the insights for robustness during training.

Remark 6.4. 1. The landscape for large neural network is nice, but
it is not the case where each local-minima is global minima.

2. It would be helpful to analysis the landscape from geometric point
of view, and we hope to generalize the empirical findings to theory.

3. There are recent results in other applications of neural network,
such as reinforcement learning (Google Brain is working on it),
GAN (Kurach et al., 2018), and otherwise.

6.4 Representation Power

Finally, we give some quick introduction to the representation power of
neural network.

Motivation Suppose we have a bunch of points in a unit square, and
we have two classes, inside the circle is class one, outside the circle is
class two. The goal is to build a classifier to classify these two classes,
then it is never possible to apply linear classifier to get positive results,
since linear classifier does not have strong representation power. We
can formalize the notion of representation power with math.

60 Landscape Analysis and Representation

Formulation of Representation Power

• Given a target domain D ⊆ Rd, which is usually assumed to be
compact. For simplicity suppose that D = [0, 1]d.

• Given a target function f(x) ∈ C(D).

• Given a candidate family F :

F = {f | f = vTφ(wx+ b), v ∈ R1×m, w ∈ Rm×b, b ∈ Rm, some m ∈ N}
= span{φ(〈w, x〉+ w0), w ∈ Rd, w0 ∈ R}

• We say that F represents f if for any ε, there exists f ∈ F such
that ‖f − g‖ ≤ ε. In other words, the candidate family F has
enough representation power w.r.t. the target function f .

Sufficient Condition for Enough Representation Power Few suffi-
cient conditions given for building the enough representation power of
F :

• When φ(·) is a bounded, non-constant and continuous function,
then F can represent any continuos mapping f (Hornik, 1991).

• If φ(·) is bounded, non-constant, then F can represent any function
f in Lp(µ). (see Stone-Weierstrass Theorem for detail in real
analysis note (Wang, 2019b)).

• ReLU is not a bounded function, but we can still show that
the ReLU activation has enough representation power by some
easy-following argument.

In next lecture, we will give some introduction to GAN.

7
Representation and GAN

7.1 Reviewing

1. When do neural-nets have bad local-minima?

• Classical results in (Auer et al., 1996) show that for unreal-
izable case, non-linear activation can easily create bad local
minima;

• Recent results in (Li et al., 2018) show that even for over-
parameterized case (thus also realizable), the bad local min-
ima do exist for a class of non-linear activations.

2. People claims that “over-parametrization” smooths the landscape,
any rigorous result in this claim?

There are a few rigorous results for this claim. For instance, (Li
et al., 2018) shows that the loss function of over-parametrized net-
works has no bad basin (or more precisely, it is a "weakly global"
function); for many smooth enough activations, over-paramterized
networks satisfy a stronger geometrical property PT (i.e. at any
point, after a tiny generic perturbation, there is a strictly decreas-
ing path from the perturbed point to a global minimum).

61

62 Representation and GAN

3. How to empirically check nice or bad landscape for any problem
(continuous optimization)?

Check values along paths connecting interesting points

4. When does the neural-nets have enough representation power?

The most important factor is the activation function. It should
be bounded and non-constant; although ReLU is not bounded, it
also makes the neural-nets have enough representation power; but
linear/quadratic activation does not.

7.2 Representation: depth separation

7.2.1 A simple proof of threhold activation has enough represen-
tation power

Consider the dimension d = 1 first. The non-linear activation is φ(t) =
1{t ≥ 0}. It suffices to show that

span{φ(at+ b)} = C(D)

for any compact domain D ∈ R. Define the pulse function ψ(t) = 1{0 ≤
t < 1}, which can be expressed as ψ = φ(t)− φ(1− t). It suffices to use
the pulse function to approximate any continuous function. The general
idea is shown in the Figure. 7.1.

Figure 7.1: The pulse function can approximate any continuous function.

7.2. Representation: depth separation 63

We can see that the insights are very similar to those in Riemann
integration, and the proof follows the similar idea as well (Wang, 2019a,
Theorem (6.4)).

Proof. Suppose that D = [0, 1] and our target function f∗ ∈ C[0, 1]. The
continuity of f∗ together with the compactness of D implies that the
function f∗ is uniformly continuous, i.e., ∀ε > 0, there exists δ such
that for any |x− x∗| < δ,

|f − f∗| < ε.

Pick a partition

P = {b0 := 0, b1 = h, b2 = 2h, . . . , bK := Kh := 1}, with 1
K

< ∆.

Therefore, define the approximation function

f(x) =
K∑
i=1

aiψ

(
x− bi
bi+1 − bi

)
∈ span{φ(at+ b)},

where ai , f∗(bi), i = 0, . . . ,K − 1. Then it’s easy to verify that
|f(x)− f∗(x)| < ε for any x ∈ [0, 1].

Remark 7.1. The first step in the proof explains why we need to define
the compact domain.

Bibliography Then we discuss the representation power for other kinds
of activations. For sigmoid function φ(t) = 1

1+e−t , it suffices to show that
it can approximate the threshold function very well; for other types of
functions such as switch function, some techniques from function analysis
are needed. The paper (Cybenko, 1989) shows that the sigmoidal-
type activation has enough representation power by using arguments
from real analysis; the paper (Barron, 1994) further gives an mean
integrated squared error between the estimated network and a target
function f , in terms of number of neurons and the input dimension; the
Kolmogorov–Arnold representation theorem actually has solved this
problem by using that every multivariate continuous function can be
represented as a superposition of continuous functions of one variable,

64 Representation and GAN

which is also related to Hilbert’s thirteenth problem. The proof in
this representation theorem contains the multi-resolution idea, and
VCG/Receptor has the similar idea.

7.2.2 Depth Separation (Analysis for ReLU Activation)

It’s a common belief that deep neural network usually gains better
performance. We want to analysis this claim from the perspective
of representation power. To show the power of depth, one way is to
construct a function represented “deep”-net, then show this function is
difficult to be represented by shallow networks.

1. Consider a function ψ frequently studied in the dynamical systems
literature, which can be represented with the ReLU activation φ:

ψ(x) = φ(2φ(x)− 4φ(x− 0.5)).

Figure 7.2: The function ψ, which has one “peak”

2. Construct a function f∗(x) = ψ(L)(x), a the composition of L ψ

functions, which has 2L−1 peaks. See ψ(2) for instance:

7.2. Representation: depth separation 65

Figure 7.3: The function ψ(2), which has two “peaks”

It suffices to show f∗(x) = ψ(L)(x) can be represented by deep
neural-nets, but it is difficult to be represented by a shallow network,
i.e., we need O(2L) neurons of a shallow network for representation.
The intuition is that the depth (i.e., function composition) increases
oscillation exponentially; while width (i.e., linear combination) increases
oscillation linearly.

Definition 7.1. We say that f is K-sawtooth if f is piecewise affine
with K pieces. For example, the ReLU function is 2-sawtooth, and ψ is
4-sawtooth.

We can show that function composition is stronger to produce more
“sawtooth” than addition:

Lemma 7.1. If f is a-sawtooth, g is b-sawtooth, then f + g is at most
(a+ b)-sawtooth, f ◦ g is at most ab-sawtooth.

By using this lemma, we can show the converse error bound on the
representation power of shallow network:

Theorem 7.2. Given an underlying function F and data points {(xi, yi ,
F (xi))}ni=1, yi ∈ {0, 1}, define the classification error for the approxima-
tion function f :

R(f) = 1
n

n∑
i=1

1 {sign(f(xi)− 1/2) 6= yi} .

66 Representation and GAN

Construct the data points xi = i
2L∗ , yi = ψ(L∗)(xi), i = 1, . . . , 2L∗ . As

a result, y = (0, 1, 0, 1, . . .), and F (x) = ψ(L∗)(x). If a ReLU neural
network f has L layers, and width m < 2(L∗−k)/L−1, then R(f) >
1
2 −

1
3

1
2k−1 .

Corollary 7.3. If f has L layers with width m < 2(L∗−1)/L−1, then the
error function is lower bounded by a constant: R(f) > 1/6.

Corollary 7.4. If f has no more than
√
L∗ layers, then we need at least

m > 2O(
√
L∗) neurons to get the error less than 1/6.

Remark 7.2. There is an Implicit assumption on Theorem (7.2), i.e.,
the neural network is fully connected feedforward. It does not apply
to ResNet and RNN. The paper (Lin and Jegelka, 2018) shows the
representation power for ResNet.

Remark 7.3. The representation power on other kinds of neural-nets is
a popular problem, such as graph neural-nets and meta-learning.

Summarization There are three criteria for the performance of neural-
nets: 

Representation Error
Optimization Error

Generalization Error
The important factors for the success of neural-nets are as follows:

1. The depth of neural-nets relates to the representation error;

2. The width of neural-nets relates to the landscape of neural-nets,
which further influences the optimization error;

3. The initialization and normalization techniques relate to the con-
vergence performance of optimization;

4. The architecture design influences the representation error; and
the optimization error;

5. The SGD algorithm influences the speed for convergence during
the optimization process, and people believe that it also tends to
give a solution with low generalization error

7.3. GAN 67

Remark 7.4. Why the over-parametrization of neural-nets usually do
not lead to over-fitting? Prof. Ruoyu Sun gives his understanding of this
question. Consider true data {(xi, yi)}ni=1 generated by f∗(xi) = yi. We
want to approximate f∗ with f , by using these n data points. Let W ∗
denote the representation-power threshold, and n∗ denotes the threshold
for the number of data points, under which the approximation is likely
to be bad. The number of parameters of f is more than W ∗ will not
cause over-fitting, but when n < n∗, it is likely to cause over-fitting.

7.3 GAN

Now we turn from supervised learning to unsupervised learning. Prof.
Ruoyu Sun will give basic formulation about GAN this lecture, and
Prof. Mingyi Hong will provide the introduction to Adversarial Attack
& Defense in the next lecture.

Motivation

Richard Feymann: What I cannot create, I do not un-
derstand

We wish to learn the data distribution Pd, e.g., a style of writing of
articles. In order to do so, we build a generative model which generates
Pg, e.g., imitates writing articles; and a classifier which judges whether
the received sample comes from Pd or Pg, e.g., give comments to the
written samples. Finally, we want Pg ≈ Pd, e.g., the generated article
has a similar style of the original one.

We are interested in solving the optimization problem

min
Pg

Φ(Pd,Pg)

The question is that what distance measure should the Φ be? Statiscians
tend to pick Φ(P,Q) = KL(P,Q) or Φ(P,Q) = JS(P,Q) empirically.
However, it is not clear whether these distance metrics are good metrics.
An ideal metric should satisfy the following property: if two images
are from the same class, then their distance is small; if they are from
different classes, then their distance is large. Is the JS distance between

68 Representation and GAN

the images of two cats is smaller than the distance between a cat and a
dog? This is not clear. The major issue here is that common distances
may not capture the right representation of the images. To explain the
solution, next, we use an example of fake paintings.

Discussion Suppose we want to generate an appropriate painting,
denoted as X. Given an artist paint something, denoted as X̂; and hire
a critic to judge whether it is good or bad. We use D(x) to represent
the probability that the input x is thought by the critic to come from
the data Pd rather than Pg. The evaluation score can be modeled as

LGAN(Pd, D) = Ex∼Pd [logD(x)] + Ex̂∼Pg [log(1−D(x̂))]

Pick the best critic, i.e., the most strict critic, the distance measure is

Φ(Pd,Pg) = max
D

LGAN(Pd, D)

Therefore, the optimization for GAN is a minimax problem:

min
Pg

max
D

Ex∼Pd [logD(x)] + Ex̂∼Pg [log(1−D(x̂))] (7.1)

When proposing a new mode, the sanity-check is needed, i.e., ensure
that the global optimum equals whatever we want, i.e., the optimal
solution P∗g = Pd.

Theorem 7.5 ((Goodfellow et al., 2014)). The global minimum of the
problem (7.1) is achieved if and only if P∗g = Pd. Moreover, this op-
timization problem is equivalent to minimizing the Jensen-Shannon
divergence

Φ(Pg,Pd) = − log 4 + 2JSD(Pd‖Pg).

Proof. Finding the global minima of the problem consists of two steps:
first, we need to specify the range of the objective function; second, we
need to identify some points that achieve the extreme of the range.

• Question 1: What is the range of the objectvie function?
We find that D(x) ∈ (0, 1), and therefore LGAN ∈ (−∞, 0). It
seems that it is meanless to solve an optimization problem with
negative infinite value. In fact, the objective is lower bounded
since the maximum criteria help.

7.3. GAN 69

• Question 2: Check when does the objective achieve the optimum.
Consider the finite support distribution for simplicity. Denote the
pmf from Pd and Pg as {q1, . . . , qn}, {p1, . . . , pn}, respectively. It
suffices to solve

minp∈Pn maxdi∈(0,1)
∑n
i=1 qi log di +

∑n
i=1 pi log(1− di)

with Pn = {p |
∑
i pi = 1, pi ≥ 0}

Consider the maximum optimization first:

max
di∈(0,1)

n∑
i=1

qi log di +
n∑
i=1

pi log(1− di)

It is decomposable in terms of i. For each single problem maxdi qi log di+
pi log(1− di), we find the optimal solution is di = qi

qi+pi . Substi-
tuting this solution into Φ(Pg,Pd), we imply

Φ(q, p) =
∑
i

qi log qi
qi + pi

+
∑
i

pi log pi
qi + pi

= JSD(p‖q)− 2 log 2

We find that it suffices to minimize Φ(q, p) ∈ (−2 log 2, 0), which
is a valid probem now. After solving this minimization problem,
we obtain the optimal d:

d∗i (pi) = qi
qi + pi

=


1, if pi = 0, juage as a bad generator
0, if qi = 0, pi > 0, juage as invalid

1/2, juage as a good generator
,

i.e., for certain data point i, the discrimintator returns a proba-
bility qi/(qi + pi). At optimal p∗ = q, d∗i (p∗) = 1/2,∀i.

Remark 7.5. This result is misleading somehow. For instance, images
are continuous distributions, so it is impossible to expect the generated
image exactly match the original image, i.e., we can never achieve values
for di other than {0, 1}.

Remark 7.6. This proof justifies GAN by relating it to Jensen–Shannon
divergence, but in the beginning we think that this distance is not good.

70 Representation and GAN

Motivation of W-GAN The Jensen–Shannon divergence is not a good
metric in some settings. For instance, it is impossible to measure the
distance between two distributions with the different supporting set, but
Wasserstein distance givens a reasonable measure. The p-th Wasserstein
distance between two probability measures µ, ν is defined as

Wp(µ, ν) = min
p∼Γ(µ,ν)

(
E(x,y)∼P |x− y|p

)1/p

where Γ(µ, ν) denotes the set of all couplings of µ and ν. When p = 1,
finding the Wasserstein distance reduces to solving an LP problem.
Moreover, the W1 distance can be re-expressed using duality of LP:

W1(µ, ν) = sup
|f |L≤1

Ex∼µ[f(x)]− Ey∼ν [f(y)]

where the supremum is taken over all the 1-Lipschitz functions f . The
W-GAN solves the following problem:

min
Pg

max
|f |L≤1

Ex∼µ[f(x)]− Ex̂∼ν [f(x̂)]

Remark 7.7. The origin GAN using Jensen–Shannon divergence also
works, but using Wasserstein distance is better. However, Wasserstein
distance does has some disadvantages. For example, it is not general-
izable, i.e., to approximate W1(µ, ν), we require exp(d) samples from
(µ, ν), where d is the supporting dimension of µ and ν, even when they
are Gassuain distributions. One solution is to realize that the objective
functions in the original GAN and W-GAN are actually using different
distance metrics called "neural network distance". Again, we emphasize
that neural-network distance is not a new distance, but a distance with
good generalization property, and is used by everyone although the
distance metric is not explicitly defined before.

8
Adversarial Learning

In this lecture, we will discuss adversarial attack & defense for the
neural network. We will give mathematical descriptions about attack
and defense, and discuss the current trend in this field.

8.1 Introduction to Adversarial Learning

Motivation The earliest research on the adversarial attack is on (Good-
fellow et al., 2015a) and (Szegedy et al., 2014), where (Szegedy et al.,
2014) shows that a small but specified designed perturbation of image
changes the prediction of a neural net, while (Goodfellow et al., 2015a)
presents an example that a panda image with a small perturbation still
looks like the same for humans, but it is classified as a gibbon by the
neural network.

71

72 Adversarial Learning

Remark 8.1. Some comments on this adversary example:

1. An adversary attack is usually performed on several well-known
deep learning models, such as GooLeNet.

2. The performance of an adversary attack is the Robust Error, i.e.,
the proportion of data samples that can be effectively attacked
by our attacking method. In (Goodfellow et al., 2015a), the ro-
bust error was 87.5% on the CIFAR-10 dataset, which was later
increased to 100% by the C&W attack in (Carlini and Wagner,
2017). Therefore, each image can be easily attacked.

3. Transferability issue: adversarial examples designed for one kind
of neural-nets can attack other kinds of neural-nets.

4. The targetted attack is also easy, i.e., we can manipulate the
prediction to whatever target we want.

5. It is hard to defend.

6. A good attack can achieve

• high robust error;
• small number of queries of the model;
• low magnitude of perturbation.

Type of attacks Based on whether the hacker knows the model or
not, adversarial attacks can be classified as:

• White box attack: the hacker can access everything of the victim
model;

• Black box attack: the hacker can only access top-k confidence
scores or labels.

Based on whether the attack is aimed to manipulate the prediction,
adversarial attacks can be classified as:

• Targetted attack: an example in class-A is classified into class-B;

8.2. Mathematical Formulation of Adversary Attack 73

• Untargeted attack: an example in class-A is classified into a class
other than A.

Based on what kinds of data the hacker can access, adversarial attacks
can be classified as:

• Evasion attack: the hacker can change testing data. We focus on
this kind of attack in this lecture

• Poison attack: the hacker can change the training data.

Bibliography In 2014, the papers (Goodfellow et al., 2015a) and
(Szegedy et al., 2014) were the first ones that introduced white-box
attacks; In 2016, the papers (Carlini and Wagner, 2017) introduced
black-box attacks; In 2017, (Chen et al., 2017) first performed the black
box attacks by zeroth-order optimization methods; In 2018, (Ilyas et al.,
2018) introduced the zeroth-order attacks by querying the objective as
less as possible.

8.2 Mathematical Formulation of Adversary Attack

Consider the supervised setting, i.e., given the data points {(xi, yi)}ni=1,
the modeler wants to generate a neural network fθ such that f(θ;xi) ≈ yi
for each i. Now we give various formulations for different types of attacks.

8.2.1 Un-targetted Attack

The goal of an untargeted attacker is that given a data instance x, the
perturbed input x+ δ will make the neural-nets learn a wrong model.
This gives an optimization formulation:

min
δ∈Rd

‖δ‖p (8.1a)

s.t. f(x+ δ) 6= y (8.1b)
x+ δ ∈ [0, 1]d (8.1c)

where (8.1a) is to make the energy of the pertubation as small as
possible; (8.1b) is to mislead the model; (8.1c) is to make the perturbed

74 Adversarial Learning

input well-defined. The inequality constraint (8.1b) makes the problem
hard to solve. Thus we often reformulates this problem as

max J(f(x+ δ), y) (8.2a)
s.t. ‖δ‖p ≤ ε (8.2b)

x+ δ ∈ [0, 1]d (8.2c)

where J(·, ·) is some loss function; the objective (8.2a) is to maximize the
loss between output for perturbed data and original one; the constraint
(8.2b) is to keep the perturbation in a small magnitude ε. The decision
variable in this problem is the input perturbation δ instead of parameters
in the neural-nets f .

The fast gradient sign method (FGSM) (Goodfellow et al., 2015a)
can be used to solve this optimization problem. First linearize the
objective (8.2a) and project it into the norm constrained set, we imply
that the update should be

η = ε · sign(∇xJ(f(x), y)),

and the adversarial attack is performed by setting x̃ = x+ η.

Figure 8.1: Illustration for Fast gradient sign method

The update rule is very easy, and only one-time update is performed.

8.2. Mathematical Formulation of Adversary Attack 75

8.2.2 Targetted Attack

The goal of targetted attack is to add a perturbation such that the output
label is a specific class. Suppose that the target class is t ∈ {1, . . . ,M}.
Similar to the idea in un-targetted attack, the typical formulation is

min
δ∈Rd

‖δ‖p (8.3a)

s.t. f(x+ δ) = t (8.3b)
x+ δ ∈ [0, 1]d (8.3c)

This kind of attack is called Carlini-Wagner attack, proposed in the
paper (Carlini and Wagner, 2017). Solving (8.3) is in general harder
than solving (8.1). We view this problem as an equality-constrained
optimization, which can be solved using penalty method:

• Step 1: Find a function g(·) such that

g(x̃) ≤ 0 =⇒ f(x̃) = t

– For example, construct g((̃x)) =
(

1
2 − [Z(x̃)]t

)
+
, whre

([Z(x̃)]t)Mt=1 is the output before the softmax layer. If g((̃x)) ≤
0, then the t-th entry before the softmax layer is larger than
1
2 , i.e., f(x̃) = t.

– Similar to the idea above, construct

g(x̃) =
(

max
i 6=t
{[Z(x̃)]i} − [Z(x̃)]t

)
+

• Step 2: Penalize the equality constraint into the objective function:

min
δ

‖δ‖p + c · g(x+ δ) (8.4a)

s.t. x+ δ ∈ [0, 1]d (8.4b)

Solving Optimization Problems in Adversary Attack Either Zeroth-
order or First-order optimization algorithm can be used to solve the
problems like (8.1) or (8.4). The advantage of first-order methods, such

76 Adversarial Learning

as projected gradient descent and Adam (Kingma and Ba, 2015), are fast
convergence rates, but they need the gradient information, i.e., using
backpropagation of the neural-nets, i.e., white box attack is needed,
which is in-practical in life. Therefore, people consider the zeroth-order
methods, also called the derivative-free methods. This method estimates
gradient information using objective evaluation. However, this method
is slower than gradient methods, by order of low polynomial of problem
dimension.

8.2.3 Zeroth-order Optmization

The basic ideas of zeroth-order methods are to approximate the gradient
information by calling objective value several times. At point x, the
Gausaain vector u is generated with correlation B−1. Then the gradient
at x can be approximated as:

gµ(x) = f(x+ µu)− f(x)
µ

·Bu,

or
ĝµ(x) = f(x+ µu)− f(x− µu)

2µ ·Bu.

Given T iterations for running the algorithm, the optimality measures
are hT := E[f(xT)]−f∗ for convex problems, or h̃T := E[‖∇f(xT)‖2] for
non-convex problems. The typical zeroth order method is the random
gradient free algorithm (Nesterov, 2011), i.e., in each iteration perform
the gradient-descent-like update:

xk+1 = xk − hB−1gµ(xk).

For convex objective f , hT = O(d/T) +O(ε), where d is the problem
dimension. To achieve hT ≤ ε, T = O(d/ε) iterations are needed. For
non-conex f , h̃T = O(d/T) + O(ε). To achieve h̃T ≤ ε, T = O(d/ε)
iterations are needed.

8.3 Adversarial Defense

Currently, there are two kinds of defense strategies:

8.3. Adversarial Defense 77

• Adversarial training: Defender generates training data using a
known attack, and then tries to improve his model. However,
the model may still be vulnerable under new kinds of attacks.
Moreover, it does not perform very well even for given attacks.

• Defensive distilling: Based on distilling the network knowledge,
which is effective, i.e., reducing robust error from 95% to 5%.
However, it does not perform well for the C&W attacks

8.3.1 Certified Defense

This defense method borrows the idea of robust optimization, which
aims to solve the min-max problem:

min
θ

E(x,y)∼P max
x̃

[1{fθ(x̃) 6= y}] (8.5a)

s.t. ‖x̃− x‖p ≤ ε (8.5b)

The objective (8.5a) is to minimize the percentage of getting an error
among all samples, and the constraint (8.5b) assumes the perturbation
magnitude is bounded by ε.

The state of art for certified defense method is shown in the following
table (Wong et al., 2018):

Accuracy MINST CIFAR-10
ε = 0.1 3% 34%
ε = 0.3 34%
ε = 2/255 36%
ε = 2/255 70%

Table 8.1: The entries in the table are the robust error, the ε denotes the norm of
perturbation.

Generally speaking, it is very challenging to make models robust to
different kinds of attacks. It is still an active research area.

78 Adversarial Learning

8.4 Optimization Algorithms

8.4.1 Part I: Gradient Descent (GD) method

Consider the unconstrained problem

min
x
f(x)

Apply the Gradient Descent (GD) method:

xk+1 = xk − γ∇f(xk)

Following questions need to be considered:

1. When does the algorithm work?

• Assumption for the problem:
(a) The objective function is L-smooth;
(b) The level set Xδ = {x | f(x) ≤ δ} is bounded for all δ.

2. What kind of solution can it compute?

• It finds the ε-first-order-stationary-points, i.e., x such that
‖∇f(x)‖ ≤ ε.

3. How fast can we compute it?

• Sublinear convergence rate. We encourage the reader to
first go through the convergence proof for convex objective
functions in the appendix. The related contents are typed
on the undergraduate course MAT3220, Optimization II.

By assuming that f is L-lipschitz which is not necessarily convex,
we give a convergence proof for the gradient descent method.

Theorem 8.1. Suppose that the objective function f is L-lipschitz, and
gradient descent method is applied in each iteration:

xk+1 = xk − 1
L
∇f(xk).

Define T ∗ := min{i : ‖∇f(xi)‖2 ≤ ε}, then T ∗ = O(1/ε).

8.4. Optimization Algorithms 79

Proof. 1. Step 1: GD method always makes significant progress in
each iteration.

f(xr+1)− f(xr) ≤ 〈∇f(xr), xr+1 − xr〉+ L

2 ‖x
r+1 − xr‖2

(8.6a)

≤ − 1
L
‖∇f(xr)‖2 + L

2 ‖x
r+1 − xr‖2 (8.6b)

≤ − 1
2L‖∇f(xr)‖2 (8.6c)

where (8.6a) is by the Lipschitzness of f ; (8.6b) is by the identity
xr+1−xr = −1/L∇f(xr); (8.6c) is by the inequality ‖xr+1−xr‖ ≤
1
L‖∇f(xr)‖.

2. Step 2: Considering the best performance in first T ∗ iteration.
By (8.6c), we imply

f(x∞)− f(x0) ≤ − 1
2L

∞∑
r=0
‖∇f(xr)‖2 (8.7)

Moreover, since T ∗ is the first iteration where the iterate reaches
the ε-suboptimality point,

ε ≤ 1
T ∗

T ∗∑
r=1
‖∇f(xr)‖2

≤ 1
T ∗

∞∑
r=0
‖∇f(xr)‖2 ≤ 2L

T ∗
[f(x0)− f(x∞)]

It follows that

T ∗ ≤ 2L[f(x0)− f(x∞)]
ε

= O(1/ε).

Remark 8.2. 1. The convergence order does matter, but before car-
ing about that, we need to pay attention to the optimality measure,
i.e., whether ‖∇f(x)‖ ≤ ε or ‖∇f(x)‖2 ≤ ε2.

2. To reach ε-FOSP, we need O(1/ε2) iteration; in deep learning
training, the gradient descent operation in each iteration is ex-
pansive.

80 Adversarial Learning

3. The gradient descent, if converge, then it converges to SOSP with
probability one, and it will escape strict saddle points.

However, the gradient descent does not necessarily converge to
SOSP. Moreover, the convergence of gradient descent to SOSP
is too slow, and perturbation can rescue this situation. Take one
special optimization as an example.

Figure 8.2: Gradient Descent cannot escape saddle point efficiently

The objective is a quadratic function

f(x) = 1
2x

T
(

1 0
0 −1

)
x

The gradient descent formula is given by:

xk+1 =
(

1− γ 0
0 1 + γ

)

In this case, the gradient descent will get stuck around the line of
the saddle point (0, 0), but perturbed gradient descent motivates
the iterates to explore more areas around the saddle point.

In the next lecture, modern optimization methods will be introduced.

9
Optimization Algorithms

9.1 Reviewing

• In order to reach
√
ε-FOSP such that ‖∇f(θr)‖2 ≤ ε, the O(1/ε)

iterations are needed.

• Observe that each update of gradient descent is equivalent to
minimizing a taylor-expansion-based quadratic upper bound on
the objective function:

xk+1 = xk−tk∇f(xk) = arg min
x∈X

1
2tk
‖x−xk‖2 +∇Tf(xk)(x−xk).

Therefore, gradient descent is one special case of successive convex
approximation (SCA) technique. See the survey paper (Raza-
viyayn, 2014) on the SCA technique for detail.

9.2 Variants of Gradient Descent (GD) Method

9.2.1 Scaled GD

Consider the minimization problem

min
θ
F (θ).

81

82 Optimization Algorithms

The intuition of the scaled GD is to left-multiply the gradient ∇F (θt)
with a positive definite matrix to avoid osillation:

θt+1 = θt − αtDt∇F (θt), Dt � 0.

Example 9.1. Consider the linear regression problem

min
θ

1
2‖Aθ − b‖

2, (9.1)

with

A =
(
a1 · · · ad

)
,

θ = (θi)di=1.

In practice, the size for the feature a1 can be very differnt from that of
a2. In order to resolve this issue, the data transformation technique is
applied, i.e., introduce a new variable

w , Sθ, where S = diag(s1, . . . , sd).

It suffices to solve the new problem where the data matrix AS−1 is
well-conditioned:

min
w
‖AS−1W − b‖2 (9.2)

• The GD method for solving (9.1) is given by

θt+1 = θt − γAT(Aθt − b)

• The GD method for solving the transformed problem (9.2) is given
by

wt+1 = wt − γS−1AT(AS−1wt − b)

Left-multiplying S−1 for this iteration gives

θt+1 = θt − γS−2AT(Aθt − b)

Therefore, solving the transformed problem (9.2) is equivalent to the
scaled GD method by setting D ≡ S−2.

9.2. Variants of Gradient Descent (GD) Method 83

Example 9.2 (Newton’s Method). Newton’s method is a special case of
scaled GD by setting Dt ≡ (∇2F (θt))−1:

θt+1 = θt − αt(∇2F (θt))−1∇F (θt)

Newton’s method performs good in linear regression problem. If we
choose αt = 1, then Newton’s method gives the optimal solution in one
iteration:

θt+1 = θt − αt(∇2F (θt))−1∇F (θt)
= θt − (ATA)−1 · [AT(Aθ − b)]
= (ATA)−1ATb.

Example 9.3 (Gauss-Newton Method). Consider the non-linear regres-
sion problem

min
θ

F (θ) , 1
2

n∑
i=1

[fi(θ)]2

The gradient and Hessian are computed as follows:

∇F (θ) =
n∑
i=1

fi(θ)∇θfi(θ)

∇2F (θ) =
n∑
i=1
∇θfi(θ)∇T

θ fi(θ) +
n∑
i=1

fi(θ)∇2fi(θ)︸ ︷︷ ︸
S(θ)

The Gauss-Newton method sets

Dt ≡
(

n∑
i=1
∇θfi(θ)∇T

θ fi(θ)
)−1

,

which is an approximation of the inverse of the Hessian matrix. There
are two advantages:

1. It reduces the Hessian computation time into gradient computation
time.

2. The Dt is positive definite, which avoids the numerical instabil-
ity of Newton’s method. Actually, in the paper (Zhang et al.,
2000), Prof. Yin Zhang compares the difference between these

84 Optimization Algorithms

two methods. He found that the Gauss-Newton method possesses
a desirable behavior of only seeking global (or good local) min-
ima, while the Newton method is blindly attracted to all kinds of
FOSPs.

Remark 9.1. There are generally two choices of step size for GD and
variants of GD method:

• Constant step size: αt ∈ (0, 1/L);

• Diminishing stepsize: αt → 0 but satisfies the infinite travel
condition

∞∑
t=1

αt =∞.

For constrained minimization problem, the projected gradient descent
method is applied.

9.2.2 Stochastic Gradient Descent (SGD)

Consider minimizing an objective with the finite-sum form:

F (θ) = 1
N

N∑
i=1

`(fθ(xi), yi) ,
1
N

N∑
i=1

Fi(θ)

The SGD iteration is given by

θt+1 = θt − αt∇Fj[t](θt),

where j[t] is the sample randomly picked from {1, . . . , N} at the t-th
iteration.

Remark 9.2. 1. The SGD works under the following assumptions:

• Each component function Fi is Lipschitz continuous, i.e.,
‖∇Fi(θ)−∇Fi(ξ)‖ ≤ L · ‖θ − ξ‖;

• The variance for estimation of gradient is uniformly bounded:

E
[
‖∇Fj[t](x)−∇f(x)‖2

]
≤ σ2

9.2. Variants of Gradient Descent (GD) Method 85

2. Stochastic gradient method is not a descent method, though it
is frequently referred to as stochastic gradient descent in the
literature.

3. We will show that αt has to be a dimishing step-size.

4. If j[t] are selected like the form {1, . . . , N, 1 . . . , N, . . . }, then it
reduces to the incremental gradient algorithm.

5. People prefer to use SGD in machine learning field instead of GD.
The disadvantage for SGD is that it needs O(1/ε2) iterations to get√
ε-FOSP, while GD needs only O(1/ε) iterations. However, the

complexity of the number of gradient calls in each inner iteration is
different. The computation of the gradient of component functions
per iteration for SGD is O(1), but GD requires O(N) calls. Due
to this fact, SGD is faster than GD in practice.

gradient calls per iteration # iterations
GD n ε−1

SGD 1 ε−2

Table 9.1: Comparison of SGD and GD

Theorem 9.1. Suppose that the objective function satisfies the assump-
tions mentioned before, and the SGD is applied in each iteration:

θt+1 = θt − αtgt, where gt := ∇Fj[t](θt).

Define T ∗ := min{i : ‖∇F (θi)‖2 ≤ ε}, then T ∗ = O(1/ε2).

Proof. 1. Step 1: SGD always makes significant progess in each
iteration.

F (θt+1) ≤ F (θt) + 〈∇F (θt), θt+1 − θt〉+ L

2 ‖θt+1 − θt‖2

= F (θt)− αt〈∇F (θt), gt〉+ Lα2
t

2 ‖gt‖
2

86 Optimization Algorithms

Then taking conditional expectation both sides given θt leads to

E[F (θt+1) | θt] ≤ F (θt)− αt〈∇F (θt),E[gt | θt]〉+ Lα2
t

2 E[‖gt‖2 | θt]

= F (θt)− αt‖∇F (θt)‖2 + Lα2
t

2 E[‖gt‖2 | θt]
(9.3)

Furthermore, by the equality ‖a‖2 ≤ 2‖a− b‖2 + 2‖b‖2,

E[‖gt‖2 | θt] ≤ 2E[‖gt −∇F (θt)‖2 | θt] + 2‖∇F (θt)‖2

= 2σ2 + 2‖∇F (θt)‖2

Substituting this identity into the RHS of (9.3) gives

E[F (θt+1) | θt] ≤ F (θt) +
(
−αt + Lα2

t

)
‖∇F (θt)‖2 + Lα2

tσ
2

≤ F (θt)−
αt
2 ‖∇F (θt)‖2 + Lα2

tσ
2

where the last inequality is by choosing sufficiently small αt.
Therefore, the expected decrease in each iteration is bounded by
the gradient term plus some variance:

E[F (θt+1)]− E[F (θt)] ≤ −
αt
2 ‖∇F (θt)‖2 + Lα2

tσ
2

2. Step 2: Considering the best performance in the first T ∗ iteration.
Suppose that the step size αt ≡ α for all t. Then summing over
the inequality above for t = 1, . . . , T ∗ gives

1
T ∗

T ∗∑
t=0

E[‖∇F (θt)‖2] ≤ 2E[F (θ0)− F (θT ∗+1)]
αT ∗

+ 2Lασ2

≤ 2[F (θ0)− F (θ∞)]
αT ∗

+ 2Lσ2α

Choosing α = 1/
√
T gives

1
T ∗

T ∗∑
t=0

E[‖∇F (θt)‖2] ≤ 2[F (θ0)− F (θ∞)] + 2Lσ2
√
T ∗

Moreover, since T ∗ is the first iteration where the iterate reaches
the ε-suboptimality point,

ε ≤ 1
T ∗

T ∗∑
t=0

E[‖∇F (θt)‖2] ≤ 2[F (θ0)− F (θ∞)] + 2Lσ2
√
T ∗

9.3. Momentum-based Method 87

Or equivalently,

T ∗ ≤ 2[F (θ0)− F (θ∞)] + 2Lσ2

ε2
= O(ε−2).

9.3 Momentum-based Method

Now we introduce several famous momentum methods.

9.3.1 Heavy-Ball Method

Each update of Heavy-Ball Method uses the information from the last
and the last second iterate points:{

mt = βmt−1 + (1− β)∇F (θt)
θt+1 = θt − αtmt

Remark 9.3. For convex objective function, the heavy-ball method can
accelerate the convergence rate from O(1/ε) iterations into O(1/

√
ε)

iterations. However, it is not clear how the heavy-ball method behaves
in general non-convex problems.

9.3.2 Adaptive Gradient methods (AdaGrad) (Duchi et al., 2011)

The AdaGrad can be viewed as a scaled version of the SGD:

θt+1 = θt − αt(Dt)−1/2gt,

where Dt = 1
t

∑t
s=1 gs · gT

s

The inituition is that the step size of SGD is hard to control. The
AdaGrad resolves this issue by rescaling the step size of i-th coordinate
from αt to αt√

1
t

∑t

s=1 gigj

In practice, the inverse of Dt is difficult to

compute, and therefore we approximate its inverse by simply inversing
the diagonal entries of Dt:

θt+1 = θt − αt diag
(

1
t

t∑
s=1

gs · gT
s

)−1/2

gt

88 Optimization Algorithms

Or equivalently, this iteration can be written as
vt = 1

t

t∑
s=0

gs ◦ gs

θt+1 = θt − αt(vt)−1/2 ◦ gt

9.3.3 RMS-Prop (Tieleman, 2012)

The RMSprop algorithm is a variant version of AdaGrad, by doing
exponential decay of previous information vt−1:{

vt = βvt−1 + (1− β)gt ◦ gt
θt+1 = θt − αt(vt)−1/2 ◦ gt

Remark 9.4. Unfortunately, there is no theory concerning how to choose
β optimally in literature.

9.3.4 Adam (Kingma and Ba, 2015)

Finally, let’s introduce the Adam algorithm, which not simply enjoys
features from heavy-ball method such that the gradient estimate is
momentum, but also borrows ideas from RMSprop such that the step
size is adaptively chosen with exponential decay.

mt = β1mt−1 + (1− β1)gt
vt = β2vt−1 + (1− β2)gt ◦ gt

θt+1 = θt − αtv−1/2
t ◦mt

Bibliography In 2018 ICLR, the paper (Reddi et al., 2018) gives a
counter-example to show that Adam does not converge for convex
problems. Specifically, consider the problem

min
θ
F (θ) =

n∑
j=1

Fj(θ),

with

Fj(θ) =
{

5.5θ2, j = 1
−0.5θ2, j 6= 1

9.4. Nonconvex nonconcave minimax optimization 89

The special parameter of Adam β1 = 0, β2 = 1 gives the signSGD:

θt+1 = θt − αtsign(gt)

which is unlikely to converge. Then they propose AMSGrad to correct
this algorithm. Later in 2019 ICLR, the paper (Chen et al., 2019) shows
that Adam-type algorithms do not converge for non-convex problems,
and they propose the AdaFom to correct previous algorithms’ behaviors.

Summary The Adam-Type Method can be expressed as follows:
mt = β1,tmt−1 + (1− β1,t)gt
v̂t = ht(g1, . . . , gt)

θt+1 = θt − αtmt/
√
v̂t

Some popular variants of the Adam algorithm is shown in the Table
below:

Figure 9.1: Variants of Adam algorithm

9.4 Nonconvex nonconcave minimax optimization

Consider the minimax problem

min
x

max
y

f(x, y)

If we can obtain y∗ = h(x), then it suffices to solve the minimization
problem

min
x
g(x) , f(x, h(x)).

90 Optimization Algorithms

In practice, the function g(x) is always defined implicitly. This problem
is the basis of generative adversarial networks and robust training. The
gradient descent ascent (GDA) Algorithm is widely used in this problem,
but this algorithm cannot even solve a linear problem

min
x

max
y

xTAy.

Remark 9.5. 1. Now there are two state-of-the-art algorithms for
solving the minimax problem. The first one is the optimistic
GDA; and the second one is to applying BCD heuristic, i.e.,
approximately optimizing the inner problem in terms of y for few
iterations, and then perform gradient descent for the outer problem
for one iteration. The assumptions for the second algorithm is
that the problem in terms of y is concave, and the constraint set
is bounded.

2. It is even not clear what is the local optimality for the minimax
problem in the general setting.

3. The GDA is widely used, but its convergence properties remain
to be understood.

Appendices

Basic Algorithms for Nonlinear Programming

.1 Gradient Algorithms

.1.1 Preliminaries: convergence analysis

Consider an iterative algorithm for solving the optimization problem
min f(x), producing iterates {x0, x1, . . . }.

1. The possible error measurements are as follows. The stopping
criteria depends on these error measurements.

• e(xk) := ‖xk − x∗‖;
• e(xk) = f(xk)− f(x∗);

where x∗ denotes the underlying optimal solution.

2. We say the algorithm converges if limk→∞ e(xk) = 0

3. There are different types of convergence rate:

(a) R-linear convergence: there exists a ∈ (0, 1) such that e(xk) ≤
Cak;

(b) Q-linear convergence: there exists a ∈ (0, 1) such that e(x
k+1)

e(xk) ≤
a;

92

.1. Gradient Algorithms 93

(c) Sub-linear convergence: e(xk) ≤ C/kp for some p > 0.

question: when say about convergence rate, do we need to specify which
error measurements we use?

.1.2 The (Sub)gradient algorithm for Unconstrained Optimization

Consider an unconstrained optimization problem min f(x), where f may
not necessarily be smooth. Let {tk > 0 | k = 0, 1, . . . } be a sequence of
step-sizes. Let’s study the simpleest first order optimization algorithm.

Algorithm 1 The (Sub)gradient Algorithm
Input: Initial guess x0 ∈ X
Output: Optimal solution x̂
For k = 0, 1, . . . , do

• Take dk ∈ ∂f(xk);

• xk+1 ← xk − tkdk

end for.

Worst Case Bounds Consier a convex optimization model where f is a
completely unknown function. The first order type algorithm esentially
produces a sequence of iterates {xk | k = 0, 1, 2, . . . } in such a way that
xk is in the affine space spanned by

x0, g(x0), . . . , g(xk−1), where g(·) = ∂f(·).

• Suppose f is Lipschitz continuous and no other information is
known, we can construct an example such that

min
x∈Span{x0,g(x0),...,g(xk−1)}

f(x)−f(x∗) ≥ O(1√
k

), ∀k = 1, 2, . . . , bn2 c

Therefore, the first order type algorithm can never reach the
convergence rate faster than O(1√

k
).

94 Basic Algorithms for Nonlinear Programming

• Additionally, if we know f is differentiable and ∇f is Lipschitz
continuous, then we can construct an example such that

min
x∈Span{x0,g(x0),...,g(xk−1)}

f(x)−f(x∗) ≥ O(1
k2), ∀k = 1, 2, . . . , bn2 c

Therefore, the first order type algorithm can never reach the
convergence rate faster than O(1

k2) for optimizing this class of
function.

.1.3 Gradient Algorithm with Exact Line-Search

First we discuss the optimization with a uniform convex function. This
assumption is by default unless specifically mentioned. A nice Q-linear
convergence result is obtained:

Theorem .2. Suppose there exists 0 < m ≤ M such that 0 � mI �
∇2f(x) �MI (i.e., f is uniformly convex), and an exact line search is
performed per iteration:

tk := arg min
t
f(xk − t∇f(xk)),

then
f(xk+1)− f(x∗) ≤

(
1− m

M

)
[f(xk)− f(x∗)] (4)

Proof. • (Uniform Convexity implies Strongly Convexity)
For ∀x1,x2 ∈ dom(f), by mean-value theorem,

f(x2) = f(x1)+〈∇f(x1),x2−x1〉+
1
2(x2−x1)T∇2f(ξ)(x2−x1),

where ξ is some number between x2 and x1. Applying the uniform
convexity of f , we derive the strongly convexity property:
m

2 ‖x1−x2‖22 ≤ f(x2)−f(x1)−〈∇f(x1),x2−x1〉 ≤
M

2 ‖x1−x2‖22
(5)

• (Applying Strongly Convexity Property) On the one hand,
by setting x1 = x∗ and x2 = x in (5), we obtain:

m

2 ‖x− x
∗‖22 ≤ f(x)− f(x∗) ≤ M

2 ‖x− x
∗‖22 (6)

.1. Gradient Algorithms 95

On the other hand, by setting x1 = x and x2 = x∗ in (5), we
obtain

m

2 ‖x− x
∗‖22 ≤ f(x∗)− f(x)− 〈∇f(x),x∗ − x〉

≤ f(x∗)− f(x) + ‖∇f(x)‖ · ‖x∗ − x‖

≤ −m2 ‖x− x
∗‖22 + ‖∇f(x)‖ · ‖x∗ − x‖

which implies m‖x− x∗‖ ≤ ‖∇f(x)‖. Similarly, we get

m‖x− x∗‖ ≤ ‖∇f(x)‖ ≤M‖x− x∗‖ (7)

• (Upper Bounding left and right side of (4)) Moreover, we
upper bounding the left side of (4) by setting x2 = xk+1 and
x1 = xk in (5):

f(xk+1)− f(xk) ≤ 〈∇f(xk),xk+1 − xk〉+ M

2 ‖x
k+1 − xk‖2

≤ − 1
2M ‖∇f(xk)‖2

(8)
where the second inequality is active when xk+1 = xk− 1

M∇f(xk).
On the other hand, by setting x2 = x∗ and x1 = xk in (5), we
obtain

f(xk)− f(x∗) ≤ 〈∇f(xk),xk − x∗〉 − m

2 ‖x
k − x∗‖22

≤ ‖∇f(xk)‖‖xk − x∗‖ − m

2 ‖x
k − x∗‖22

≤ 1
2m‖∇f(xk)‖2

(9)

Therefore, substituting (9) into (8), we obtain

f(xk+1)− f(xk) ≤ −m
M

[f(xk)− f(x∗)]

Or equivalently,

f(xk+1)− f(x∗) ≤
(

1− m

M

)
[f(xk)− f(x∗)]

96 Basic Algorithms for Nonlinear Programming

question: this proof also holds for tk = 1
M . Thus what is the intuition

behind the line search.
question: is uniformly convex and strongly convex talking about the

same thing?

.1.4 Gradient Algorithm with Diminishing Step Sizes

Consider a pre-scribed diminishing step size {αk} → 0 but satisfies the
infinite travel condition

∑∞
k=1 αk =∞.

In this case, for sufficiently large k, we have αk ≤ 1
M and simiar to

the idea in (8),

f(xk+1) ≤ f(xk)− αk
2 ‖∇f(xk)‖2

which implies that ∇f(xk) cannot be bounded away from 0 whenever
f(xk) is finitely lower bounded. In other words, if a finite minimum
exists for f(xk), then the iterates satisfy limk→∞ inf ‖∇f(xk)‖ = 0.

We can further show the whole sequence f(xk) converges:

Proof. w.l.o.g., assume the inequality below holds for k = 1, 2, . . . , i.e.,
αk ≤ 1

M :
f(xk+1) ≤ f(xk)− αk

2 ‖∇f(xk)‖2

Therefore, for any k = 1, 2, . . . ,

f(xk+1)− f(x∗) ≤ f(xk)− f(x∗)− αk
2 ‖∇f(xk)‖2

≤ (1−mαk)[f(xk)− f(x∗)]

where the second inequality is by applying (9). It follows that

f(xn)− f(x∗) ≤ [f(x1)− f(x∗)]
n∏
k=1

(1−mαk)→ 0,

i.e., limn→∞ f(xn) = f(x∗).
There is another way to show the convergence of {∇f(xk)}:

‖∇f(xn)‖2 ≤ 2M [f(xn)− f(x∗)] =⇒ lim
n→∞

∇f(xk) = 0.

.1. Gradient Algorithms 97

We summarize the results above as a theorem for the convergence
of the gradient algorithm with diminishing step sizes:

Theorem .3. Suppose there exists 0 < m ≤ M such that 0 � mI �
∇2f(x) �MI (i.e., f is uniformly convex), and the dimishing step size
is performed per iteration:

αk → 0, but
∞∑
k=1

αk =∞,

then either f(xk) → −∞ or else {f(xk)} converges to a finite value
and ∇f(xk)→ 0.

.1.5 Gradient Algorithm with Armijo’s Rule

Consider a general iterative descent algorithm xk+1 = xk + αkd
k. The

Armiijo’s rule for choosing step sizes is as follows:

Let γ ∈ (0, 1) (question: 1/2?). Start with s > 0 and
continue with βs, β2s, . . . , until β`s falls within the set of α
with the condition

f(xk)− f(xk + αdk) ≥ −γα · ∇Tf(xk)dk

In this case we have αk = sβ` and

f(xk) ≥ f(xk + αkd
k)− γαk∇Tf(xk)dk (10a)

f(xk) < f(xk + αk/βd
k)− γαk/β · ∇Tf(xk)dk (10b)

We can analysis the convergence result for gradient algorithm, i.e.,
dk = −∇f(xk):

• From the (10b) and the Taylor expansion on f(xk + αkd
k) we

obtain:

f(xk)+γαk/β·∇Tf(xk)dk < f(xk)+αk/β∇Tf(xk)dk+M

2 (αk/β)2‖dk‖2

Or equivalently, αk > 2β(1−γ)
M

• Combining the (10a), (9) and the bound on αk, we obtain

f(xk + αkd
k) ≤ f(xk)− 4βγ(1− γ)m

M
[f(xk)− f(x∗)]

98 Basic Algorithms for Nonlinear Programming

Therefore, we get the Q-linear convergence for Armijo’s rule:

f(xk+1)− f(x∗) ≤
(

1− 4βγ(1− γ)m
M

)
[f(xk)− f(x∗)]

.1.6 The Gradient Algorithm for non-strongly convex case

The estimations of convergence so far are based on the assumption that
m > 0. Now we discuss the case where m = 0. The function is convex
but not necessarily strongly convex.

Assume that the set of optimal solutions is a bounded set, and that
there is a bounded level set. If still apply the exact line search, the
iterates will be bounded. Note that the inequalities below still hold:

f(x+ αd) ≤ f(x)− 1
2M ‖∇f(x)‖2

f(x)− f(x∗) ≤ ‖∇f(x)‖ · ‖x− x∗‖

Assume that ‖xk − x∗‖ ≤ C, and let e(xk) = f(xk)− f(x∗), Using
the inequalities above, it’s easy to show that

e(xk+1) ≤ e(xk)− c[e(xk)]2, where c = 1
2MC2 .

which follows that
1

e(xk+1) ≥
1

e(xk) + c

1− c · e(xk)

≥ 1
e(xk) + c

≥ · · ·

≥ 1
e(x1) + k · c

Therefore, we obtain the sublinear rate of convergence:

e(xk+1) ≤ e(x1)
1 + k(c · e(x1))

.1.7 Linear Convergence without Second Order Differentiability

Acutally, the assumptions on the existence of ∇2f is unnecessaryin
Theorem (.2). We can weaken the condition by the inequality below to

.2. The Pure Newton’s Method 99

obtain the same linear convergence result:

σ‖x− y‖2 ≤ 〈∇f(x)−∇f(y),x− y〉 ≤ L‖x− y‖2, ∀x,y, (11)

where 0 < σ ≤ L <∞.

Remark .6. • The condition (11) can be implied by uniform con-
vexity.

• The interpretation of (11) is that, restricting f to any line segment
between x and y, the function h(t) := f(x+ t(y − x)) satisfies

0 ≤ h′(t)− h′(s)
t− s

≤ L, ∀0 ≤ s < t ≤ 1,

i.e., the slope of ∇f is bounded.

• The condition (11) implies the strong convexity, which can be
shown by appying the directional derivative and (11):

σ

2 ‖y − x‖
2 ≤ f(y)− f(x)− 〈∇f(x),y − x〉 ≤ L

2 ‖y − x‖
2

Therefore, we can use the same logic to show the following inequali-
ties:

f(x− α∇f(x))− f(x) ≤ − 1
2L‖∇f(x)‖2

σ‖x− x∗‖2 ≤ ‖∇f(x)‖‖x− x∗‖

f(x∗) ≥ f(x)− 1
2σ‖∇f(x)‖2

nad therefore,

f(x− α∇f(x))− f(x∗) ≤
(

1− σ

L

)
[f(x)− f(x∗)].

.2 The Pure Newton’s Method

Now we discuss a particularly important method in optimization: New-
ton’s method.

100 Basic Algorithms for Nonlinear Programming

Motivation This method is a linearlization scheme for solving a non-
linear equation.

• For scalar form of nonlinear equation g(x) = 0, we apply Taylor’s
expansion on the root x̂:

g(x̂) = g(x) + g′(x)(x̂− x) + o(|x̂− x|)

Ignoring the high order part we get an approximation, i.e., iterative
formula

x̄ = x− g(x)
g′(x) .

• Consider a n-dimensional equation g1:n(x1, . . . , xn) = 0, we have
a similar solution

g(x̂) = g(x) + J(g(x)) · (x̂− x) + o(‖x̂− x‖)

where J(g(x)) denotes the Jacobian matrix of g:

Rn×n 3 J(g(x)) :=
[
∂gi(x)
∂xj

]

Therefore, the unconstrained optimization problem suffices to solve a
nonlinear equation ∇f(x) = 0, and the iterative formula is

x̄ = x− [∇2f(x)]−1∇f(x), (Newton’s Method)

Remark .7. 1. Newton’s direction may not necessarily exist;

2. It is a descent direction for strongly convex functions;

3. However, the function may not necessarily decrease even for
strongly convex function.

4. It minimizes a strongly convex quadratic function in just one step.

5. The pure form of Newton’s method can be modified by taking
another step length.

.2. The Pure Newton’s Method 101

.2.1 Local Convergence Analysis

We analysis the convergence rate for Newton’s method under the con-
vexity and continuity conditions first:

Assumption: The function f is convex, twice contin-
uously differentiable, and that ∇2f(x∗) is non-singular for
local minimum x∗.

A key inequality for the analysis is

∇f(y) = ∇f(x) +
∫ 1

0
∇2f(x+ t(y − x)) · (y − x) dt

Suppose that xk is close to x∗ enough, then ∇2f(xk) is non-singular
as well due to the continuity of determinant function. It follows that

xk+1 − x∗ = xk − x∗ − [∇2f(xk)]−1∇f(xk)
= [∇2f(xk)]−1[∇2f(xk)(xk − x∗)−∇f(xk)]

= [∇2f(xk)]−1
[
∇2f(xk)(xk − x∗)−

∫ 1

0
∇2f(x∗ + t(xk − x∗))(xk − x∗) dt

]
= [∇2f(xk)]−1

{∫ 1

0
[∇2f(xk)−∇2f(x∗ + t(xk − x∗))](xk − x∗) dt

}
Thererfore,

‖xk+1−x∗‖ ≤ ‖xk−x∗‖·‖[∇2f(xk)]−1‖·
∫ 1

0
‖∇2f(xk)−∇2f(x∗+t(xk−x∗))]‖ dt

Since xk is close to x∗, ‖[∇2f(xk)]−1‖ is bounded. Since ∇2f(x) is
continuous, the integration term goes to zero as ‖xk−x∗‖ → 0. Thus we
imply ‖xk+1 − x∗‖ = o(‖xk − x∗‖), ensuring a superlinear convergence.

Extra Assumption: The term ∇2f(x) is Lipschitz con-
tinuous: there exists L2 > 0 such that

‖∇2f(x)−∇2f(y)‖ ≤ L2‖x− y‖, ∀x,y.

This extra assumption will ensure a quadratic convergence rate:

‖xk+1 − x∗‖

≤ ‖[∇2f(xk)]−1‖ · ‖xk − x∗‖ ·
∫ 1

0
‖∇2f(xk)−∇2f(x∗ + t(xk − x∗))]‖dt

≤ L2
2 ‖[∇

2f(xk)]−1‖ · ‖xk − x∗‖2.

102 Basic Algorithms for Nonlinear Programming

Further Assumption: Based on the previous two as-
sumptions, we assume that f is strongly convex.

In this case, it is easy to show that

‖xk+1 − x∗‖ ≤ L2
2m‖x

k − x∗‖2.

This inequality introduces a region of attraction, i.e., as soon as xk falls
into the neighborhood of x∗ with radius 2m/L2, the iterates will be
trapped in the neighborhood and converge to x∗ quadratically.

Remark .8. The pure form of Newton’s method, however, has several
drawbacks:

1. It in general does not guarantees global convergence if no addi-
tional assumption is given. Fortunartely, if f is strongly convex,
then the Newton’s method with line-search (e.g., with Armijo’s
step-length rule) will be globally convergent with a globally linear
convergence rate.

2. If f is not strictly convex, then ∇2f may be singular. Even worse,
if f is not convex, then the Newton’s direction may not be a
descent direction. In next section we will discuss how to handle
such a situation.

.3 Practical Implementation of Newton’s method

.3.1 Cholesky Factorization

First let’s introduce a technique in optimization algorithms that can
reduce computational complexity: the Cholesky factorization.

Consider the case where ∇2f(xk) � 0, and the Newton’s direction
can be found by solving the linear system

∇2f(xk)d = −∇f(xk).

Directly computing the inverse of ∇2f(xk) is computationally expansive,
which motivates us to apply the Cholesky factorization as follows:

.3. Practical Implementation of Newton’s method 103

1. First apply the Cholesky factorization to get ∇2f(xk) = LkL
T
k ,

where Lk is a lower triangular matrix, resulting in the following
Newton’s equation

LkL
T
k d = −∇f(xk).

2. Firstly solve the lower triangular system below by forward substi-
tution:

Lky = −∇f(xk)
The complexity for this process is O(n2).

3. Then solve the triangular system below by backforward substitu-
tion:

LT
k d = yk

Again, this step takes complexity O(n2).

The basic Cholesky factorization algorithm is as follows:

Algorithm 2 Basic Cholesky factorization Algorithm
Input: A positive definite n× nmatrix A
Output: Lower triangular matrix L such thtat A = LLT

For j = 1 : n, do

• For i = j + 1 : n, do

– lij =
(
aij −

∑j−1
k=1 ljklik

)
/ljj

end for.
ljj =

(
ajj −

∑j−1
k=1 l

2
jk

)1/2
.

end for.

Remark .9. If A is not positive semidefinite, then at a certain stage we
will encounter a j such that

ajj −
j−1∑
k=1

l2jk < 0.

In that case, the Cholesky decomposition cannot proceed. Note that
the Cholesky decomposition takes about O(n3) operations.

104 Basic Algorithms for Nonlinear Programming

.3.2 Modified Newton’s method

In case the Hessian matrix is not positive definite, the following remedies
can be applied:

If there occurs ajj −
∑j−1
k=1 l

2
jk < 0 for a certain j, then

we simply increase ajj so that the quantity becomes positive
again. (question: increase how much?)

This remedy has the same effect of changing ∇2f(xk) into ∇2f(xk)+
∆k � 0, where ∆k is non-negative (question: positive or non-negative?)
diagonal, which suffices to solve the regularized equation

(∇2f(xk) + ∆k)d = −∇f(xk).

Moreover, we may use the direction with Armijo’s line search technique
to guarantee the global convergence. (how to show?)

.3.3 The Trust Region Approach

Another way to handle the case that ∇2f(xk) is indefinite is to use the
trust region approach. It is the complement of the line search approach.

The direction dk for each iteration suffices to consider the trust
region subproblem

min 〈∇f(xk),d〉+ 1
2d

T∇2f(xk)d
such that ‖d‖ ≤ δ

where δ > 0 is called the trust region radius.

Remark .10. It can be shown that when δ is sufficiently small, f(xk +
dk) < f(xk), i.e., dk is the descent direction. This trust region subprob-
lem can be efficiently solved (question: which method? curious about
it)

.3.4 Implementation of Least Squares Problem

Consider solving the nonlinear least square problem (NLSP)

min f(x) = 1
2
∑m
i=1 f

2
i (x)

.3. Practical Implementation of Newton’s method 105

Firstly note that

∇f(x) =
m∑
i=1

fi(x)∇fi(x)

∇2f(x) =
m∑
i=1

[∇fi(x)∇Tfi(x) + fi(x)∇2fi(x)]

The so-called Gauss-Newton method is a quasi-Newton’s method,
specialized to this NLSP:

xk+1 = xk − αk

(
m∑
i=1
∇fi(xk)∇Tfi(xk)

)−1(m∑
i=1

fi(xk)∇fi(xk)
)

Remark .11. It works well when fi’s are not too linear, or when at the
optimality, fi’s are close to zero.

A variantion of the Gauss-Newton’s method operates as follows:

xk+1 = xk−αk

(
m∑
i=1
∇fi(xk)∇Tfi(xk) + λkI

)−1(m∑
i=1

fi(xk)∇fi(xk)
)

which is called the Levenberg-Marquardt method.
Note that if consider solving the equation f1:n(x1:n) = 0, the Gauss-

Newton direction is just the Newton direction itself.

References

Auer, P., M. Herbster, and M. K. Warmuth (1996). “Exponentially many
local minima for single neurons”. In: Advances in Neural Information
Processing Systems 8. Ed. by D. S. Touretzky, M. C. Mozer, and M. E.
Hasselmo. MIT Press. 316–322. url: http://papers.nips.cc/paper/
1028-exponentially-many-local-minima-for-single-neurons.pdf.

Baldi, P. and K. Hornik (1989). “Neural networks and principal com-
ponent analysis: Learning from examples without local minima”.
Neural Networks. 2(1): 53–58. issn: 0893-6080. doi: https://doi.org/
10.1016/0893-6080(89)90014-2. url: http://www.sciencedirect.com/
science/article/pii/0893608089900142.

Balduzzi, D., M. Frean, L. Leary, J. P. Lewis, K. W.-D. Ma, and B.
McWilliams (2017). “The Shattered Gradients Problem: If Resnets
Are the Answer, then What is the Question?” In: Proceedings of
the 34th International Conference on Machine Learning - Volume
70. ICML’17. Sydney, NSW, Australia: JMLR.org. 342–350. url:
http://dl.acm.org/citation.cfm?id=3305381.3305417.

Barron, A. R. (1994). “Approximation and estimation bounds for artifi-
cial neural networks”. Machine Learning. 14(1): 115–133.

Billingsley, P. (1986). Probability and Measure. Second. John Wiley and
Sons.

106

http://papers.nips.cc/paper/1028-exponentially-many-local-minima-for-single-neurons.pdf
http://papers.nips.cc/paper/1028-exponentially-many-local-minima-for-single-neurons.pdf
https://doi.org/https://doi.org/10.1016/0893-6080(89)90014-2
https://doi.org/https://doi.org/10.1016/0893-6080(89)90014-2
http://www.sciencedirect.com/science/article/pii/0893608089900142
http://www.sciencedirect.com/science/article/pii/0893608089900142
http://dl.acm.org/citation.cfm?id=3305381.3305417

References 107

Carlini, N. and D. Wagner (2017). “Towards Evaluating the Robustness
of Neural Networks”. In: 2017 IEEE Symposium on Security and
Privacy (SP). 39–57. doi: 10.1109/SP.2017.49.

Chen, P.-Y., H. Zhang, Y. Sharma, J. Yi, and C.-J. Hsieh (2017). “ZOO:
Zeroth Order Optimization Based Black-box Attacks to Deep Neural
Networks Without Training Substitute Models”. In: Proceedings of
the 10th ACM Workshop on Artificial Intelligence and Security.
AISec’17. Dallas, Texas, USA: ACM. 15–26. doi: 10.1145/3128572.
3140448.

Chen, X., S. Liu, R. Sun, and M. Hong (2019). “On the Convergence of
A Class of Adam-Type Algorithms for Non-Convex Optimization”.
In: International Conference on Learning Representations. url:
https://openreview.net/forum?id=H1x-x309tm.

Cybenko, G. (1989). “Approximation by superpositions of a sigmoidal
function”. Mathematics of Control, Signals, and Systems (MCSS).
2(4): 303–314. issn: 0932-4194. doi: 10.1007/BF02551274. url:
http://dx.doi.org/10.1007/BF02551274.

Duchi, J., E. Hazan, and Y. Singer (2011). “Adaptive Subgradient
Methods for Online Learning and Stochastic Optimization”. J. Mach.
Learn. Res. 12(July): 2121–2159. issn: 1532-4435. url: http://dl.
acm.org/citation.cfm?id=1953048.2021068.

Frankle, J. and M. Carbin (2019). “The Lottery Ticket Hypothesis:
Finding Sparse, Trainable Neural Networks”. In: International Con-
ference on Learning Representations. url: https://openreview.net/
forum?id=rJl-b3RcF7.

Garipov, T., P. Izmailov, D. Podoprikhin, D. P. Vetrov, and A. G. Wilson
(2018). “Loss Surfaces, Mode Connectivity, and Fast Ensembling of
DNNs”. In: Advances in Neural Information Processing Systems 31.
Ed. by S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett. Curran Associates, Inc. 8789–8798. url:
http://papers.nips.cc/paper/8095-loss-surfaces-mode-connectivity-
and-fast-ensembling-of-dnns.pdf.

Gilboa, D., B. Chang, M. Chen, G. Yang, S. S. Schoenholz, E. H.
Chi, and J. Pennington (2019). “Dynamical Isometry and a Mean
Field Theory of LSTMs and GRUs”. CoRR. abs/1901.08987. arXiv:
1901.08987. url: http://arxiv.org/abs/1901.08987.

https://doi.org/10.1109/SP.2017.49
https://doi.org/10.1145/3128572.3140448
https://doi.org/10.1145/3128572.3140448
https://openreview.net/forum?id=H1x-x309tm
https://doi.org/10.1007/BF02551274
http://dx.doi.org/10.1007/BF02551274
http://dl.acm.org/citation.cfm?id=1953048.2021068
http://dl.acm.org/citation.cfm?id=1953048.2021068
https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7
http://papers.nips.cc/paper/8095-loss-surfaces-mode-connectivity-and-fast-ensembling-of-dnns.pdf
http://papers.nips.cc/paper/8095-loss-surfaces-mode-connectivity-and-fast-ensembling-of-dnns.pdf
http://arxiv.org/abs/1901.08987
http://arxiv.org/abs/1901.08987

108 References

Glorot, X. and Y. Bengio (2010). “Understanding the difficulty of
training deep feedforward neural networks”. In: In Proceedings of
the International Conference on Artificial Intelligence and Statistics
(AISTATS?10). Society for Artificial Intelligence and Statistics.

Glorot, X., A. Bordes, and Y. Bengio (2010). “Deep Sparse Rectifier
Neural Networks”. In: vol. 15.

Goodfellow, I., J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S.
Ozair, A. Courville, and Y. Bengio (2014). “Generative Adversarial
Nets”. In: Advances in Neural Information Processing Systems 27.
Ed. by Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence,
and K. Q. Weinberger. Curran Associates, Inc. 2672–2680. url:
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf.

Goodfellow, I., J. Shlens, and C. Szegedy (2015a). “Explaining and
Harnessing Adversarial Examples”. In: International Conference on
Learning Representations. url: http://arxiv.org/abs/1412.6572.

Goodfellow, I., O. Vinyals, and A. Saxe (2015b). “Qualitatively Charac-
terizing Neural Network Optimization Problems”. In: International
Conference on Learning Representations. url: http://arxiv.org/abs/
1412.6544.

Gotmare, A., N. Shirish Keskar, C. Xiong, and R. Socher (2018). Using
Mode Connectivity for Loss Landscape Analysis.

Han, S., J. Pool, J. Tran, and W. Dally (2015). “Learning both Weights
and Connections for Efficient Neural Network”. In: Advances in
Neural Information Processing Systems 28. Ed. by C. Cortes, N. D.
Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett. Curran As-
sociates, Inc. 1135–1143. url: http://papers.nips.cc/paper/5784-
learning - both - weights - and - connections - for - efficient - neural -
network.pdf.

Hanin, B. and D. Rolnick (2018). “How to Start Training: The Effect of
Initialization and Architecture”. In: Advances in Neural Information
Processing Systems 31. Ed. by S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett. Curran Associates,
Inc. 571–581. url: http://papers.nips.cc/paper/7338-how-to-start-
training-the-effect-of-initialization-and-architecture.pdf.

http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1412.6544
http://arxiv.org/abs/1412.6544
http://papers.nips.cc/paper/5784-learning-both-weights-and-connections-for-efficient-neural-network.pdf
http://papers.nips.cc/paper/5784-learning-both-weights-and-connections-for-efficient-neural-network.pdf
http://papers.nips.cc/paper/5784-learning-both-weights-and-connections-for-efficient-neural-network.pdf
http://papers.nips.cc/paper/7338-how-to-start-training-the-effect-of-initialization-and-architecture.pdf
http://papers.nips.cc/paper/7338-how-to-start-training-the-effect-of-initialization-and-architecture.pdf

References 109

He, K., X. Zhang, S. Ren, and J. Sun (2015). “Delving Deep into Recti-
fiers: Surpassing Human-Level Performance on ImageNet Classifica-
tion”. In: Proceedings of the 2015 IEEE International Conference
on Computer Vision (ICCV). ICCV ’15. Washington, DC, USA:
IEEE Computer Society. 1026–1034. isbn: 978-1-4673-8391-2. doi:
10.1109/ICCV.2015.123. url: http://dx.doi.org/10.1109/ICCV.
2015.123.

He, K., X. Zhang, S. Ren, and J. Sun (2016). “Deep Residual Learning
for Image Recognition”. In: 770–778. doi: 10.1109/CVPR.2016.90.

Hornik, K. (1991). “Approximation Capabilities of Multilayer Feedfor-
ward Networks”. Neural Netw. 4(2): 251–257. issn: 0893-6080. doi:
10.1016/0893-6080(91)90009-T. url: http://dx.doi.org/10.1016/
0893-6080(91)90009-T.

“How to comment the paper "The Lottery Ticket Hypothesis"” (n.d.).
https://www.zhihu.com/question/323214798. Accessed: 2019-08-14.

Ilyas, A., L. Engstrom, A. Athalye, and J. Lin (2018). “Black-box
Adversarial Attacks with Limited Queries and Information”. In: Pro-
ceedings of the 35th International Conference on Machine Learning.
Vol. 80. Proceedings of Machine Learning Research. PMLR. 2137–
2146.

Kawaguchi, K. (2016). “Deep Learning without Poor Local Minima”. In:
Advances in Neural Information Processing Systems 29. Ed. by D. D.
Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett. Curran
Associates, Inc. 586–594. url: http://papers.nips.cc/paper/6112-
deep-learning-without-poor-local-minima.pdf.

Kingma, D. P. and J. Ba (2015). “Adam: A method for stochastic opti-
mization”. In: International Conference on Learning Representations
(ICLR).

Kurach, K., M. Lucic, X. Zhai, M. Michalski, and S. Gelly (2018).
“The GAN Landscape: Losses, Architectures, Regularization, and
Normalization”. CoRR. abs/1807.04720. arXiv: 1807.04720. url:
http://arxiv.org/abs/1807.04720.

https://doi.org/10.1109/ICCV.2015.123
http://dx.doi.org/10.1109/ICCV.2015.123
http://dx.doi.org/10.1109/ICCV.2015.123
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1016/0893-6080(91)90009-T
http://dx.doi.org/10.1016/0893-6080(91)90009-T
http://dx.doi.org/10.1016/0893-6080(91)90009-T
https://www.zhihu.com/question/323214798
http://papers.nips.cc/paper/6112-deep-learning-without-poor-local-minima.pdf
http://papers.nips.cc/paper/6112-deep-learning-without-poor-local-minima.pdf
http://arxiv.org/abs/1807.04720
http://arxiv.org/abs/1807.04720

110 References

Lee, J. D., M. Simchowitz, M. I. Jordan, and B. Recht (2016). “Gra-
dient Descent Only Converges to Minimizers”. In: 29th Annual
Conference on Learning Theory. Ed. by V. Feldman, A. Rakhlin,
and O. Shamir. Vol. 49. Proceedings of Machine Learning Research.
Columbia University, New York, New York, USA: PMLR. 1246–1257.
url: http://proceedings.mlr.press/v49/lee16.html.

Li, D., T. Ding, and R. Sun (2018). Over-Parameterized Deep Neu-
ral Networks Have No Strict Local Minima For Any Continuous
Activations.

Li, P. and P.-M. Nguyen (2019). “On Random Deep Weight-Tied Au-
toencoders: Exact Asymptotic Analysis, Phase Transitions, and
Implications to Training”. In: International Conference on Learning
Representations.

Lin, H. and S. Jegelka (2018). “ResNet with one-neuron hidden layers
is a Universal Approximator”. In: Advances in Neural Information
Processing Systems 31. Ed. by S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett. Curran Associates,
Inc. 6169–6178. url: http://papers.nips.cc/paper/7855-resnet-with-
one-neuron-hidden-layers-is-a-universal-approximator.pdf.

Nesterov, Y. (2011). “Random gradient-free minimization of convex
functions”. Jan.

Pennington, J., S. S. Schoenholz, and S. Ganguli (2017). “Resurrecting
the sigmoid in deep learning through dynamical isometry: theory and
practice”. In: Advances in Neural Information Processing Systems
30: Annual Conference on Neural Information Processing Systems
2017, 4-9 December 2017, Long Beach, CA, USA. 4785–4795.

Pennington, J., S. S. Schoenholz, and S. Ganguli (2018). “The Emergence
of Spectral Universality in Deep Networks”. In: AISTATS.

Poole, B., S. Lahiri, M. Raghu, J. Sohl-Dickstein, and S. Ganguli
(2016). “Exponential expressivity in deep neural networks through
transient chaos”. In: Advances in Neural Information Processing
Systems 29. Ed. by D. D. Lee, M. Sugiyama, U. V. Luxburg, I.
Guyon, and R. Garnett. Curran Associates, Inc. 3360–3368. url:
http://papers.nips.cc/paper/6322-exponential- expressivity- in-
deep-neural-networks-through-transient-chaos.pdf.

http://proceedings.mlr.press/v49/lee16.html
http://papers.nips.cc/paper/7855-resnet-with-one-neuron-hidden-layers-is-a-universal-approximator.pdf
http://papers.nips.cc/paper/7855-resnet-with-one-neuron-hidden-layers-is-a-universal-approximator.pdf
http://papers.nips.cc/paper/6322-exponential-expressivity-in-deep-neural-networks-through-transient-chaos.pdf
http://papers.nips.cc/paper/6322-exponential-expressivity-in-deep-neural-networks-through-transient-chaos.pdf

References 111

Razaviyayn, M. (2014). “Successive Convex Approximation: Analysis
and Applications”. In:

Reddi, S. J., S. Kale, and S. Kumar (2018). “On the Convergence
of Adam and Beyond”. In: International Conference on Learning
Representations. url: https://openreview.net/forum?id=ryQu7f-
RZ.

Saxe, A. M., J. L. Mcclelland, and S. Ganguli (2014). “Exact solutions
to the nonlinear dynamics of learning in deep linear neural network”.
In: In International Conference on Learning Representations.

Srivastava, R. K., K. Greff, and J. Schmidhuber (2015). “Highway
Networks”. cite arxiv:1505.00387Comment: 6 pages, 2 figures. Pre-
sented at ICML 2015 Deep Learning workshop. Full paper is at
arXiv:1507.06228. url: http://arxiv.org/abs/1505.00387.

Szegedy, C., S. Ioffe, and V. Vanhoucke (2016). “Inception-v4, Inception-
ResNet and the Impact of Residual Connections on Learning”. In:
AAAI.

Szegedy, C., W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Good-
fellow, and R. Fergus (2014). “Intriguing properties of neural net-
works”. In: International Conference on Learning Representations.
url: http://arxiv.org/abs/1312.6199.

Tieleman (2012). Lecture 6.5-rmsprop. Available at the link https://www.
cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf.

“Understanding nonconvex optimization” (n.d.). http://praneethnetrapalli.
org/UnderstandingNonconvexOptimization-V5.pdf. Accessed: 2019-
08-18.

Wang, J. (2019a). MAT2006: Elementary Real Analysis. Available at
the link https://walterbabyrudin.github.io/information/Notes/
MAT2006.pdf.

Wang, J. (2019b). MAT3006: Real Analysis; Lecture 8. Available at
the link https://walterbabyrudin.github.io/information/Updates/
MAT3006/Week4_Wednesday.pdf.

Wong, E., F. R. Schmidt, J. H. Metzen, and J. Z. Kolter (2018). “Scal-
ing Provable Adversarial Defenses”. In: Proceedings of the 32Nd
International Conference on Neural Information Processing Systems.
NIPS’18. Montréal, Canada: Curran Associates Inc. 8410–
8419. url: http://dl.acm.org/citation.cfm?id=3327757.3327932.

https://openreview.net/forum?id=ryQu7f-RZ
https://openreview.net/forum?id=ryQu7f-RZ
http://arxiv.org/abs/1505.00387
http://arxiv.org/abs/1312.6199
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://praneethnetrapalli.org/UnderstandingNonconvexOptimization-V5.pdf
http://praneethnetrapalli.org/UnderstandingNonconvexOptimization-V5.pdf
https://walterbabyrudin.github.io/information/Notes/MAT2006.pdf
https://walterbabyrudin.github.io/information/Notes/MAT2006.pdf
https://walterbabyrudin.github.io/information/Updates/MAT3006/Week4_Wednesday.pdf
https://walterbabyrudin.github.io/information/Updates/MAT3006/Week4_Wednesday.pdf
http://dl.acm.org/citation.cfm?id=3327757.3327932

112 References

Wu, Y. and K. He (2018). “Group Normalization”. In: The European
Conference on Computer Vision (ECCV).

Xiao, L., Y. Bahri, J. Sohl-Dickstein, S. Schoenholz, and J. Pennington
(2018). “Dynamical Isometry and a Mean Field Theory of CNNs:
How to Train 10,000-Layer Vanilla Convolutional Neural Networks”.
In: Proceedings of the 35th International Conference on Machine
Learning. Ed. by J. Dy and A. Krause. Vol. 80. Proceedings of
Machine Learning Research. Stockholmsmassan, Stockholm Sweden:
PMLR. 5393–5402.

Xiao-Hu Yu and Guo-An Chen (1995). “On the local minima free con-
dition of backpropagation learning”. IEEE Transactions on Neural
Networks. 6(5): 1300–1303. issn: 1045-9227. doi: 10.1109/72.410380.

Zhang, H., Y. N. Dauphin, and T. Ma (2019). “Residual Learning
Without Normalization via Better Initialization”. In: International
Conference on Learning Representations. url: https://openreview.
net/forum?id=H1gsz30cKX.

Zhang, Y., R. Tapia, and L. Velazquez (2000). “On Convergence of
Minimization Methods: Attraction, Repulsion, and Selection”. Jour-
nal of Optimization Theory and Applications. 107(3): 529–546. issn:
1573-2878. doi: 10.1023/A:1026443131121. url: https://doi.org/10.
1023/A:1026443131121.

https://doi.org/10.1109/72.410380
https://openreview.net/forum?id=H1gsz30cKX
https://openreview.net/forum?id=H1gsz30cKX
https://doi.org/10.1023/A:1026443131121
https://doi.org/10.1023/A:1026443131121
https://doi.org/10.1023/A:1026443131121

	Introduction to Deep Learning
	Motivation
	Outline
	Neural Network Basis
	Gradient Explosion/Vanishing

	Back Propagation and Initialization
	Review
	Back Propagation
	Initialization methods for handling Training Difficulty

	Taming Explosion/Vanishing: Initialization
	Reviewing
	Motivation
	General Activation
	Dynamical Isometry

	Three Tricks in Training of Neural Network
	Reviewing
	Intialization: Dynamical Isometry
	Batch Normalization
	ResNet

	ResNet Initialization and Landscape Analysis
	Reviewing
	Initialization for ResNet
	Landscape of Neural-Nets

	Landscape Analysis and Representation
	Reviewing
	 Landscape analysis for non-linear neural-nets
	Over-Parameterized Networks
	Representation Power

	Representation and GAN
	Reviewing
	Representation: depth separation
	GAN

	Adversarial Learning
	Introduction to Adversarial Learning
	Mathematical Formulation of Adversary Attack
	Adversarial Defense
	Optimization Algorithms

	Optimization Algorithms
	Reviewing
	Variants of Gradient Descent (GD) Method
	Momentum-based Method
	Nonconvex nonconcave minimax optimization

	Appendices
	Basic Algorithms for Nonlinear Programming
	Gradient Algorithms
	The Pure Newton's Method
	Practical Implementation of Newton's method

	References

