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We are living in an era of ever-growing availability of big data across diverse fields, including com-
puter science, electrical engineering, medicine, marketing, and beyond. Traditional decision-making
algorithms, which often depend on rigid and restrictive assumptions, may fail to perform effectively
in complex, real-world settings. To overcome these limitations, it is essential to adopt data-driven
approaches that can capture the inherent dynamics and uncertainties of these environments, leading
to better decisions. It is equally important to ensure these decisions reflect our societal and ethical
values, such as robustness, interpretability, privacy, fairness, and energy efficiency. In my research,
I leverage tools from machine learning, optimization, and statistics to design data-driven decision-
making algorithms that are not only effective but also aligned with those core principles. The diagram
in Figure 1 illustrates the general roadmap of my research.
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Figure 1: Illustration of my research roadmap for data-driven decision-making (the blue brackets
highlight my related reference papers)

In Figure 1, I divide the data-driven decision-making procedure into three key stages:

(1) Data Transportation: This stage involves transporting data at unprecedented scales, often
characterized by long transport distances, short delays, and limited transmission power. These
challenges are common in modern data acquisition environments, such as wireless networks,
low-earth orbiters, underwater acoustic networks, and deep space networks.

(2) Algorithm Development and Decision-Making: From methodological standpoint, this
stage requires designing computationally efficient algorithms that can be practically imple-
mented. From theoretical perspective, it involves analyzing computational complexity and es-
tablishing generalization guarantees to ensure it performs well on unseen testing data.

(3) Deployment in Real-World Environments: The final stage focuses on deploying decisions
that achieve superior out-of-sample performance while adhering to our societal and ethical values.

In the following sections, I will highlight how my research addresses the challenges posed by each stage
and outline my future research plans.

Energy-Efficient Data Transportation. In a long-distance transportation task, digital data is
transmitted sequentially from a source node to several intermediate nodes before arriving at its desti-
nation, referred to as multi-hop line network communication. Each transmission link may suffer from
distortions like errors and malicious modifications, and each node is allowed to perform coding to im-
prove the transport efficiency. According to the report from International Energy Agency, current data
transportation accounts for 2-3% of global electricity consumption and 1% of greenhouse gas emis-
sions. It is urgent to develop new techniques that simultaneously achieve effective data transportation
and low energy consumption.
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In [1, 2], we studied the optimal throughput of this problem. Routing, a classical baseline in
transportation, is not a good solution: Consider a simple instance where each time of transmission
has loss probability 0.2, then the throughput of the line network with L hops using routing is 0.8L,
which delays very fast even for a small L. This is known as the “curse of multihop” in the industry.
To combat this issue, we proposed a batched network coding communication protocol, which leverages
optimization and information theory techniques to find the optimal coding strategies at each node to
maximize the throughput subject to certain transmission power constraints. We showed that when
the number of hops L is large, this protocol achieves high throughput O(1) with low transmission
power O(lnL) and low storage cost O(ln lnL), which breaks the common sense in this area that low
transmission power and high throughput cannot be achieved simultaneously.

Following from this work, I collaborated with scholars from the information theory and commu-
nication area (Urbashi mitra, Shenghao Yang, and Hoover H.F.Yin) to extend the batched network
coding protocol in two aspects. First, we utilize robust optimization technique that incorporates the
errors arising from data transmission to improve the throughput [3–5]. Second, we leverage discrete op-
timization to design coding strategies that only depend on the sparse and interpretable representation
of input data [6].

Distributionally Robust Optimization (DRO). Many decision-making problems involve key
parameters drawn from unknown probability distributions, which could be indirectly observed only
from training data. Data-driven approaches usually extract information from these training samples
and develop decision-making strategies that perform well when deployed in new environments that
contain unseen testing samples. Unfortunately, due to the limited sample size of collected training
data, distributional shift between the training population and the testing population (e.g., resulting
from measurement error or adversarial perturbations), and the high dimension of the data uncertainty,
conventional non-robust approaches often fail to provide reliable solutions. DRO presents a promising
approach to tackle these challenges, by finding an optimal decision that performs well even under the
most adverse distributions within an prescribed distributional uncertainty set (called the ambiguity
set). Thus, DRO often under-promises during the training phase but achieves superior out-of-sample
performance when deployed in testing environments. My research has focused on advancing theory,
algorithm, and applications in this area.

Selecting an appropriate ambiguity set is crucial for DRO, which should simultaneously enable
computational tractability, flexibility, and interpretability. In [7], we introduced a new DRO model
using the entropic regularized optimal transport distance (the Sinkhorn DRO model) to strike a
balance of those requirements: We contributed a first-order method that efficiently identifies near-
optimal solutions with low computation and storage costs. Surprisingly, the resulting problems in
Sinkhorn DRO can generally be solved with a complexity level same to that of non-robust training.
By solving the Sinkhorn DRO model, we obtain both the robust decision and the most adverse
distribution with a well-defined continuous probability density. A continuous worst-case distribution
is often desirable and has good generalization performance since the testing population distribution
may also be continuous. In industrial applications such as self-driving, healthcare, and power systems,
it is convenient to leverage the continuous worst-case distribution for ”stress-test”.

Building on this foundation, I collaborated with scholars from the optimization area (Daniel Kuhn,
Andreas Krause, Xin Chen, Niao He, and Yifan Hu) to extend the first-order algorithm for solving
Sinkhorn DRO into general applications: We consider the generic setup in which the optimizer uses
first-order algorithms to reduce risk, whereas unbiased gradient estimators are no longer accessible.
This occurs frequently when solving problems related to robustness (DRO), personalization (end-to-
end contextual learning), privacy (meta-learning), and beyond. In those applications, the optimizer can
construct gradient estimators with small biases but large computational costs. In [8, 9], we designed
optimization algorithms that balance the trade-off between those quantities, aiming to reduce the total
computational costs of obtaining the final decision.

DRO has broad applications in operations research and machine learning, and I explored some of
them in my research projects. When leveraging data-driven algorithms to make a new decision, it
is critical to provide its performance estimate in the testing environment before deploying it in the



real-world system. A bad decision in practice will be highly risky and even cause unethical issues.
In [10], we leveraged DRO and statistics to provide the confidence interval estimate of the decision’s
performance for both safe exploration and optimistic planning concerns: In high-stake mission-critical
environments, providing a confidence lower bound enables safety guarantees and thus help to reduce
the risk and circumvent catastrophic events; For risk-seeking environments, providing an optimistic
upper bound of performance helps to balance the exploration and exploitation trade-off. In [11], we
leveraged DRO and bilevel optimization to train artificial intelligence models with robust performance
under adversarial data perturbations. We also adopted DRO to provide reliable decisions in healthcare
and pricing applications. In [12], we leveraged our proposed Sinkhorn DRO framework for trustworthy
sepsis prediction with real datasets collected from Emory University Hospital and Grady Hospital.
In [13], we provided a distributionally robust pricing strategy for Blue Summit Supplies eCommerce
products.

Two-Sample Testing. Two-sample testing has long been a challenge in statistics, involving the
decision to determine whether the difference between two populations is significant based on the
collected observations from two groups. This problem is foundational for fairness assessments in
machine learning, especially in detecting biases across demographic groups. Classical approaches
often struggle to make reliable decisions due to the parametric assumptions on target distributions
and the high-dimensional and complex nature of the big data era. I have developed various two-sample
tests in my research to resolve fundamental challenges in this topic.

In [14–16], we proposed efficient testing frameworks for small-sample and high-dimensional data,
often encountered in deep learning applications. We tackled this challenge by employing a linear
(or nonlinear) dimensionality reduction operator that projects data distributions onto 1-dimensional
spaces with maximum separability and next performs hypothesis testing on the univariate data. Our
framework requires no assumption about the form of the underlying distributions, and the univariate
dimensionality reduction operator gives us interpretable tools to distinguish the differences between
high-dimensional data samples. The training phase of this framework requires solving a highly non-
convex optimization problem, for which we developed several approximation algorithms, including the
first-order manifold optimization method with convergence analysis and the convex relaxation with
approximation ratio guarantees. We also leveraged tools from high-dimensional statistics to analyze
the theoretical performance of our algorithm, demonstrating its flexibility for distinguishing general
populations and near-optimal performance.

In [17], we bridged two-sample testing with deep learning and provided the statistical foundations
for trustworthy machine learning. Inspired by the empirical success and flexible function representation
of neural networks, we designed a neural-net-based two-sample test for high-dimensional samples
supported on a low-dimensional manifold, which is often the case for popular machine learning datasets
(MNIST, SVHN, CIFAR-10, and ImageNet). Our statistical theory showed that the performance
of this approach only depends on the intrinsic dimension, which is much smaller than the feature
dimension, indicating it does not have a curse of dimensionality issue.

In [18], we studied the variable selection for two-sample testing, aiming to select the most infor-
mative variables to distinguish samples from the two groups. In practical applications, it is crucial to
identify interpretable variables that contribute to the inherent differences between populations. For
instance, in gene expressions and biological indicators, only a small subset of variables may account
for the disparities between normal and abnormal data samples. We adopt the kernel-based method
to distinguish samples flexibly, but the corresponding optimization formulation is inherently NP-hard
to solve (because it involves sparsity constraints for variable selection). To tackle the challenge, we
leverage modern mixed-integer optimization techniques to develop efficient exact and approximation
algorithms with strong performance guarantees. We also derived the statistical performance guar-
antees of our framework for different kernel choices. Finally, we showed that it achieves superior
performance and returns interpretable models, enabling effective sparse data selections for two-sample
testing.



Future Research Directions. My research will continue to advance the data-driven decision-
making framework described above. In addition to furthering the directions I have explored, I am
eager to undertake several new research initiatives.
Sequential and Contextual Learning. I am particularly interested in extending Distributionally Robust
Optimization (DRO) to modern machine learning areas. One promising avenue is developing robust
models with tractable algorithms for sequential decision-making, an area that has not been extensively
explored. I plan to begin by investigating the quickest change-point detection problem, which aims to
identify abnormal changes in sequential data as quickly as possible. In our initial work, we provided
robust detection algorithms assuming that both normal and abnormal samples are independent and
identically distributed [19, 20]. A key challenge moving forward will be extending this framework to
handle non-stationary data. Another exciting direction is the development of robust decision-making
models that account for side information, such as contextual variables. Since side information can
influence both the data distribution and the loss function, constructing a flexible uncertainty set that
maintains computational tractability presents a unique challenge. I aim to develop data-driven DRO
models for contextual learning and create tractable optimization algorithms to address these complex
scenarios.
Responsible AI. I am also committed to establishing responsible AI models that promote social good.
Currently, AI model performance often varies significantly across subpopulations. For example, medi-
cal treatment policies may show degraded performance for underrepresented groups, such as non-white
populations, and speech recognition systems frequently underperform for individuals with minority
accents. More broadly, machine learning models tend to exhibit differing performance based on demo-
graphic attributes like race, gender, or age in applications such as facial recognition, video captioning,
language identification, and academic recommendation systems. To address these disparities, it is
critical to train machine learning models that optimize for worst-case performance across these sub-
populations. This challenge aligns closely with the minimax nature of DRO, making it a promising
approach to improving fairness and equity in AI systems. Furthermore, inspired by DRO’s focus on
finding worst-case distributions, I intend to explore privacy issues in machine learning by generating
worst-case adversarial noises that ensure compliance with differential privacy standards.
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