1. Mid-term 2: March 28. 2. Arrangements: This + Next lecture: new material Third lecture = Mid-term 2 prepare lecture 3. Post Practice exam this Thur. 4. Post new acsignment this Thur, as long as you submit, you'll get full credits.

Theorem ECentral limit Theorem]
• Have a population distribution.
$$\beta$$
, with $(M, 6^2)$.
• Have n i.i.d camples $X_1, \dots, X_n \sim \beta$.
• $\overline{X} = \frac{1}{n} \frac{5}{3} X_1$
 $\overline{X} - M \rightarrow \mathcal{N}(0, 1)$.
 \overline{X} is approximately $\mathcal{N}(\alpha, \frac{\beta^2}{n})$.

Extension Theorem. • Two group of populations, one with $(M_1, 6_1^2)$ another with $(M_2, 6_2^2)$. • $\chi_{1,\ldots}$, χ_{n} , \sim $(M, 6^{2})$. $Y_{1}^{\prime} = Y_{12}^{\prime} = \frac{2! 1' \cdot d}{n} \left(\frac{M_2}{m_2} + \frac{6^2}{5^2} \right)$ • $\overline{X} - \overline{Y}$ is also approximately $\mathcal{N}(\mathcal{U}, -\mathcal{U}_{2}, -\frac{6_{1}^{2}}{n_{1}} + \frac{6_{2}^{2}}{n_{2}})$ $\int \frac{6^2}{\Lambda_1} + \frac{6^2}{\Lambda_2} \longrightarrow \mathcal{N}(0,1)$

ISyE 3770, Spring 2024 Statistics and Applications

Point Estimation

Instructor: Jie Wang H. Milton Stewart School of Industrial and Systems Engineering Georgia Tech

> jwang3163@gatech.edu Office: ISyE Main 447

Outline

Estimator

Suppose X is a random variable with $f(x;\theta)$ as the pdf. If $X_1, X_2, ..., X_n$ is a random sample of size *n* from X, the statistic $\hat{\Theta} = h(X_1, X_2, ..., X_n)$ Is called a **point estimator** of θ . After the sample has been selected, $\hat{\Theta}$ takes on a particular numerical value called the **point estimate** of θ .

Parameter:
$$\mu$$
 Estimator: $\hat{\mu} = \overline{X} = \frac{\sum_{i=1}^{n} X_i}{n}$ **Estimate:** $\overline{x} = \frac{25 + 30 + 29 + 31}{4} = 28.75$

Note that $\widehat{\Theta}$ is a random variable because it is a statistic (function of random variables)

Internet service provider

Two Internet providers

Observe download rate is as follows (mbp)

Provider 1	5.34	5.16	5.043	4.661	4.521	5.25	5.245
Provider 2	5.363	4.797	5.28	4.666	4.927	5.286	5.37
Provider 1	5.276	4.508	4.558	5.478	4.919	4.708	
Provider 2	5.109	5.113	5.157	5.145	4.801	4.948	

• What's the difference of their rate?

- What's the difference of their rate?
- Samples
 - First service provider X_i , $i = 1, 2, ..., n_1$ $\eta_i = 13$
 - Second service provider Y_i , $i = 1, 2, ..., n_2$
- Assumption
 - $X_i \sim N(\mu_1, \sigma_1^2)$
 - $Y_i \sim N(\mu_2, \sigma_2^2)$
- Parameters of interest: $\mu_1 \mu_2$
- Estimator: $\overline{X} \overline{Y}$
- Estimate: 4.9744-5.0740 = -0.0996 (mbp): point ertimate
 - How accurate is the estimate?
 - Is the estimator (method) unbiased?

 $n_2 = 13$

S Point estimator Deint estimate

Basic properties of estimators

Standard error of estimator

standon variable.

The standard error of an estimator $\hat{\Theta}$ is its standard deviation, given by $\sigma_{\hat{\Theta}} = \sqrt{V(\hat{\Theta})}$. If the standard error involves unknown parameters that can be estimated, substitution of those values into $\sigma_{\hat{\Theta}}$ produces an estimated standard error, denoted by $\hat{\sigma}_{\hat{\Theta}}$.

Internet service provider

• Two Internet providers

$$S^{2} = \frac{1}{n-1} \sum_{\substack{x = 1 \ y = 1}}^{n} (x - \overline{x})^{2}$$

Observe download rate is as follows (mbp)

Provider 1	5.34	5.16	5.043	4.661	4.521	5.25	5.245
Provider 2	5.363	4.797	5.28	4.666	4.927	5.286	5.37
Provider 1	5.276	4.508	4.558	5.478	4.919	4.708	
Provider 2	5.109	5.113	5.157	5.145	4.801	4.948	

• What's the standard error of the estimator for the difference of their rate?

- What's the difference of their rate?
- Samples
 - First service provider X_i , $i = 1, 2, ..., n_1$
 - Second service provider Y_i , $i = 1, 2, ..., n_2$
- Assumptions
 - $X_i \sim N(\mu_1, \sigma_1^2)$
 - $Y_i \sim N(\mu_2, \sigma_2^2)$
- Parameters of interest: $\mu_1 \mu_2$
- Estimator: $\overline{X} \overline{Y}$

 $V_{ar}(\overline{X} - \overline{Y}) = V_{ar}(\overline{X}) + V_{ar}(\overline{Y})$

 $= \frac{V_{av}(\chi_{i})}{0} + \frac{V_{av}(\chi_{i})}{0}$

 $= \frac{6^2}{7} + \frac{6^2}{9}$

Exercise

An article in the *Journal of Heat Transfer* (Trans. ASME, Sec. C, 96, 1974, p. 59) described a new method of measuring the thermal conductivity of Armco iron. Using a temperature of 100°F and a power input of 550 watts, the following 10 measurements of thermal conductivity (in Btu/hr-ft-°F) were obtained:

> 41.60, 41.48, 42.34, 41.95, 41.86, 42.18, 41.72, 42.26, 41.81, 42.04

- · X, ~, Xn 2.1 d. N(11,62)
- Point estimator: $\overline{X} = -\frac{1}{n} \sum_{x \in X_{i}} X_{i}$ What is the estimator for the conductivity?
- point estimate: $\lambda = 41.60 + 41.48 + \cdots + 42.04$ What is the standard error of the estimator? 41.9.

• Standard error:
$$6_{\overline{X}} = \sqrt{Ver(\overline{X})} = \sqrt{Ver(\overline{X})} = \sqrt{\frac{6^2}{10}}$$

 $6_{v} = \sqrt{\frac{s^{2}}{s^{2}}} = 0.089$

A real-world example

• Detecting changes using sliding windows, sample mean difference

Unbiased Estimator

Sample mean is unbiased estimator

- Assume $x_1, \ldots, x_n \sim N(\mu, \sigma^2)$
- Then \overline{x} is an unbiased estimator of μ

point estimator:
$$\overline{\chi} = \frac{1}{n} \sum_{i=1}^{n} \chi_{i}$$

proof: To verify $E[\overline{\chi}] = M$
 $E[\overline{\chi}] = E[\frac{1}{n} \sum_{i=1}^{n} \chi_{i}] = \frac{1}{n} \sum_{i=1}^{n} E[\chi_{i}]$
 $= \frac{1}{n} \sum_{i=1}^{n} M = M$

Sample variance is unbiased estimator

- Assume $x_1, \ldots, x_n \sim N(\mu, \sigma^2)$
- Then S^2 is an unbiased estimator of σ^2

• point estimator
$$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$$
.
where $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$.

• $E[S^{*}] = 6^{2}$

Variance of a Point Estimator

If two estimators are unbiased, the one with smaller variance is preferred.

Figure 7-1 The sampling distributions of two unbiased estimators

1. Mid-term 2: March 28. practice exam and Solu: 2. HW5. As long as submit, receive ful credit. 3. Upbad solution to exercise of slides

Mean Square Error (MSE)

The mean square error of an estimator $\hat{\Theta}$ of the parameter θ is defined as

$$MSE(\hat{\Theta}) = E(\hat{\Theta} - \theta)^{2}$$

$$Covoling \quad \text{(7-3)}$$

$$MSE(\hat{\Theta}) = E(\hat{\Theta} - \Theta)^{2} = \left[E(\hat{\Theta} - \Theta)\right]^{2} + var(\hat{\Theta} - \Theta)$$

$$MSE(\hat{\Theta}) = \left[Bias(\hat{\Theta})\right]^{2} + var(\hat{\Theta})$$

Example: find bias and variance of estimator

Let X_1 , X_2 be independent random variables with mean μ and variance σ^2 . Suppose that we have two estimators of μ : (a) To verify unbiasedness, to share $MGE(\hat{\Theta}) = MGI(\hat{\Theta})$ $\widehat{\Theta}_{2} = \frac{X_{1} + 3X_{2}}{4} \quad E[\widehat{\Theta}_{1}] - E[\frac{X_{1} + X_{2}}{2}]$ = \pm ECX1+ \pm FCX1 = M There is not a unique (a) Are both estimators unbiased estimators of μ ? unbiased estimator! (b) What is the variance of each estimator? (b) $V_{sr}(\hat{\theta}_{s}) = V_{sr}(\frac{\chi_{s} + \chi_{s}}{2})$ $= \sqrt{\alpha} r \left(\frac{x_{1}}{2} \right) + \sqrt{\beta} r \left(\frac{x_{1}}{2} \right)$ (c) What's the MSE of two estimators? $V_{qr}(\hat{\theta}_{3}) = V_{qr}(\frac{1}{4}X_{1} + \frac{3}{4}X_{2}) = V_{qr}(\frac{1}{4}X_{1}) + V_{qr}(\frac{2}{4}X_{2}) = \frac{1}{16}6^{2} = \frac{1}{4}V_{qr}(X_{1}) + \frac{1}{4}V_{qr}(X_{2}) = \frac{1}{16}6^{2} = \frac{1}{4}6^{2}$

Compare the MSE of estimators

Let $X_1, X_2, ..., X_7$ denote a random sample from a population with mean μ and variance σ^2 . Calculate the MSE of the following estimators of μ .

$$\hat{\Theta}_1 = \frac{\sum_{i=1}^7 X_i}{7}$$

$$\hat{\Theta}_2 = \frac{2X_1 - X_6 + X_4}{2}$$

as(
$$\hat{\theta}_{1}$$
)² + Vor($\hat{\theta}_{1}$)
 $\begin{cases} Var(\hat{\theta}_{1}) = \frac{1}{7} \\ Var(\hat{\theta}_{2}) = Var(X_{1}) + Var(-\frac{1}{2}X_{2}) + Var(\frac{1}{2}X_{4}) \end{cases}$

• Which estimator is best? In what sense is it best?

$$\widehat{\Theta}_3 = \frac{4X_2 + 2X_3 - 2X_5}{2} \mathsf{X}$$

Example

1. Two internet providers 2. Ground truth difference of the mean download rate. parameter. Q 3. All data collected from users population 4. Observed data collected from users, sample size o 3 Constructed estimator for the unknown bias point estimator difference of mean download variance statistics, rate

Methods for Finding Estimators

- Assume a distribution for the samples
- Estimate the parameter of the distribution
- Several methods
 - Maximum likelihood
 - Method of moment

Baseball team

- The weight for a baseball team players are {150, 143, 132, 160, 175, 190, 123, 154}
- Assume their weights are uniformly distributed over an interval [a, b]

$\alpha = \min_{\lambda} \chi_{i}$

• What are good estimators for a? for b?

Method of Maximum Likelihood

Suppose that X is a random variable with probability distribution $f(x; \theta)$, where θ is a single unknown parameter. Let x_1, x_2, \ldots, x_n be the observed values in a random sample of size *n*. Then the **likelihood function** of the sample is

$$L(\theta) = f(x_1; \theta) \cdot f(x_2; \theta) \cdot \dots \cdot f(x_n; \theta)$$
(7-5)

Note that the likelihood function is now a function of only the unknown parameter θ . The **maximum likelihood estimator** of θ is the value of θ that maximizes the likelihood function $L(\theta)$.

$$L(\theta; x) = \prod_{i=1}^{n} f(x_{i}; \theta) = f(x_{1}; \theta) \dots f(x_{n}; \theta)$$

$$L(\theta; x) = \sum_{i=1}^{n} \log[f(x_{i}; \theta)]$$

$$\hat{\Theta}(x) = \arg\max_{\theta} L(\theta; x) = \arg\max_{\theta} l(\theta; x)$$

$$l(\theta; x) = \frac{120}{10} \int_{\theta}^{120} \int_{\theta$$

7-61. A random variable x has probability density function

$$f(x;\theta) = \frac{1}{2\theta^3} x^2 e^{-x/\theta}, \quad 0 < x < \infty, \quad 0 < \theta < \infty$$

Step 2. Compute mathemizer $\vartheta(x)$
Given samples $x_1, \dots x_n$,
find the maximum likelihood estimator for θ
Step 1. Write down and simplify \log -like hinzed function
 $\vartheta(0,x) = \sum_{x=1}^{n} \log (f(x,\theta)) = \sum_{y=1}^{n} \log \left(\frac{1}{2\theta^3} \chi_1^2 \exp(-\frac{\chi_1}{\theta}) \right)$
 $= \sum_{x=1}^{n} \left[-\chi_2 - 3 \log \theta + \frac{\chi_1}{\theta} - \frac{\chi_1}{\theta} \right] + construct$
 $= -n \left[\chi_2 - 3 \log \theta + 2 \right] = \frac{n}{\theta} \left[\chi_1 - \frac{\chi_1}{\theta} \right]$

Example: Bernoulli

Let X be a Bernoulli random variable. The probability mass function is

$$f(x;p) = \begin{cases} p^{x}(1-p)^{1-x}, & x = 0, 1\\ 0, & \text{otherwise} \end{cases}$$

where p is the parameter to be estimated. The likelihood function of a random sample of size n is

• Step (: white down and Simplify likelihood footion

$$L(p) = p^{x_1}(1-p)^{1-x_1}p^{x_2}(1-p)^{1-x_2}\cdots p^{x_n}(1-p)^{1-x_n}$$

$$= \prod_{i=1}^n p^{x_i}(1-p)^{1-x_i} = p^{\sum_{i=1}^n x_i}(1-p)^{n-\sum_{i=1}^n x_i}$$
• Step 2: find maximizer of (p) , i.e., maximizer of $\ln L(p) = \left(\sum_{i=1}^n x_i\right) \ln p + \left(n - \sum_{i=1}^n x_i\right) \ln(1-p)$

$$\longrightarrow \frac{d \ln L(p)}{dp} = \frac{\sum_{i=1}^n x_i}{p} - \frac{\left(n - \sum_{i=1}^n x_i\right)}{1-p} \Rightarrow p = \frac{1}{n} \sum_{i=1}^n X_i$$

Example: normal

Let X be normally distributed with unknown μ and known variance σ^2 . The likelihood function of a random sample of size n, say X_1, X_2, \ldots, X_n , is

$$L(\mu) = \prod_{i=1}^{n} \frac{1}{\sigma\sqrt{2\pi}} e^{-(x_i - \mu)^2/(2\sigma^2)} = \frac{1}{(2\pi\sigma^2)^{n/2}} e^{-(1/2\sigma^2)\sum_{i=1}^{n} (x_i - \mu)^2}$$

Now

and Step 2: Find estimator to maximize
$$\log(J(\mu)) = -\overline{\chi}$$

$$\frac{d \ln L(\mu)}{d\mu} = (\sigma^2)^{-1} \sum_{i=1}^n (x_i - \mu) = 0 = \frac{1}{6^2} \left(\sum_{i=1}^n \chi_i - n\mu\right)$$

$$\xrightarrow{d \ln L(\mu)}{d\mu} = (\sigma^2)^{-1} \sum_{i=1}^n (x_i - \mu) = 0 = \frac{1}{6^2} \left(\sum_{i=1}^n \chi_i - n\mu\right)$$

$$\xrightarrow{d \ln L(\mu)}{d\mu} = (\sigma^2)^{-1} \sum_{i=1}^n (x_i - \mu) = 0 = \frac{1}{6^2} \left(\sum_{i=1}^n \chi_i - n\mu\right)$$

$$\xrightarrow{d \ln L(\mu)}{d\mu} = MLE \text{ for } \mu?$$

Example (Continued, unknown variance)

$$\ln L(\mu, \sigma^{2}) = -\frac{n}{2} \ln(2\pi\sigma^{2}) - \frac{1}{2\sigma^{2}} \sum_{i=1}^{n} (x_{i} - \mu)^{2}$$

$$\frac{\partial \ln L(\mu, \sigma^{2})}{\partial \mu} = \frac{1}{\sigma^{2}} \sum_{i=1}^{n} (x_{i} - \mu) = 0 \qquad \sum(x_{i} - \mu)^{2} = -\frac{n}{2\sigma^{2}}$$

$$\frac{\partial \ln L(\mu, \sigma^{2})}{\partial(\sigma^{2})} = -\frac{n}{2\sigma^{2}} + \frac{1}{2\sigma^{4}} \sum_{i=1}^{n} (x_{i} - \mu)^{2} = 0 \qquad = \frac{1}{n} \sum(x_{i} - \mu)^{2}$$

The solutions to the above equation yield the maximum likelihood estimators

$$\hat{\mu} = \overline{X}$$
 $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2$

MLE: Exponential

Let X be a exponential random variable with parameter λ . The likelihood function of a random sample of size n is:

$$L(\lambda) = \prod_{i=1}^{n} \lambda e^{-\lambda x_{i}} = \lambda^{n} e^{-\lambda \sum_{i=1}^{n} x_{i}} \qquad \text{f(x_{0} x)} = \lambda \cdot e^{-\lambda x}$$

$$\ln L(\lambda) = n \ln(\lambda) - \lambda \sum_{i=1}^{n} x_{i} \qquad \text{simplify bg-likelihood}$$

$$\frac{d \ln L(\lambda)}{d\lambda} = \frac{n}{\lambda} - \sum_{i=1}^{n} x_{i} = 0$$

$$\hat{\lambda} = n / \sum_{i=1}^{n} x_{i} = 1 / \overline{X} \quad (\text{same as moment estimator})$$

$$\frac{d \ln L(\lambda)}{d\lambda} = \frac{1}{\overline{X}} - \sum_{i=1}^{n} x_{i} = 0$$

$$\hat{\lambda} = n / \sum_{i=1}^{n} x_{i} = 1 / \overline{X} \quad (\text{same as moment estimator})$$

$$\frac{d \ln L(\lambda)}{d\lambda} = \frac{1}{\overline{X}} - \sum_{i=1}^{n} x_{i} = 0$$

$$\hat{\lambda} = n / \sum_{i=1}^{n} x_{i} = 1 / \overline{X} \quad (\text{same as moment estimator})$$

MLE: Graphical Illustration

The time to failure is exponentially distributed. Eight units are randomly selected and tested, resulting in the following failure time (in hours): $x_1 = 11.96$, $x_2 = 5.03$, $x_3 = 67.40$, $x_4 = 16.07$, $x_5 = 31.50$, $x_6 = 7.73$, $x_7 = 11.10$, and $x_8 = 22.38$.

Figure 7-3 Log likelihood for the exponential distribution, using the failure time data. (a) Log likelihood with n = 8 (original data). (b) Log likelihood if n = 8, 20, and 40.

Why use maximum likelihood estimator?

It enjoys the following good properties:

Properties of the Maximum Likelihood Estimator

Under very general and not restrictive conditions, when the sample size *n* is large and if $\hat{\Theta}$ is the maximum likelihood estimator of the parameter θ ,

- (1) $\hat{\Theta}$ is an approximately unbiased estimator for $\theta [E(\hat{\Theta}) \simeq \theta]$,
- (2) the variance of $\hat{\Theta}$ is nearly as small as the variance that could be obtained with any other estimator, and
- (3) $\hat{\Theta}$ has an approximate normal distribution.

maximum likelihood estimator in some cases is biased!

Complications in Using MLE

• It is not always easy to maximize the likelihood function because the equation(s) obtained from $dL(\Theta)/d\Theta = 0$ may be difficult to solve.

• It may not always be possible to use calculus methods directly to determine the maximum of $L(\Theta)$.

Baseball team

- The weight for a baseball team players are {150, 143, 132, 160, 175, 190, 123, 154}
- Assume their weights are uniformly distributed over an interval [a, b]
- What are good estimators for a? for b?

Example: Uniform Distribution MLE

Let X be uniformly distributed on the interval 0 to a.

Calculus methods don't work here because L(a) is maximized at the discontinuity.

Clearly, a cannot be smaller than $max(x_i)$, thus the MLE is $max(x_i)$.

Methods of Moments

Population and samples moments

Let $X_1, X_2, ..., X_n$ be a random sample from the probability distribution f(x), where f(x) can be a discrete probability mass function or a continuous probability density function. The *k*th **population moment** (or **distribution moment**) is $E(X^k)$, k = 1, 2, ... The corresponding *k*th **sample moment** is $(1/n) \sum_{i=1}^n X_i^k$, k = 1, 2, ...

Population moments
$$\mu'_{k} = \begin{cases} \int_{x}^{x} x^{k} f(x) dx & \text{If } x \text{ is continuous} \\ \sum_{x} x^{k} f(x) & \text{If } x \text{ is discrete} \end{cases}$$

Sample moments $m'_{k} = \frac{\sum_{i=1}^{n} X_{i}^{k}}{n}$

Method of Moments

Equating empirical moments to theoretical moments

Let X_1, X_2, \ldots, X_n be a random sample from either a probability mass function or probability density function with *m* unknown parameters $\theta_1, \theta_2, \ldots, \theta_m$. The **moment estimators** $\hat{\Theta}_1, \hat{\Theta}_2, \ldots, \hat{\Theta}_m$ are found by equating the first *m* population moments to the first *m* sample moments and solving the resulting equations for the unknown parameters.

m equations for *m* parameters

$$\begin{cases} m'_1 = \mu'_1 \\ m'_2 = \mu'_2 \\ \vdots \\ m'_m = \mu'_m \end{cases}$$

MoM estimator for exponential parameter?

MoM estimator for normal distribution?

MoM for Gamma distribution

Method of moment estimator for Gamma distribution?

$$f(x_i) = \frac{1}{\Gamma(\alpha)\theta^{\alpha}} x^{\alpha-1} e^{-x/\theta}$$

The likelihood function is difficult to differentiate because of the Gamma function $\Gamma(\alpha)$.

$$L(\alpha,\theta) = \left(\frac{1}{\Gamma(\alpha)\theta^{\alpha}}\right)^{n} (x_{1}x_{2}\cdots x_{n})^{\alpha-1} \exp\left[-\frac{1}{\theta}\sum x_{i}\right]$$

We will use method of moment estimator

$$E(X) = \alpha \theta = \frac{1}{n} \sum_{i=1}^{n} X_i = \bar{X}$$
$$Var(X) = \alpha \theta^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2$$

$$\alpha = \frac{\bar{X}}{\theta}$$
$$\hat{\theta}_{MM} = \frac{1}{n\bar{X}} \sum_{i=1}^{n} (X_i - \bar{X}_i)$$

0.4

0.3

0.2

0.1

0 2 4

 $\theta = 1.0$ $\theta = 0.5$

= 7.5, 0 = 1.0 - 0.5 0 - 1.0

6 8 10 12 14 16 18

MoM for Gamma distribution, known α

7-61. A random variable x has probability density function

 $f(x;\theta) = \frac{1}{2\theta^3} x^2 e^{-x/\theta}, \quad 0 < x < \infty, \quad 0 < \theta < \infty$

Given samples $x_1, ..., x_n$, find the MoM estimator for θ

Gamma distribution with $\alpha = 3$