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Outline

• Estimator: Definition
• Basic properties
• Methods for finding point estimators

Questions we aim to address

• What is a good estimator?
• How to find estimators?

Data Statistics Sampling distribution

Estimator



3

Estimator

Suppose X is a random variable with f(x;θ) as the pdf. If X1, X2, … Xn is a
random sample of size n from X, the statistic 

Is called a point estimator of θ.
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After the sample has been selected,      takes on a particular numerical value    
called  the point estimate of θ.

Q̂

Note that      is a random variable because it is a statistic (function of random variables)Q̂

µ Estimator: Parameter: Estimate: 
n

X
X

n

i
iå

===µ̂ 75.28
4

31293025
=

+++
=x



4

Internet service provider

• Two Internet providers

• Observe download rate is as follows (mbp)

• What’s the difference of their rate?

Provider 1 5.34 5.16 5.043 4.661 4.521 5.25 5.245
Provider 2 5.363 4.797 5.28 4.666 4.927 5.286 5.37
Provider 1 5.276 4.508 4.558 5.478 4.919 4.708
Provider 2 5.109 5.113 5.157 5.145 4.801 4.948
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• How accurate is the estimate?
• Is the estimator (method) unbiased?
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Basic properties of estimators
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Standard error of estimator

ties to sampling distribution

Data Statistics Sampling distribution

Estimator
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Internet service provider

• Two Internet providers

• Observe download rate is as follows (mbp)

• What’s the standard error of the estimator for the 
difference of their rate?

Provider 1 5.34 5.16 5.043 4.661 4.521 5.25 5.245
Provider 2 5.363 4.797 5.28 4.666 4.927 5.286 5.37
Provider 1 5.276 4.508 4.558 5.478 4.919 4.708
Provider 2 5.109 5.113 5.157 5.145 4.801 4.948
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Exercise

What is the estimator for the conductivity?

What is the standard error of the estimator?
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A real-world example

• Detecting changes using sliding windows, 
sample mean difference

Fig. 1: Peak lag time data

A. Change-point detection
1) Unweighted graph: graph kernel: We use graph kernel

[4] as the distance metric for the graphs.
Denote the mean peak lag time (red dots in the Fig. 1) of a

pair of stations i, j at time t as Li,j(t). We assume that an edge
forms between two vertices i, j at time t if Li,j(t) > L̄i,j ,
where L̄i,j =

1
101

P101
t=1 Li,j(t). We consider 11 stations: 001,

002, 003, 005, 006, 008, 009, 010, 014, 015, 016, and we have
peak lag data on 10 pairs of the stations. For the other 45 pairs
without data, we assume that no edge will form between them.

Fig. 2: Test statistic with unweighted edges

2) Weighted graph: L2 norm: We use the L2 norm as the
distance metric for the graphs.

Fig. 3: Test statistic with weighted edges

B. Change location detection
See Fig. 4

Fig. 4: Using a subset of vertices to detect the change-point

Station Count Percent
001 31 27.19%
010 12 10.53%
014 11 9.65%
008 10 8.77%
009 10 8.77%
005 10 8.77%
006 10 8.77%
002 5 4.39%
003 5 4.39%
016 5 4.39%
015 5 4.39%

TABLE I: Frequency of nodes in the subsets “contributing” to the
overall change in graphs

Edge Count
001 009 9
001 008 9
001 006 9
001 005 9
010 014 7
001 010 5
010 002 1
010 003 1
010 016 1
010 015 1

TABLE II: Frequency of edges “contributing” to the overall change
in graphs

Table I shows that stations 001, 010, 014 have the three
highest frequencies, while Table II indicates that stations 001,
009, 008, 006, 005 explain the overall change. Comparing
with Figure 1, we see that the edge frequency is a more
accurate indicator for change location. This might be due to
the fact that the data on edges is limited. Although stations
010, 014 appear with high frequency in S

⇤, the weights on
edges connecting them to other stations are unavailable. On
the other hand, edge frequency successfully identifies the pairs
that are most reflective of the change in the entire graph.

2. CCF data

2

Old faithful geyser

Fig. 1: Peak lag time data

A. Change-point detection
1) Unweighted graph: graph kernel: We use graph kernel

[4] as the distance metric for the graphs.
Denote the mean peak lag time (red dots in the Fig. 1) of a

pair of stations i, j at time t as Li,j(t). We assume that an edge
forms between two vertices i, j at time t if Li,j(t) > L̄i,j ,
where L̄i,j =

1
101

P101
t=1 Li,j(t). We consider 11 stations: 001,

002, 003, 005, 006, 008, 009, 010, 014, 015, 016, and we have
peak lag data on 10 pairs of the stations. For the other 45 pairs
without data, we assume that no edge will form between them.

Fig. 2: Test statistic with unweighted edges

2) Weighted graph: L2 norm: We use the L2 norm as the
distance metric for the graphs.

Fig. 3: Test statistic with weighted edges

B. Change location detection
See Fig. 4

Fig. 4: Using a subset of vertices to detect the change-point
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Edge Count
001 009 9
001 008 9
001 006 9
001 005 9
010 014 7
001 010 5
010 002 1
010 003 1
010 016 1
010 015 1

TABLE II: Frequency of edges “contributing” to the overall change
in graphs

Table I shows that stations 001, 010, 014 have the three
highest frequencies, while Table II indicates that stations 001,
009, 008, 006, 005 explain the overall change. Comparing
with Figure 1, we see that the edge frequency is a more
accurate indicator for change location. This might be due to
the fact that the data on edges is limited. Although stations
010, 014 appear with high frequency in S

⇤, the weights on
edges connecting them to other stations are unavailable. On
the other hand, edge frequency successfully identifies the pairs
that are most reflective of the change in the entire graph.

2. CCF data

2

Sliding windows
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Unbiased Estimator

Bias

ties to sampling distribution
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Sample mean is unbiased estimator
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Sample variance is unbiased estimator
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Figure 7-1 The sampling distributions of two unbiased estimators            

)ˆvar()ˆvar( 21 Q<Q

Variance of a Point Estimator

If two estimators are unbiased, the one with smaller variance is preferred. 

ties to sampling distribution
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Mean Square Error (MSE)

[ ] )ˆvar()ˆ()ˆ()ˆ(
22 Q-Q+Q-Q=Q-Q=Q EEMSE

[ ] )ˆvar()ˆ(Bias)ˆ(
2

Q+Q=QMSE

Bias
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Example: find bias and variance of 
estimator

There is not a unique 
unbiased estimator! 
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Compare the MSE of estimators

Let X1, X2, … X7 denote a random sample from a population with mean µ and 
variance σ2.  Calculate the MSE of the following estimators of µ. 
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• Is either estimator unbiased?

• Which estimator is best? In what 
sense is it best? 
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Example

Suppose )3,(~ qqUniformX

• Show that         is an unbiased estimator of 
2
X q

• Calculate the MSE of       and 
2
X

X
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Methods for Finding Estimators

• Assume a distribution for the samples
• Estimate the parameter of the distribution
• Several methods

– Maximum likelihood
– Method of moment
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Baseball team

• The weight for a baseball team players are
{150, 143, 132, 160, 175, 190, 123, 154}

• Assume their weights are uniformly distributed 
over an interval [a, b]

• What are good estimators for a? for b?
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Method of Maximum Likelihood
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Example: Bernoulli
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Example: normal



26

Example (Continued, unknown variance) 
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MLE: Exponential
Let X be a exponential random variable with parameter λ.  
The likelihood function of a random sample of size n is:

   

L λ( ) = λe−λxi

i=1

n

∏ = λ ne
−λ xi

i=1

n

∑

ln L λ( ) = n ln λ( )− λ xi
i=1

n

∑
d ln L λ( )

dλ
= n
λ
− xi

i=1

n

∑ = 0

λ! = n xi
i=1

n

∑ = 1 X    (same as moment estimator)
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MLE: Graphical Illustration

“peaked”  vs “flat” 
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Why use maximum likelihood estimator?

It enjoys the following good properties:
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• It is not always easy to maximize the likelihood function
because the equation(s) obtained from dL(Θ)/dΘ = 0 may be
difficult to solve.

• It may not always be possible to use calculus methods
directly to determine the maximum of L(Θ).

Complications in Using MLE
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Baseball team

• The weight for a baseball team players are
{150, 143, 132, 160, 175, 190, 123, 154}

• Assume their weights are uniformly distributed 
over an interval [a, b]

• What are good estimators for a? for b?
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Example: Uniform Distribution MLE

Let X be uniformly distributed on the interval 0 to a.

   

f x( ) = 1 a  for 0 ≤ x ≤ a

L a( ) = 1
ai=1

n

∏ = 1
an = a−n  for 0 ≤ xi ≤ a

dL a( )
da

= −n
an+1 = −na− n+1( )

a! = max xi( )
Calculus methods don’t work here because L(a) is maximized at the
discontinuity.
Clearly, a cannot be smaller than max(xi), thus the MLE is max(xi).

Figure 7-8  The likelihood function for this 
uniform distribution
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Methods of Moments

Population and samples moments
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Method of Moments

• Equating empirical moments to theoretical 
moments
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Example

MoM estimator for exponential parameter?

MoM estimator for normal distribution?
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MoM for Gamma distribution

Method of moment estimator for Gamma distribution?

The likelihood function is difficult to differentiate because of the 
Gamma function 

We will use method of moment estimator 
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