ISyE 3770 Assignment 5: Point Estimator

Due date: 11:59 PM, Friday, March 29, 2024.

Question 1 (MSE). Let X_1, X_2 be independent random variables with mean μ and variance σ^2 . Suppose we have two estimators of μ :

$$\widehat{\Theta}_1 = \frac{X_1 + X_2}{2}$$
$$\widehat{\Theta}_2 = \frac{X_1 + 3X_2}{4}.$$

1)	Are both estimators unbiased?	(8 points)
2)	What is the variance of each estimator?	(8 points)
3)	What is the MSE of two estimators?	(8 points)

Question 2 (MSE). Suppose $X \sim Uni(\theta, 3\theta)$ with $\theta > 0$. Let X_1, \ldots, X_n be *n* i.i.d. random variables following the same distribution as X.

1) Prove that $\frac{\overline{X}}{2}$ is an unbiased estimator of θ .(8 points)2) Calculate the MSE of $\frac{\overline{X}}{2}$ and \overline{X} .(8 points)

Question 3 (Maximum Likelihood Estimator). A random variable X has the following probability density function:

$$f(x;\theta) = \frac{1}{2\theta^3} x^2 e^{-x/\theta}, \qquad 0 < x < \infty, 0 < \theta < \infty.$$

Let X_1, \ldots, X_n be *n* i.i.d. random variables following the same distribution as X. Find the maximum likelihood estimator for θ . (15 points)

Question 4 (Maximum Likelihood Estimator). A random variable X has the following probability density function:

$$f(x;\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right).$$

Let X_1, \ldots, X_n be *n* i.i.d. random variables following the same distribution as X. Find the maximum likelihood estimator for μ and σ^2 . (15 points)

Question 5 (Maximum Likelihood Estimator and Method of Moment Estimator). Let X be an exponential random variable with parameter λ . Let X_1, \ldots, X_n be n i.i.d. random variables following the same distribution as X.

- 1) Find the maximum likelihood estimator for λ . (15 points)
- 2) Find the method of moment estimator for λ . (15 points)