ISyE 3770, Spring 2024 Statistics and Applications

Sampling Distribution

Instructor: Jie Wang
H. Milton Stewart School of
Industrial and Systems Engineering
Georgia Tech

jwang3163@gatech.edu Office: ISyE Main 447

Model for Samples: Random sampling

Statistic

A statistic is any function of the observations in a random sample. $S^{2}=\frac{\sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}}{n-1}$

$$
\text { e.g. }, X_{1}, X_{2}, \cdots, X_{n} \rightarrow \bar{X}, S^{2} \quad \bar{x}=\frac{\sum_{i=1}^{n} X_{i}}{n}
$$

The probability distribution of a statistic is called a sampling distribution.

Goal: study distribution of \bar{x} or S^{2}
Class activity: urn model

Sampling distribution

$(1+4)$

$\bar{x}^{(1)}$ Average

The Sampling Distribution...

Why sampling distribution?

The probability distribution of a statistic is called a sampling distribution.

Statistical inference is concerned with making decisions about a population based on the information contained in a random sample from that population.

Sampling distribution is the link between probability and statistics.

Empirical distribution

- Data can be "distributed" (spread out) in different ways

Or more on the right

Or it can be all jumbled up

Model sampling distribution

- Relationships between Bernoulli and Binomial distributions
random sample

$$
X_{i} \sim \operatorname{BERN}(p), i=1,2, \ldots, n
$$

$$
\bar{x}=\sum_{i=1}^{n} x_{i}-\operatorname{BIN}(n, p) \rightarrow \text { statistic }
$$

- In this setting $\bar{x} \sim \xrightarrow{\text { Binamial }(n, p)}$ sampling distribution
- Each time X_{i} is the outcome of each draw:
$=1$, if black, otherwise $=0$
- \bar{X} is the number of black stones
- Multiple experiments \bar{X} is different and has variability

Alternative view

- Sample proportion is the percentage of black stones

$$
\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X
$$

$$
\begin{aligned}
& X_{i} \sim \operatorname{Ber}(P) \\
& E\left[X_{i}\right]^{\prime}=P \\
&\operatorname{Var}(X))^{1 /-B}
\end{aligned}
$$

- Claim: \bar{X} is approximately normal distributed with mean p and variance $=\frac{p(1-p)}{n}$
syppose x_{1}, \cdots, x_{n} ivddistribution with mean u voriance 6^{2}

Sampling distribution

describes the distribution of sample mean

Normal Distribution

Normal Distribution

$$
\begin{aligned}
& X \sim N\left(\mu, \sigma^{2}\right) ; \quad-\infty<x<+\infty \\
& f(x ; \mu, \sigma)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}
\end{aligned}
$$

$$
E(x)=\underset{\&}{\mu} \quad \operatorname{Var}(x)=\sigma_{\delta}^{2}
$$

$$
P\{x \leq a\}=\int_{-\infty}^{a} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left\{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}\right\} d x
$$

Important Fact

$$
x_{1} \sim N\left(\mu_{1}, \sigma_{1}^{2}\right) \quad x_{2} \sim N\left(\mu_{2} \sigma_{2}^{2}\right)
$$

- Fact: If x_{1}, x_{2} are independently normally distributed variables, then

$$
y=x_{1}+x_{2}
$$

also follows the normal distribution:

$$
y \sim N\left(\mu_{1}+\mu_{2}, \sigma_{1}^{2}+\sigma_{2}^{2}\right)
$$

It can be shown by deriving calf of y.

Special case

- Making normal assumption about samples:
$X i$'s are normally independently distributed (a random sample from a Normal distribution with the known variance)

$$
X_{1}, X_{2}, \cdots, X_{n} \sim N\left(\mu, \sigma^{2}\right) \rightarrow \bar{X} \sim N\left(\mu, \frac{\sigma^{2}}{n}\right) \rightarrow \frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \sim N(0,1)
$$

- Proof?
- Remark. If X_{i} are ind, not normally distributed,
\bar{X} is approximately

Example

1. The design of the machine has fill volume 300 mls , and variance 9 ml . An engineer takes a random sample of 25 cans, what's the sampling distribution of mean filling volume of a can of soft drink?
2. The engineer finds the sample mean of fill ${ }^{288}$ volume to be 298 mls . Is this considered to be normal?

$$
\begin{aligned}
& X_{1}, \cdots, X_{25} \sim N(300,9) \\
& \bar{X}=\frac{\sum_{i=1}^{25} X_{i}}{25} \sim N\left(300, \frac{9}{25}\right) .
\end{aligned}
$$

$$
\begin{aligned}
& P(\bar{x} \leqslant 298) \\
& =P\left(N\left(300, \frac{9}{25}\right) \leqslant 298\right) \\
& =P\left(N(0,1) \approx \frac{28-300}{3 / 5}\right. \\
& =P(N(0,1) \leqslant-3.3)=0.0004
\end{aligned}
$$

Review

- Give a R.V. X
- Consider $n \underbrace{\text { i.i.d observations, } x_{1}, \cdots, x_{n}}$
independent
identically distributed
Assume X_{1}, \cdots, X_{n} have same distribution as X
- We say X_{1}, \cdots, X_{n} is a random sample, with observation size n.
- A statistic is a function of random sample.

$$
\bar{x}=\frac{1}{n} \sum_{i} x_{i} \quad S^{2}=\frac{1}{n-1} \sum_{i}\left(x_{i}-\bar{x}\right)^{2}
$$

- Sampling distribution describes distribution of statistic

Prop. $\quad X, \cdots, x_{n}^{i \cdot i \cdot d} N\left(\mu, \sigma^{2}\right) \Rightarrow \bar{x}=\frac{1}{r} \sum_{i} x_{i} \sim N\left(\mu, \frac{\sigma^{2}}{n}\right)$

Extension: Suppose X_{1}, \cdots, X_{1} are i.i.d. Not necessarily normal, with mean μ, voriance 6^{2}
$\bar{X}=\frac{1}{n} \cdot \sum_{i} x_{i}$ approximately follows $N\left(\mu, \frac{6^{2}}{n}\right)$ (nearly tiolds when $n \geqslant 30$)

Review:

- Given a random variable X
- Consider n rid observations
X_{1}, \cdots, X_{n}, following same distribution as in X
- X_{1}, \ldots, X_{n} are called a random sample of size n

A statistic is a function of random sample,

$$
\text { ie, } \quad \bar{X}=\frac{1}{n} \sum_{T} X_{i}
$$

Prop. Let $X_{1}, \cdots, x_{n} \sim N\left(\mu, \sigma^{2}\right) \Rightarrow \bar{X} \sim N\left(\mu, \frac{b^{2}}{n}\right)$

Standard Normal Distribution

$$
\begin{aligned}
& X \sim N\left(\mu, \sigma^{2}\right) ; \quad-\infty<x<+\infty \\
& f\left(x ; \mu, \sigma^{2}\right)=\underbrace{\frac{1}{\sqrt{2 \pi} \sigma} \exp \left\{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}\right.}\} \\
& \text { Map any } \mathbf{X} \text { into } \mathbf{Z} \\
& Z=\frac{X-\mu}{\sigma} \\
& Z \sim N\left(0,1^{2}\right) ; \quad-\infty<z<+\infty \\
& \left.\widetilde{f\left(z ; \mu=0, \sigma^{2}\right.}=1\right)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{z^{2}}{2}\right) \\
& \text { random variable } \\
& P(-3 \leqslant 8 \leqslant+3)
\end{aligned}
$$

$$
\begin{aligned}
& \mathbb{P}(\mu-\sigma \leq X \leq \mu+\sigma)=\mathbb{P}(-1 \leq Z \leq 1)=0.6827 \text {, } \\
& \underset{\mathbb{P}(\mu-2 \sigma \leq X \leq \mu+2 \sigma)=\mathbb{P}(-2<Z<2)=\widehat{0.9545} \text {, }}{\mathbb{P}(\mu-3 \sigma \leq X \leq \mu+3 \sigma)=\mathbb{P}(-3 \leq Z \leq 3)=0.9973 .}
\end{aligned}
$$

Z-Values

Input: real number (z) $\quad \dot{\phi}(2) \frac{1}{-2} \frac{2}{2}$ Input: probability α
Output: probability $\Phi(z) \simeq 0.975$. Output: real number Z_{α} Upper percentage point

$$
\Phi(1.645)=P(Z<1.645)=0.95) \Leftrightarrow z_{0.05}=\Phi^{-1}(0.95)=1.645
$$

Useful equations:

$$
\begin{array}{ll}
\Phi\left(Z_{\alpha}\right)=P\left(Z<Z_{\alpha}\right)=1-\alpha \quad \alpha=1-\Phi\left(Z_{\alpha}\right) \\
\hline \Phi(-z)=1-\Phi(z) & Z_{1-\alpha}=-Z_{\alpha}
\end{array}
$$

Normal table

Figure 4-13 Standard normal probability densty function.

$$
\begin{aligned}
& \Phi(2.5) ? \\
& R \text { studio } \\
& \text { pnorm }(2.5,0,1)=0.9937
\end{aligned}
$$

$$
\Phi(z)=P(Z \leq z)=\int_{-\infty}^{z} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} u^{2}} d u
$$

Table III Cumulative Standard Normal Distribution (continued)

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.500000	0.503989	0.507978	0.511967	0.515953	0.519939	0.532922	0.527903	0.531881	0.535856
0.1	0.539828	0.543795	0.547758	0.551717	0.555760	0.559618	0.563559	0.567495	0.571424	0.575345
0.2	0.579260	0.583166	0.587064	0.590954	0.594835	0.598706	0.602568	0.606420	0.610261	0.614092
0.3	0.617911	0.621719	0.625516	0.629300	0.633072	0.636831	0.640576	0.644309	0.648027	0.651732
0.4	0.655422	0.659097	0.662757	0.666402	0.670031	0.673645	0.677242	0.680822	0.684386	0.687933
0.5	0.691462	0.694974	0.698468	0.701944	0.705401	0.708840	0.712260	0.715661	0.719043	0.722405
0.6	0.725747	0.729069	0.732371	0.73653	0.738914	0.742154	0.745373	0.748571	0.751748	0.754903
0.7	0.758036	0.761148	0.764238	0.767305	0.770350	0.773373	0.776373	0.779350	0.782305	0.785236
0.8	0.788145	0.791030	0.793892	0.796731	0.799546	0.802338	0.805106	0.807850	0.810570	0.813267
0.9	0.815940	0.818589	0.821214	0.823815	0.826391	0.828944	0.831472	0.833977	0.836457	0.838913
1.0	0.841345	0.843752	0.846136	0.848495	0.850830	0.853141	0.855428	0.857690	0.859929	0.862143
1.1	0.864334	0.866500	0.868643	0.870762	0.872857	0.874928	0.876976	0.878999	0.881000	0.882977
1.2	0.884930	0.886860	0.888767	0.890651	0.892512	0.894350	0.896165	0.897958	0.899727	0.901475
1.3	0.903199	0.904902	0.906582	0.908241	0.909877	0.911492	0.913085	0.914657	0.916207	0.917736
1.4	0.919243	0.920730	0.922196	0.923641	0.925066	0.926471	0.927855	0.929219	0.930563	0.931888
1.5	0.933193	0.934478	0.935744	0.936992	0.938220	0.939429	0.940620	0.941792	0.942947	0.944083
1.6	0.945201	0.946301	0.947384	0.948449	0.949497	0.950529	0.951543	0.952540	0.953521	0.954486

Normal table

$$
\Phi(z)=P(Z \leq z)=\int_{-\infty}^{z} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} u^{2}} d u
$$

Table III Cumulative Standard Normal Distribution

z	-0.09	-0.08	-0.07	-0.06	-0.05	-0.04	-0.03	-0.02	-0.01	-0.00
-3.9	0.000033	0.000034	0.000036	0.000037	0.000039	0.000041	0.000042	0.000044	0.000046	0.000048
-3.8	0.000050	0.000052	0.000054	0.000057	0.000059	0.000062	0.000064	0.000067	0.000069	0.000072
-3.7	0.000075	0.000078	0.000082	0.000085	0.000088	0.000092	0.000096	0.000100	0.000104	0.000108
-3.6	0.000112	0.000117	0.000121	0.000126	0.000131	0.000136	0.000142	0.000147	0.000153	0.000159
-3.5	0.000165	0.000172	0.000179	0.000185	0.000193	0.000200	0.000208	0.000216	0.000224	0.000233
-3.4	0.000242	0.000251	0.000260	0.000270	0.000280	0.000291	0.000302	0.000313	0.000325	0.000337
-3.3	0.000350	0.000362	0.000376	0.000390	0.000404	0.000419	0.000434	0.000450	0.000467	0.000483
-3.2	0.000501	0.000519	0.000538	0.000557	0.000577	0.000598	0.000619	0.000641	0.000664	0.000687

Exercise

$$
1-\operatorname{pnorm}(0,3,0,1)
$$

- Example: Three shafts are made and assembled in a machine. The length of each shaft, in centimeters, is distributed as follows:

$$
\text { (a) } Y=X_{1}+X_{2}+X_{3} \sim
$$

Shaft 1: ~N(75, 0.09) $\rightarrow X_{1}$ Shaft 2: $\sim N(60,0.16) \rightarrow x_{2}$ Shaft 3: $\sim N(25,0.25) \rightarrow x_{3}$

$$
\begin{aligned}
& N(75+60+25, \\
& 0.09+0.16+0.25) \\
= & N(160,0.5) .
\end{aligned}
$$

Assume the shafts' length are independent to each other:
(a) What is the distribution of the linkage?
(b) What is the probability that the linkage will be longer than 160.5 cm ?

$$
\text { (b) } P(Y \geqslant 160.5)=P\left(N(0,1) \geqslant \frac{160.5-160}{\sqrt{0.5}}\right)
$$

$$
=P\left(N\left(0,1 \geqslant \frac{\sqrt{2}}{2}\right)\right.
$$

$=1-P(N(91) \leq 0.3)=0.38 \quad \equiv P(M(0) \geq 0.7)$

Exercise $\quad X \sim N\left(40,5^{2}\right)$

$p(x \leq 37.9)=\operatorname{pnorm}(37.9 .40,5)=0.33$
$p(x \geq a)=0.3783 \Leftrightarrow$ Find a st. $P(x \leq a)=1-0.3783$

$$
=0.62 .
$$

$$
\underline{\operatorname{qnom}(0.62,40.5)}=41.52 .
$$

$$
\Phi(z)=\int_{-\infty}^{z} \frac{1}{\sqrt{2 \pi}} e^{-u^{2} / 2} d u
$$

Appendix A: Table III

z	0.00	0.01	0.02	0.03	0.04	z
0.0	0.50000	0.50399	0.50798	0.51197	0.51595	0.0
0.1	0.53983	0.54379	0.54776	0.55172	0.55567	0.1
0.2	0.57926	0.58317	0.58706	0.59095	0.59483	0.2
0.3	0.61791	0.62172	0.62551	0.62930	0.63307	0.3
0.4	0.65542	0.65910	0.66276	0.66640	0.67003	0.4
0.5	0.69146	0.69497	0.69847	0.70194	0.70540	0.5
0.6	0.72575	0.72907	0.73237	0.73565	0.73891	0.6
0.7	0.75803	0.76115	0.76424	0.76730	0.77035	0.7

Exercise: Airport Check-in

The amount of time that a customer spends waiting in the airport check-in counter is a normal random variable with mean 8.2 minutes and standard deviation 1.5 minutes. Suppose that a random sample of 49 customers is observed. X_{1}, \cdots, x_{n} is .d $N(8.2,1-5) \quad n=49$
 waiting time for these customers is:
(a) Less than 10 minutes; $\operatorname{Pr}(\bar{x} \leqslant \mid 0)$
(b) Between 5 and 10 minutes. $=$ pnormplo,
 $\operatorname{Pr}(5 \leq \bar{x} \leq 10)=1$ $8,2,1.577)=1$
2. What is a value such that 90% of chance, average wait time will wait shorter than that? Find a sit $P(\bar{x} \leq a)=0.9$ g norm $(0 .\{8.2,1.5 / 7)=8.47$.

General case: Central Limit Theorem (CLT)

Sampling distribution of sample mean is normal, even when samples are NOT normal

Figure 7-1 Distributions of average scores from throwing dice. [Adapted with permission from Box, Hunter, and Hunter (1978).]

Rule of thumb: when $n>30$ this works pretty well.

CENTRAL LIMIT THEOREM If all samples of a particular size are selected from any population, the sampling distribution of the sample mean is approximately a normal distribution. This approximation improves with larger samples.

Exercise: Coffee

For the "number of coffee drink / day" question, assume the number of coffee drink / day is a random variable with mean 1 and variance 0.5 .

There are 58 responses of survey. What the sampling distribution of the sample mean?

- population X s.t. $E[x]=1 \quad \operatorname{Var}+(x)=0.5$
- $\bar{x}=\frac{1}{n} \sum_{1} x_{n}$

$$
n=58 \text {, }
$$

$\sim N\left(1, \frac{0.5}{58}\right)$
x_{1}, \cdots, x_{n} ind $^{\text {in }}$

Sampling Distribution of Sample Mean With Ksoms Variance

One Population:

Xi's are normally independently distributed (a random sample from a Normal distribution with the known variance)

$$
\begin{aligned}
& X_{1} X_{2} \cdots, X_{n} \sim N\left(\mu, \sigma^{2}\right) \rightarrow \bar{x} \sim N\left(\mu, \frac{\sigma^{2}}{n}\right) \rightarrow \frac{\bar{x}-\mu}{\sigma / \sqrt{n} \sim N(0,1) \bar{x}-\bar{Y}=\bar{x}+(-\bar{Y})} \sim N\left(\mu_{1}-\mu_{2}\right) \\
& \text { llations: } \quad\left(\frac{\sigma_{1}^{2}}{n_{1}} \frac{\sigma_{2}^{2}}{n_{2}}\right)
\end{aligned}
$$

Two Populations:
Two independent random samples from two Normal distributions with the known variances

$$
\left.\begin{array}{l}
\underbrace{X_{Y_{1}, Y_{2}}, \cdots, X_{2}, \cdots, Y_{n_{2}} \sim N\left(\mu_{2}, \sigma_{2}^{2}\right)} \sim N\left(\mu_{1}, \sigma_{1}^{2}\right)
\end{array}\right)^{\bar{Y} \sim N\left(\mu_{1}, \frac{\sigma_{2}^{2}}{n_{2}}\right), ~-\bar{Y} \sim N\left(-\mu_{2}, \frac{\sigma_{2}^{2}}{n_{2}}\right)}
$$

$P(N(-50,136) \geqslant 25)=1-P(N(-50,136) \leqslant 25))=1-0.7=0.3$

Aircraft Engine Life

- The effective life of a component, X1, used in a jet-turbine aircraft engine is a random variable with mean 5000 hours and standard deviation 40 hours. The engine manufacture design a new component X2, which increases the mean life to 5050 hours and decreases the standard deviation to 30 hours. Assume X1 and X2 is fairly close to a normal distribution. Suppose n1 = 16 samples of old components, and n2 $=25$ samples from the new components, are selected. What is the probability that the difference in two sample means is at least 25 hours?

Central Limit Theorem (CLT) for two populations

Approximate Sampling Distribution of a Difference in Sample Means

If we have two independent populations with means μ_{1} and μ_{2} and variances σ_{1}^{2} and σ_{2}^{2}, and if \bar{X}_{1} and \bar{X}_{2} are the sample means of two independent random samples of sizes n_{1} and n_{2} from these populations, then the sampling distribution of

$$
\begin{equation*}
Z=\frac{\bar{X}_{1}-\bar{X}_{2}-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\sigma_{1}^{2} / n_{1}+\sigma_{2}^{2} / n_{2}}} \tag{7-4}
\end{equation*}
$$

is approximately standard normal, if the conditions of the central limit theorem apply. If the two populations are normal, the sampling distribution of Z is exactly standard normal.

$$
\bar{X}_{1}-\bar{X}_{2} \sim M\left(\mu_{1}-\mu_{2}, \frac{\sigma^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}\right)
$$

- Group $=$ population mean/var $\left(\mu_{1}, b_{1}^{2}\right)$ observation size n_{1}
- Group 2: population mean/var $\left(\mu_{2}, 6_{2}^{2}\right)$ Observation sics ?

Example: Time in the morning

- The time for students to get ready in the morning, for male and female students.
- There are $\mathrm{n} 1=33$ girls and n2 $=25$ guys who provides the answer
- Assume the time for girl is a random variable with mean 30 minutes, and the time for guy is a random variable with mean 20 minutes. The standard deviation for both of them is 10 minutes.
- What is the probability that the difference in two sample means is at least 10 minutes?

Time to Get Ready by Gender
$X_{1} \sim N\left(30,10^{2}\right)$

$P(N(10,7.03) \geq 10)=\frac{1}{2}$

Of course the variance is unknown...

Summary
For sample mean! $\left(\mu, \sigma^{2}\right)$ are known

$$
\frac{\bar{x}-\mu}{\sigma \sqrt{n}} \sim N(0,1) \quad \frac{\left(\overline{x_{1}}-\bar{x}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{6_{1}^{2}}{n}+\frac{\sigma_{2}^{2}}{n_{2}}}} \sim N(0,1)
$$

For sample mean, $\frac{\mu \text { is known }}{(}$
6 is unknown

$$
\frac{\bar{x}-\mu}{S / \sqrt{n}} \sim t(n-1), \quad \frac{\left(\bar{x}_{1}-\bar{x}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{S_{p} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}} \sim t\left(n_{1}-1, n_{2}-2\right)
$$

For sample variance $2 \quad x^{2}(n-1), \quad F\left(n_{1}-1, n_{2}-1\right)$.

Summary and Extension.

For sample mean,

$$
\begin{aligned}
& \frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \sim N(0,1) \text {, if }\left(\mu, \sigma^{2}\right) \text { known. } \\
& \frac{\left(\bar{X}-\overline{X_{2}}\right)-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}} \sim N(0,1) \text { if }\left(\mu, \sigma^{2}\right) \text { knows }
\end{aligned}
$$

For sample mean, but unknown variance,

For sample variance, $\frac{(n-1) s^{2}}{6^{2}} \sim X^{2}(n-1) \quad \frac{S_{1}^{2} / 6_{1}^{2}}{S_{2}^{2} / \sigma_{2}^{2}} \sim F\left(3-1, \sigma_{2}-1\right)$.

