ISyE 3770, Spring 2024 Statistics and Applications

Sampling Distribution

Instructor: Jie Wang H. Milton Stewart School of Industrial and Systems Engineering Georgia Tech

> jwang3163@gatech.edu Office: ISyE Main 447

Model for Samples: Random sampling

Statistic

A statistic is any function of the observations in a random sample. $\int_{-\infty}^{2} \frac{1}{(\chi_{0} - M)^{2}}$

e.g.,
$$X_1, X_2, \dots, X_n \to \overline{X}, S^2$$

The probability distribution of a statistic is called a sampling distribution.

God: study distribution of
$$\overline{x}$$
 or S^2
Class
activity:
urn model

 $\chi = \sum_{i=1}^{n} \chi_i$

Sampling distribution

Why sampling distribution?

The probability distribution of a statistic is called a sampling distribution.

Statistical inference is concerned with making decisions about a population based on the information contained in a *random sample* from that population.

Sampling distribution is the link between probability and statistics.

Empirical distribution

• Data can be "distributed" (spread out) in different ways

Model sampling distribution

Relationships between Bernoulli and Binomial distributions , random sample

 $X_i \sim BERN(p), i = 1, 2, \dots, n$

$$\overline{X} = \sum_{i=1}^{n} X_i (BIN(n, p))$$
 statistic

In this setting X~ Binamial (n, p) Sampling distribution
Each time X_i is the outcome of each draw:

= 1, if black, otherwise = 0

- \overline{X} is the number of black stones
- Multiple experiments \overline{X} is different and has variability

Alternative view

Sample proportion is the percentage of black stones

• Claim: \overline{X} is approximately <u>normal distributed</u> with mean p and variance = $\frac{p(1-p)}{m}$

Suppose X1, ..., Xn And distribution with mean
$$\mu$$
, voriance 6^2
 $x \xrightarrow{approximate}$ $M(\mu, \frac{6^2}{n})$.
Sampling distribution describes the distribution of sample mean

Normal Distribution

Normal Distribution

$$X \sim N(\mu, \sigma^{2}); \quad -\infty < x < +\infty$$

$$f(x; \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma^{2}}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}$$

$$E(x) = \mu \quad Var(x) = \sigma^{2}$$

$$P\{x \le a\} = \int_{-\infty}^{a} \frac{1}{\sqrt{2\pi\sigma^{2}}} \exp\left\{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}\right\} dx$$

$$P\{x \le a\} = \int_{-\infty}^{a} \frac{1}{\sqrt{2\pi\sigma^{2}}} \exp\left\{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}\right\} dx$$

Important Fact

• Fact: If x_1, x_2 are independently normally distributed variables, then

 $\mathbf{y} = \mathbf{x}_1 + \mathbf{x}_2$

also follows the normal distribution:

 $y \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$

It can be shown by deriving cdf of y.

Special case

Making normal assumption about samples:

Xi's are **normally** independently distributed (a random sample from a Normal distribution with the known variance)

$$X_1, X_2, \dots, X_n \sim N(\mu, \sigma^2) \rightarrow \overline{X} \sim N(\mu, \frac{\sigma^2}{n}) \rightarrow \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1)$$

• Proof?

· Remark If X: are i.i.d, not normally distributed, X is approximately N(4,6) Typ

Sampling distribution of <u>sample mean</u> is normal, when samples are normal

n>30

Example

- 1. The design of the machine has fill volume 300 mls, and variance 9ml. An engineer takes a random sample of 25 cans, what's the sampling distribution of mean filling volume of a can of soft drink?
- 2. The engineer finds the sample mean of fill volume to be 298 mls. Is this considered to be normal?

 $X_{1}, \dots, X_{25} \sim \mathcal{N}(300, 9) \qquad P(\overline{x} \leq 298) \qquad = P(\mathcal{N}(300, \frac{9}{25}) \leq 298) \qquad = P(\mathcal{N}(300, \frac{9}{25}) \leq 298) \qquad = P(\mathcal{N}(0, 1) \leq \frac{298 - 300}{3/5} = P$

Review. · Give a R.V. X · Consider n i.i.d. Observations, XI, ..., Xn. independent identically distributed. Assume Xi, ``, Xn have same distribution as X. · We say X. Xn is a random sample, with observation size n. · A statistic is a function of random sample. $\overline{X} = \frac{1}{n} \sum_{i} X_{i} \qquad S^{2} = \frac{1}{n-1} \sum_{i} (X_{i} - \overline{X})^{2}$

• Sampling distribution describes distribution of statistic
Prop. X. ...,
$$X_n^{1,i,d} \mathcal{M}(\mathcal{M}, G^2) \Rightarrow \overline{X} = + \overline{\Sigma} X_n \sim \mathcal{N}(\mathcal{A}, \overline{\Sigma})$$

Extension: Suppose X_1, \dots, X_n are i.i.d., not necessarily normal
with mean \mathcal{A} voriance G^2
 $\overline{X} = -1 \cdot \overline{\Sigma} X_n$ approximately follows $\mathcal{N}(\mathcal{A}, \frac{G^2}{n})$.
(nearly Holds when $n \ge 30$).

Review · Given a random variable X · Consider n -i.i.d. observations XI, ..., Xn, following some distribution as in · Xuin Xo ave alled a random sample of size of · A statistic vis a fination of random sample, i.e., $\overline{X} = - \sum_{i} X_{i}$ Prop. Let $X_{1}, \dots, X_{n} \sim \mathcal{N}(\mathcal{M}, 6^{2}) \Rightarrow \overline{X} \sim \mathcal{N}(\mathcal{M}, \widetilde{\mathcal{H}})$

Standard Normal Distribution

$$\begin{array}{l} \mathbb{P}\left(\mu - \sigma \leq X \leq \mu + \sigma\right) &= \mathbb{P}\left(-1 \leq Z \leq 1\right) = 0.6827, \\ \mathbb{P}\left(\mu - 2\sigma \leq X \leq \mu + 2\sigma\right) = \mathbb{P}\left(-2 < Z < 2\right) = 0.9545, \\ \mathbb{P}\left(\mu - 3\sigma \leq X \leq \mu + 3\sigma\right) = \mathbb{P}\left(-3 \leq Z \leq 3\right) = 0.9973. \end{array}$$

Useful equations:

Normal table

Table III Cumulative Standard Normal Distribution (continued)

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.500000	0.503989	0.507978	0.511967	0.515953	0.519939	0.532922	0.527903	0.531881	0.535856
0.1	0.539828	0.543795	0.547758	0.551717	0.555760	0.559618	0.563559	0.567495	0.571424	0.575345
0.2	0.579260	0.583166	0.587064	0.590954	0.594835	0.598706	0.602568	0.606420	0.610261	0.614092
0.3	0.617911	0.621719	0.625516	0.629300	0.633072	0.636831	0.640576	0.644309	0.648027	0.651732
0.4	0.655422	0.659097	0.662757	0.666402	0.670031	0.673645	0.677242	0.680822	0.684386	0.687933
0.5	0.691462	0.694974	0.698468	0.701944	0.705401	0.708840	0.712260	0.715661	0.719043	0.722405
0.6	0.725747	0.729069	0.732371	0.735653	0.738914	0.742154	0.745373	0.748571	0.751748	0.754903
0.7	0.758036	0.761148	0.764238	0.767305	0.770350	0.773373	0.776373	0.779350	0.782305	0.785236
0.8	0.788145	0.791030	0.793892	0.796731	0.799546	0.802338	0.805106	0.807850	0.810570	0.813267
0.9	0.815940	0.818589	0.821214	0.823815	0.826391	0.828944	0.831472	0.833977	0.836457	0.838913
1.0	0.841345	0.843752	0.846136	0.848495	0.850830	0.853141	0.855428	0.857690	0.859929	0.862143
1.1	0.864334	0.866500	0.868643	0.870762	0.872857	0.874928	0.876976	0.878999	0.881000	0.882977
1.2	0.884930	0.886860	0.888767	0.890651	0.892512	0.894350	0.896165	0.897958	0.899727	0.901475
1.3	0.903199	0.904902	0.906582	0.908241	0.909877	0.911492	0.913085	0.914657	0.916207	0.917736
1.4	0.919243	0.920730	0.922196	0.923641	0.925066	0.926471	0.927855	0.929219	0.930563	0.931888
1.5	0.933193	0.934478	0.935744	0.936992	0.938220	0.939429	0.940620	0.941792	0.942947	0.944083
1.6	0.945201	0.946301	0.947384	0.948449	0.949497	0.950529	0.951543	0.952540	0.953521	0.954486

Normal table

Table III Cumulative Standard Normal Distribution

z	-0.09	-0.08	-0.07	-0.06	-0.05	-0.04	-0.03	-0.02	-0.01	-0.00
-3.9	0.000033	0.000034	0.000036	0.000037	0.000039	0.000041	0.000042	0.000044	0.000046	0.000048
-3.8	0.000050	0.000052	0.000054	0.000057	0.000059	0.000062	0.000064	0.000067	0.000069	0.000072
-3.7	0.000075	0.000078	0.000082	0.000085	0.000088	0.000092	0.000096	0.000100	0.000104	0.000108
-3.6	0.000112	0.000117	0.000121	0.000126	0.000131	0.000136	0.000142	0.000147	0.000153	0.000159
-3.5	0.000165	0.000172	0.000179	0.000185	0.000193	0.000200	0.000208	0.000216	0.000224	0.000233
-3.4	0.000242	0.000251	0.000260	0.000270	0.000280	0.000291	0.000302	0.000313	0.000325	0.000337
-3.3	0.000350	0.000362	0.000376	0.000390	0.000404	0.000419	0.000434	0.000450	0.000467	0.000483
-3.2	0.000501	0.000519	0.000538	0.000557	0.000577	0.000598	0.000619	0.000641	0.000664	0.000687

Exercise

1- pnorm(03, 0,1)

> Shaft 1: ~ N (75, 0.09) $\rightarrow \chi_1$ Shaft 2: ~ N (60, 0.16) $\rightarrow \chi_2$ Shaft 3: ~ N (25, 0.25) $\rightarrow \chi_5$

N(75+60+25), 0.09+0.16+0.25)= N(160, 0.5).

Assume the shafts' length are independent to each other: (a) What is the distribution of the linkage? (b) What is the probability that the linkage will be longer than 160.5 cm? $(J_{2}, P(Y \ge |_{0}, 5) = P(N(0, 1) \ge \frac{|_{0}b \cdot 5 - |_{0}b}{\sqrt{0.5}})$

 $= 1 - P(N(9)) \leq 0.3 = 0.38$

Exercise
$$X \sim N(40,5^2)$$

 $p(x \le 37.9) = \underbrace{\text{pnorm}(3).9, 40, 5}_{p(x \ge a) = 0.3783} \iff F_{ind} = ... p(x \le a) = [-0.3783] \iff F_{ind} = ... p(x \le a) = 0.3783 \iff F_{ind} = ... p(x \le a) = [-0.3783] = 0.62.$
 $g_{norm}(a, 62, 40, 5) = 4/.52$
 $\Phi(z) = \int_{-\pi}^{z} \frac{1}{\sqrt{2\pi}} e^{-x^{3/2} du}$
 $\frac{z}{\sqrt{2\pi}} e^{-x^{3/2$

Z I

Exercise: Airport Check-in

The amount of time that a customer spends waiting in the airport check-in counter is a normal random variable with mean 8.2 minutes and standard deviation 1.5 minutes. Suppose that a random sample of 49 customers is observed. $\chi_1, \dots, \chi_n \stackrel{i \ge d}{\longrightarrow} \mathcal{N}(g_{(k)}, f_{(k)}) = n=4$

 $\vec{X} \sim \mathcal{N}(\mathcal{S}, \mathcal{E}, \frac{1}{\sqrt{2}}) \quad \mathfrak{st}(\overline{x}) = 1, 5/7$ 1. Find the probability that the average waiting time for these customers is: (a) Less than 10 minutes; $\mathcal{P}(\overline{X} \leq |o)$ (b) Between 5 and 10 minutes. = $\mathfrak{pnorr}(|o|)$ $\mathcal{S}, \mathcal{E}, 1, 5/7$

 $P(5 \le x \le |0) = |$ 2. What is a value such that 90% of chance, average wait time will wait shorter than that? Find q St. $P(x \le q) = q$ $g_{norm}(v \le s \le 1.5/7) = s \cdot 47$

General case: Central Limit Theorem (CLT)

Sampling distribution of <u>sample mean</u> is normal, even when samples are NOT normal

Figure 7-1 Distributions of average scores from throwing dice. [Adapted with permission from Box, Hunter, and Hunter (1978).]

Rule of thumb: when n > 30 this works pretty well.

CENTRAL LIMIT THEOREM If all samples of a particular size are selected from any population, the sampling distribution of the sample mean is approximately a normal distribution. This approximation improves with larger samples.

Exercise: Coffee

For the "number of coffee drink / day" question, assume the number of coffee drink / day is a random variable with mean 1 and variance 0.5.

There are 58 responses of survey. What the sampling distribution of the sample mean?

* population X S.t. E[X]=1 VartX)=0.5.

 $\cdot X = \frac{1}{n} \underbrace{5}_{x_n} \times X_n$ $\sim N(1, \frac{0.5}{58})$

Sampling Distribution of Sample Mean With **Known** Variance

One Population:

Xi's are normally independently distributed (a random sample) from a Normal distribution with the known variance)

$$X_{1}, X_{2}, \dots, X_{n} \sim N(\mu, \sigma^{2}) \rightarrow \overline{X} \sim N(\mu, \frac{\sigma^{2}}{n}) \rightarrow \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1) \overline{X} - \overline{Y} = \overline{X} + (-\overline{Y}) \sim \mathcal{N}(\mathcal{M}_{1} - \mathcal{M}_{2})$$

wo Populations:

$$(\mathcal{M}_{1}, \mathcal{M}_{2}, \frac{\sigma^{2}}{n}) \rightarrow \mathcal{N}(\mathcal{M}_{1}, \frac{\sigma^{2}}{n})$$

Two Populations:

Two independent random samples from two Normal distributions $\gamma \nabla \mathcal{N}(\mathcal{M}_{2}, \frac{6i}{2}) \qquad (-\gamma) \mathcal{N}(-\mathcal{M}_{2}, \frac{6i}{2})$ with the known variances

$$X_{1}, X_{2}, \dots, X_{n_{1}} \sim N(\mu_{1}, \sigma_{1}^{2})$$

$$\rightarrow \overline{X} - \overline{Y} \sim N(\mu_{1} - \mu_{2}, \frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}})$$

$$Y_{1}, Y_{2}, \dots, Y_{n_{2}} \sim N(\mu_{2}, \sigma_{2}^{2})$$

P(N(-50, |36), 25) = [-P(N(-50, |36), 525)] = [-0,] = 0.3

Aircraft Engine Life

 The effective life of a component, X1, used in a jet-turbine aircraft engine is a random variable with mean 5000 hours and standard deviation 40 hours. The engine manufacture design a new component X2, which increases the mean life to 5050 hours and decreases the standard deviation to **30 hours. Assume X1 and X2 is fairly** close to a normal distribution. Suppose n1 = 16 samples of old components, and n2 = 25 samples from the new components, are selected. What is the probability that the difference in two sample means is at least 25 hours?

Central Limit Theorem (CLT) for two populations

Approximate Sampling Distribution of a Difference in Sample Means

If we have two independent populations with means μ_1 and μ_2 and variances σ_1^2 and σ_2^2 , and if X_1 and X_2 are the sample means of two independent random samples of sizes n_1 and n_2 from these populations, then the sampling distribution of

$$Z = \frac{\overline{X}_1 - \overline{X}_2 - (\mu_1 - \mu_2)}{\sqrt{\sigma_1^2 / n_1 + \sigma_2^2 / n_2}}$$
(7-4)

is approximately standard normal, if the conditions of the central limit theorem apply. If the two populations are normal, the sampling distribution of Z is exactly standard normal. $\overline{X}_{1} - \overline{X}_{2} \sim \mathcal{N}(\mathcal{M}_{1} - \mathcal{M}_{2}, \frac{6^{2}}{2} + \frac{6^{2}}{2})$

Group 2: population mean/var (Mz, 6²). Observation size M.
 Group 2: population mean/var (Mz, 6²). Observation size n.

Gender

0

0

Coffee Consumption by Gender

Example: Time in the morning

• The time for students to get ready in the morning, for male and female students.

- There are n1 = 33 girls and n2
 = 25 guys who provides the answer
- Assume the time for girl is a random variable with mean 30 minutes, and the time for guy is a random variable with mean 20 minutes. The standard deviation for both of them is 10 minutes.

• What is the probability that the difference in two sample means is at least 10 minutes?

Of course the variance is unknown...

Summery
For sample mean:
$$(A, B^2)$$
 are known

$$\frac{\overline{X} - M}{\sqrt{d \ln}} \sim \mathcal{N}(0, 1) \qquad (\overline{X_1 - \overline{X_2}}) - (\mathcal{U}_1 - \mathcal{M}_2)}{\sqrt{\frac{6i^2}{n} + \frac{6i^2}{n_2}}} \sim \mathcal{N}(0, 1)$$
For sample mean, $\frac{M}{(1 - 1)} \stackrel{i}{\underset{X}{\longrightarrow}} \frac{known}{(1 - 1)} \qquad (\overline{X_1 - \overline{X_2}}) - (\mathcal{U}_1 - \mathcal{U}_2)}{\sqrt{\frac{5}{n} \frac{1}{n_1} + \frac{1}{n_2}}} \sim t(n, -1, n_{2-2})$
For sample variance $i = \sqrt{\frac{2}{n}(n-1)}$ F(n-1, n_{2-1}) ×

Summary and Extension. For sample mean, X-11 ~ N/01), if (4,62) known. 6/50 $\frac{(\overline{X}, -\overline{X}, -(M_{1}, -M_{2}))}{\sqrt{n_{1}^{6^{2}} + \frac{6^{2}}{n_{2}}}} \sim \mathcal{N}(0, 1) \quad if(M, 6^{2}) \quad known$ For sample mean, but inknown variance, $\frac{X-M}{S/sn} \sim f(n-p), \qquad \frac{(X_1-X_1)-(M_1-M_2)}{S_p} \sim f(n,+n_2)$ For sample variance, $(n-1)s^2 \sim \chi^2(n-1)$, $\frac{S_1^2/G_1^2}{S_1^2/G_1^2} \sim F(g-1, n-1)$.