ISyE 3770, Spring 2024 Statistics and Applications

Descriptive Statistics

Instructor: Jie Wang H. Milton Stewart School of Industrial and Systems Engineering Georgia Tech

> jwang3163@gatech.edu Office: ISyE Main 445

Descriptive statistics

- An important aspect of dealing with data is organizing and summarizing the data in ways that facilitate its interpretation and subsequent analysis.
- This aspect of statistics is called <u>descriptive</u> <u>statistics</u>. It is a <u>summary statistic</u> that quantitatively describes or summarizes features of a collection of information.
- It is usually the <u>first-attempt</u> of data analytics.
- Sometimes they are sufficient for particular investigations.

Types of Summary Statistics

Examples

- Shooting percentage in basketball is a descriptive statistic that summarizes the performance of a player or a team.
- GPA: grade point average. This single number describes the general performance of a student across the range of their course experiences

Data type

Categorical or nominal data

Observe frequencies within several categories

Example: frequency of female and male attendance in this class

Numerical Data

Observed values are integer, real or complex numbers

Examples: IQ scores of GT students (integer values)

Lifetime of a computer chip (real values)

11

others

Catego

11

Class Activity

- 1. For each GT student, we record his/her blood type
- A. numeric B. categorical
- 2. For each GT student, we record his/her number of siblings.
- A. numeric B. categorical
- 3. For each GT student, we record his/her country of residence.
- A. numeric B. categorical
- 4. For each GT student, we record his/her height.

A. numeric B. categorical

Sample Mean

If the *n* observations in a sample are denoted by x_1, x_2, \ldots, x_n , the sample mean is

$$\overline{x} = \frac{x_1 + x_2 + \dots + x_n}{n} = \frac{\sum_{i=1}^n x_i}{n}$$
(6-1)

Let's consider the eight observations collected from the prototype engine connectors from Chapter 1. The eight observations are $x_1 = 12.6$, $x_2 = 12.9$, $x_3 = 13.4$, $x_4 = 12.3$, $x_5 = 13.6$, $x_6 = 13.5$, $x_7 = 12.6$, and $x_8 = 13.1$. The sample mean is

$$\overline{x} = \frac{x_1 + x_2 + \dots + x_n}{n} = \frac{\sum_{i=1}^{8} x_i}{8} = \frac{12.6 + 12.9 + \dots + 13.1}{8} \int_{x_i}^{x_i} = \frac{104}{8} = 13.0 \text{ pounds}$$

$$\overline{x} = \frac{10}{4} \xrightarrow{x_i} = \frac{100}{4} \xrightarrow{x_i} = \frac{10$$

Sample Median

- $\widetilde{\chi}$ A value such that 50% of the data are at or above this value How to calculate: $\chi \leftarrow c(1, 2, 4, 6, 5)$ $\chi \leftarrow sout(x)$
- Sort the data in ascending (or descending) order
- If *n* is an odd number, median is the $(n+1)/2^{\text{th}}$ number; median(N): 4
- If *n* is an even number, median is the average of is the $n/2^{\text{th}}$ and $(n/2)+1^{\text{th}}$ numbers $\chi = c(1, 2, 4, 5, 6, 7)$

Let's consider the eight observations collected from the prototype engine connectors from Chapter 1. The eight observations are $x_1 = 12.6$, $x_2 = 12.9$, $x_3 = 13.4$, $x_4 = 12.3$, $x_5 = 13.6$, $x_6 = 13.5$, $x_7 = 12.6$, and $x_8 = 13.1$. **12.3 13.6 13.7 13.7 13.5 13.6 median** (x) = $\frac{1}{2}$ (4+5) = $\frac{1}{2}$ (5) **13.9 13.9 13.5 13.6 median** (x) = $\frac{1}{2}$ (13.9)

X: C(1,2,45)

Sample Mode

Mode = 12.6

observation
$$\in (1, 1, 2, 2, 3, 4)$$

Mode $\leftarrow 1$ or 2

Data = {3, 1, 1, 0, 5, 4, 13, 3}

Example 2:

>

Estimating Data Variability

1. <u>Sample Range</u> = [Largest item] –[smallest item]

Most commonly used.

Derivation of the variance formula

$$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}{n-1} = \frac{\sum_{i=1}^{n} (x_{i}^{2} + \bar{x}^{2} - 2\bar{x}x_{i})}{n-1} = \frac{\sum_{i=1}^{n} x_{i}^{2} + n\bar{x}^{2} - 2\bar{x}\sum_{i=1}^{n} x_{i}}{n-1}$$

and since $\overline{x} = (1/n) \sum_{i=1}^{n} x_i$, this last equation reduces to

$$s^{2} = \frac{\sum_{i=1}^{n} x_{i}^{2} - \frac{\left(\sum_{i=1}^{n} x_{i}\right)^{2}}{n}}{n-1}$$
(6-4)

Sample Variance & Standard Deviation

How the sample variance measures variability through the deviations.

Sample Range

If the *n* observations in a sample are denoted by x_1, x_2, \ldots, x_n , the sample range is

$$r = \max(x_i) - \min(x_i) \tag{6-6}$$

Let's consider the eight observations collected from the prototype engine connectors from Chapter 1. The eight observations are $x_1 = 12.6$, $x_2 = 12.9$, $x_3 = 13.4$, $x_4 = 12.3$, $x_5 = 13.6$, $x_6 = 13.5$, $x_7 = 12.6$, and $x_8 = 13.1$.

$$r = x_{\text{max}} - x_{\text{min}} = 13.6 - 12.3 = 1.3$$

Example (pull-off force)

i	x_i	$x_i - \overline{x}$	$(x_i - \overline{x})^2$
1	12.6	-0.4	0.16
2	12.9	-0.1	0.01
3	13.4	0.4	0.16
4	12.3	-0.7	0.49
5	13.6	0.6	0.36
6	13.5	0.5	0.25
7	12.6	-0.4	0.16
8	13.1	0.1	0.01
	104.0	0.0	1.60

so the sample variance is

$$s^2 = \frac{1.60}{8-1} = \frac{1.60}{7} = 0.2286 \text{ (pounds)}^2$$

and the sample standard deviation is

$$s = \sqrt{0.2286} = 0.48$$
 pounds

Sample Quantiles

The \sum_{p}^{n} quantile (x_p) is such that 100p% of the sample is smaller than x_p

Sample is smaller than $p_p = 0.25$ P = 0.25Hint : Imagine a sample of 100 ranked items. Think of the quantile as an item's rank. is smaller

<u>Quartile</u> refers to quarters:

25th quantile (Q1, lower-quartile, first-quartile), 50th quantile (Q2, second-quartile, median), and 75th percentile (Q3, upper-quartile, third-quartile)

3. Sample inter-quantile range (IQR) = Q3 - Q1 s best measure to capture IQR is insensitive to extreme values.

Example:

- 1. Sample Range 13
- 2. Sample Variance: 16.78
- 3. Sample IQR = Upper quartile Lower quartile = 425 1 = 325

Data = {3, 1, 1, 0, 5, 4, 3}

Repeat the calculation above.

Numerical Summary of Data

Statistic: Any function of sampled observations is called a statistic

Variability statistics Range $R = x_{max} - x_{min}$ **Variance** $S^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{n - 1}$ Standard Deviation $S = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}}$ $Q_{3} - Q_{1}$ IQR

Arthur Lyon Bowley

6-7. Eight measurements were made on the inside diameter of forged piston rings used in an automobile engine. The data (in millimeters) are 74.001, 74.003, 74.015, 74.000, 74.005, 74.002, 74.005, and 74.004. Calculate the sample mean and sample standard deviation, construct a dot diagram, and comment on the data.

Central Tendency statistics	Variability statistics
<u>Mean</u> 74.00437	Range 0.015
<u>Median 74.0035</u>	Variance 2.169643e-05
<u>Mode 74.005</u>	Standard Deviation 0.004657943
	IQR
	74.005-74.00175 = 0.00325

Covariance between two variables

• each observation is a vector of dimension 2 $(X_i, Y_i), i=1, ..., n$

Pearson correlation coefficient

Describing the linear correlation between two variables

Cor(x,y)
$$r_{xy} = rac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}}$$
 6

What correlation captures

Note that the correlation reflects the non-linearity and direction of a linear relationship (top row), but not the slope of that relationship (middle), nor many aspects of nonlinear relationships (bottom).

Population Mean

The sample mean is a reasonable estimate of the population mean.

(More accurate when the sample size increases)

Population Variance

The sample variance is a reasonable estimate of the population variance.

(More accurate when the sample size increases)

Graphical Descriptive Statistics

- Pie chart
- Stem-and-leaf diagram
- Frequency Table and Histogram
- Box plot
- Time-series plot

Stem-and-Leaf Diagrams

A stem-and-leaf diagram is a good way to obtain an informative visual display of a data set $x_1, x_2, ..., x_n$, where each number x_i consists of at least two digits. To construct a stem-and-leaf diagram, use the following steps.

Steps for Constructing a Stem-and-Leaf Diagram

- Divide each number x_i into two parts: a stem, consisting of one or more of the leading digits and a leaf, consisting of the remaining digit.
- List the stem values in a vertical column.
- (3) Record the leaf for each observation beside its stem.
- (4) Write the units for stems and leaves on the display.

Stem and Leaf Plots

Data = {33, 28, 16, 35, 11, 44, 33, 38}

(Stem)	(Leaf)
1 st digit	2 nd digit
0	-
1	1, 6
2	8
3	3, 3, 5, 8
4	4

Stem-and-Leaf Diagrams

Example 6-4

Table 6-2	Comp	ressive Stren	gth (in psi)	of 80 Alumi	inum-Lithiu	m Alloy Spe	cimens
105	221	183	186	121	181	180	143
97	154	153	174	120	168	167	141
245	228	174	199	181	158	176	110
163	131	154	115	160	208	158	133
207	180	190	193	194	133	156	123
134	178	76	167	184	135	229	146
218	157	101	171	165	172	158	169
199	151	142	163	145	171	148	158
160	175	149	87	160	237	150	135
196	201	200	176	150	170	118	149

Stem-and-Leaf Diagrams

Figure 6-4 Stem-and-leaf diagram for the compressive strength data in Table 6-2.

Stem	Leaf	Frequency
7	6	1
8	7	1
9	7	1
10	5 1	2
11	580	3
12	103	3
13	413535	6
14	29583169	8
15	471340886808	12
16	3073050879	10
17	8544162106	10
18	0361410	7
19	960934	6
20	7108	4
21	8	1
22	189	3
23	7	1
24	5	1

Stem : Tens and hundreds digits (psi); Leaf: Ones digits (psi)

How to display data? Data Features

Shape of the data distribution: symmetric, skewed to the right or to the left.

Spread of the data: range, long or short tails

<u>Outliers</u>: extreme values that appear separate from the rest of the data

<u>Modes</u>: concentrations of the data – unimodal, bimodal, multimodal

<u>Gaps</u>: different subpopulations

Comparison of two or more datasets

Divide observations into groups to construct frequency histogram. Often, this is the **BEST** way to communicate your findings from a set of data.

We can (generally) rely on computers to generate histograms

- Keep bin widths equal
- Choose width that summarizes the data best
- Use Excel, R, Minitab, SAS, MATLAB, Python, etc

Karl Pearson

Frequency Table and Histogram

To construct a frequency table

- **1. Find the range of the data**
 - start the lower limit for the first bin just slightly below the smallest data value

$$- b_0 =$$

$$-\mathbf{R} = \mathbf{b}_{m} - \mathbf{b}_{0}$$

2. Divide this range into a suitable number of equal intervals

- m=4 ~ 20, or \sqrt{n} (n is the total number of samples)

3. Count the frequency of each interval - if $b_{i-1} \le x \le b_i$

• Data:

9, 5, 1, 4, 4, 7, 2, 5, 3, 8, 7, 6, 5, 8, 2

Histogram features

<u>Shape of the data distribution</u>: symmetric, skewed to the right or to the left.
<u>Spread of the data</u>: range, long or short tails
<u>Outliers</u>: extreme values that appear separate from the rest of the data
<u>Modes</u>: concentrations of the data – unimodal, bimodal

<u>Gaps</u>: different subpopulations

Interpretation based on Histogram

Three Properties of Sample Data

- Shape:
 - roughly symmetric and unimodal
- The center tendency or location
 - the points tend to cluster near 5.
- Scatter or spread range
 - variability is relatively high (min=1; max=9)

Relationship between population and samples

Pareto chart

Highlight the most important among a (typically large) set of factors.

Pareto Chart of Late Arrivals by Reported Cause

Simple example of a Pareto chart using hypothetical data showing the relative frequency of reasons for arriving late at work

Line Graphs: bar chart

Average time getting to school

number of students

50

Box Plots

 The box plot is a graphical display that simultaneously describes several important features of a data set, such as center, spread, departure from symmetry, and identification of observations that lie unusually far from the bulk of the data (outliers).

Comparison using box plot

Box plots are useful in graphical comparison of datasets

Comparative box plots of a quality index at three plants.

Time Series Plot

• A time series or time sequence is a data set in which the observations are recorded in the order in which they occur.

• A time series plot is a graph in which the vertical axis denotes the observed value of the variable (say x) and the horizontal axis denotes the time (which could be minutes, days, years, etc.).

• When measurements are plotted as a time series, we often see patterns like trends, cycles, or other broad features of the data

Figure 6-16 Company sales by year (a) and by quarter (b).

R example

The following table shows U.S. petroleum imports, 6-72. imports as a percentage of total, and Persian Gulf imports as a percentage of all imports by year since 1973 (source: U.S. Department of Energy Web site, http://www.eia.doe.gov/). Construct and interpret either a digidot plot or a separate stemand-leaf and time series plot for each column of data.

Year	Petroleum Imports (thousand barrels per day)	Total Petroleum Imports as Percent of Petroleum Products Supplied	Petroleum Imports from Persian Gulf as Percent of Total Petroleum Imports
1973	<u>6256</u>	36.1	13.5
1974	6112	36.7	17.0
1975	6055	37.1	19.2
1976	7313	41.8	25.1
1977	8807	47.7	27.8
1978	8363	44.3	26.5
1979	8456	45.6	24.4
1980	6909	40.5	21.9
1981	5996	37.3	20.3
1982	5113	33.4	13.6
1983	5051	33.1	8.7
1984	5437	34.5	9.3
1985	5067	32.2	6.1
1986	6224	38.2	14.6
1987	6678	40.0	16.1
1988	7402	42.8	20.8
1989	8061	46.5	23.0
1990	8018	47.1	24.5
1991	7627	45.6	24.1
1992	7888	46.3	22.5
1993	8620	50.0	20.6
1994	8996	50.7	19.2
1995	8835	49.8	17.8
1996	9478	51.7	16.9
1997	10,162	54.5	17.2
1998	10,708	56.6	19.9
1999	10,852	55.5	22.7
2000	11,459	58.1	21.7
2001	11,871	60.4	23.2
2002	11,530	58.3	19.6
2003	12,264	61.2	20.3
2004	13,145	63.4	18.9
2005	13,714	65.9	17.0
2006	13,707	66.3	16.1
2007	13,468	65.1	16.1
2008	12,915	66.2	18.4

Scatter Diagrams

- In many problems, engineers and statisticians work with multivariate data
- Scatter plot can graphically display the potential relationship between two variables
- When the two variables are correlated, they should follow along a straight line

More than two variables

• When more than two variables are involved, can have a matrix of scattered diagrams

Example

Table 11-1Oxygen and Hydrocarbon Levels

Observation Number	Hydrocarbon Level $x(\%)$	Purity y(%)
1	0.99	90.01
2	1.02	89.05
3	1.15	91.43
4	1.29	93.74
5	1.46	96.73
6	1.36	94.45
7	0.87	87.59
8	1.23	91.77
9	1.55	99.42
10	1.40	93.65
11	1.19	93.54
12	1.15	92.52
13	0.98	90.56
14	1.01	89.54
15	1.11	89.85
16	1.20	90.39
17	1.26	93.25
18	1.32	93.41
19	1.43	94.98
20	0.95	87.33

Figure 11-1 Scatter diagram of oxygen purity versus hydrocarbon level from Table 11-1.

Two Dimensional Histogram

Descriptive Vs. Inferential Statistics

• Descriptive Statistics:

A set of statistical techniques used to *organize*, *summarize*, *display*, and *describe* important features of data

• Inferential (a.k.a. inductive) Statistics:

A set of statistical methods that uses <u>sample</u> information to draw conclusion about the <u>population</u>

