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Bivariate Distributions
Section 4.1 Bivariate Distributions with the discrete type
» Motivation

very often, the outcome of a random experiment is a tuple of several things of

Interests:

» Observe female college students to obtain information such as height x,
and weight y.

» Observe high school students to obtain information such as rank x, and
score of college entrance examination y.

» In order to define joint probability mass function (joint pmf)
* Complete way : *  Simplified way :
(identify the Sample Space S; (DIgnore the Sample Space S;
@Specify Z(S) directly and denote it by D;

X
@Define a RV Z:{ }:S—)Z(S);
Y (3®Define the pmf for Z, f(z): D —[0,1];

(3Define a pmf for Z, f(z):Z(S) —[0,1]. X
equivalently, for {Y } f(x,y):D—[01].



Definition | joint probability mass function (joint pmf)
Let X and Y be 2 RVs. The probability that X =xand Y =y Is
denoted by f (x, y) = P(X =X, Y = ).
The function f (x, y): D — [0,1] is called the joint probability mass
function (joint pmf) of (X,Y) If:

@0< f(x,y)<L

@ > f(xy)=1
(x,y)eD
@®P[(X.Y)e Al 2P({(x,y)e A)= > f(x,y), AcD.
(x,y)eA
Example 1

Roll a pair of fair dice. The sample space contains 36 outcomes. And let X
denote the smaller outcome and Y the larger outcome on the die.
For instance, if the outcome is (3,2), then X =2, Y =3.

Obviously, P({X =2,Y =3})=1/36+1/36 = 2/36.
P({X =2,Y =2})=1/36.
1/36, 1<x=y<6

Furthermore, the joint pmf of X and Y 1s: f (X, y) =
JoIt b (x.y) {2/36, 1<x<y<6



Marginal pmf
Let X and Y have the joint probability mass function f (x,y) : D —
[0,1]. Sometimes we are interested in the pmf of X or Y alone,
which is called the marginal probability mass function of X or Y

and defined by
f, (X)= Z f(x,y)=P(X =Xx), XeD, = {all possible values of X In D}.
yeDy

f, (y)= Z f(x,y)=P(Y =), yeD, = {all possible values of Y in D}.

xeDy

independent Random Variables

The random variables X and Y are independent if and only if,
foreveryxe D, andy e D,

P(X=XY=Y)=PX =P =Y)
or equivalently,” A nB

F(xy) =T, ()T, ().
otherwise, X and Y are said to be dependent.

Event A Event B



Example 2

Let the joint pmf of X and Y be defined by
X+Yy

f(x,y)= , x=12,3, =12.
(X, y) o1 y
Check iIf RV X and Y are independent.
Solution:
2 X+y 2X+3
f = f(x,y)= = , =1,2,3.
(=3 1 =2 =T, x
3. X+y 3y+6
f = f(x,y)= = , =12.
W (Y) ZD (X, ) Zl TR y

X+Yy . 2Xx+3 3y+6

f(x,y)=
xy) 21 21 21

=f, (X)f,(y)= X and Y are dependent.

What’s the interpretation of fx(x) and fy (y) and independence?

Consider the conditional pmf :

f(y[=P(Y = y|X =x)= ff(x(’xy)); f(x]y) = P(X = XY =)= ff(x(’xy))




» Expectation

Let X; and X, be discrete RV with their joint pmf f (x4, x,) : D = [0,1].
Consider a function u(x4, x,) of x; and x,. Then:

Expectations of functions of bivariate RVs are computed just as
/ with univariate RVs.

(a) The mathematical expectation of u(X,, X,), if exists, is given by

E [U(Xp Xz)] = Z U(X11 Xz) f (Xl’ Xz)-

(%,%,)eD
(b) If u.(X,, X,) = X, fori=12, then E(X)= D xF(x,y)= D xf, (x).
Elu (X, X,)]=E(X,)=u,
Is called the mean of X, fori=1,2.
(c) If u (X, X,) = (X, —u)? fori=12, then
E[u;(X,, X,)]=E[ (X, —u)? | =07 =Var(X,)

Is called the variance of X. fori=1,2.



Example 1 - revisited

Recall that X and Y are discrete RVs with joint pmf
f(X,Y):D - [0,1]withDy =Dy ={1, 2, 3, 4, 5, 6}

2/36, 1<x<y<6
f(x,y)=
1/36, 1<x=y<6
Compute E(X+Y):
Solution:
2
E(X+Y)= > (x+y)f(xy)= > (x+y)-: —6+ D> (x+y)—
(x,y)eD 1<x=y<6 1<x<y<6 36
6 1 & 2 252
=) 2X-—+ X+Vy) —= .
XZ:; 36 = yzzx‘il( y) 36 36

\%Work it by yourself!



Bivariate Distributions
Section 4.2 The correlation coefficient

recall that for u(X,Y), its expectation E[u(X,Y)]= > u(xy)f(x,y).

(x,y)eD

Definition | Covariance of X and Y > Motivation: To

study the relation
Take U(X,Y)=[X —E(X)][Y_E(Y)] betV\B/;enXand Y.

E[(X = E(X))(Y —E(Y))] =Cov(X,Y),
which Is called the covariance of X and Y.

« Cov(X,Y)=EXY)—EMX)E) Verify it by yourself!
When Cov(X,Y) = 0, we say X and Y are uncorrelated.

 Interpretation: Roughly speaking, a positive or negative covariance indicates
that the values of X — E(X) and Y — E(Y) obtained in a single experiment
‘tend’ to have the same or the opposite sign.



Example 1: Demonstration of positively correlated and negatively correlated RVs
Assume that X and Y are uniformly distributed over the ellipses.

t A (%, ¥;)
g (% %) y (E(X),E(Y))
(E(X),E(Y)) (%, )

(X, 1)

positively correlated negatively correlated

Independence of X and Y could imply the uncorrelation of X and Y.

Consider the case that X and Y are independent:

E(XY)= 2 xyf(xy)= 2, 2 i () (y)

(x,y)eD xeDy yeDy
= xf, (x){ yf, (y)} =E(X)E(Y).
ZD: y;? f(x,y)=f, (x)f, (Y

Therefore, cov(X,Y) = E(XY) — E(X)E(Y) = 0. — D=D,D,
Independent of 2 RVs = uncorrelation of 2 RVSs.

However, the converse is not true, that is to say, there exists
X and Y which are uncorrelated but not independent.



Example 2 ( uncorrelation doesn’t imply independence )
Let X and Y be RVs that take values (1,0), (0,1), (-1,0), (0,-1)

and with probability % as shown in the figure below.

y }(0,1) Q1 : what are the marginal pmf
(<1,0) (L0) of Xand Y?
'X Q2 : whatis Cov(X,Y)?
(0.-1) Q3 : Are Xand Y independent?

Solution: To find marginal pmf of X and Y, D, =D, ={-1,0,-1}.

1/4, x=1 (1/4, y=1
f(0=112, x=0 f,(y)=1Y2, y=0

1/4, x=-1 1/4, y=-1
Cov(X,Y)=E(XY)-E(X)E(Y)=0-0-0=0.

f, (0)f, (1) :%% :%;é f(0,1) :%: X and Y are not independent!



Definition | correlation coefficients
The correlation coefficients of X and Y that have nonzero variance

IS defined as
Cov(X,Y)

Jvar(X)Var(Y)

* |tis a normalized version of Cov(X,Y) andinfact—1<p <1

* Interpretation: p > 0 (or p < 0) indicate the values of X —
E(X)andY — E(Y) ‘tend’ to have the same(or opposite,
respectively) sign.

 p >0 (or p <0) have the same interpretation as Cov(X,Y) >
0 (or Cov(X,Y) < 0)

* The size of |p| provides a normalized measure of the extent to
which this is true.

* p=10rp = -1 ifand only if there exists a positive (or negative,
respectively) constant c such that

Y —E(Y)=c[X —E(X)]

p(X,Y) =



Example 3

Consider n independent tosses of a coin with probability of a head equal to p.
Let X and Y be the number if heads and of tails, respectively. Calculate the

correlation coefficient of X and .

Solution :
X+Y=n=EX)+E{Y)=n=X —E(X)=—[Y —E(Y)]

Cov(X,Y) =E[(X —E(X))(Y —E(Y))]=—E[ (Y —E(Y))? | =-Var(Y)
Var(X)=E| (X —E(X))* |=E[ (Y —E(Y))? | =Var(Y)
Cov(X,Y) B —Var(Y) _ 1

Nar(x)War(y) Nar(y)Nar(y)

= p(X,Y) =




Chapter 4 Bivariate Distributions

Section 4.3 CONDITIONAL DISTRIBUTIONS

» Motivation

« Let XandY have the joint pmff(x,y) : D — [0,1].
« The marginal pmf of X and Y are
fx(x): Dx - [0,1] and fy(y): Dy — [0,1].
« By definition,
fO,y)=PX=xY=y)2P({X=xY =y}
fx(x) =PX =x) £ P({X = x}) = Lyep, (X, ¥).
fr) =P =y) 2 PQRY =¥}) = Yxeny f (X, 1)
e LetA={X=x}, B={Y =y},
ANB={X=x}n{Y =y} 2{X=xY =y}

Recall the conditional probability of event A given event B Is

P(:\( Q)B) _ ffi?;;) (under the assumption f, (y) > 0).

P(A[B) =




Definition
Conditional pmf of X given Y=y is defined by
g(x|y) = (% y)’ provided that f, (y) >0
fy (y)
Similarly, conditional pmf of Y given that X=x is defined

h(y[) =Y provided that f, (x) >0
fy (%)

Example 1: Let the joint pmfof X and Y be defined by

f(x,y)z%, x=12,3, y=12.

We have shown

2
L= foy =Y Y 23103
yeD, a2l 21

3 X+ +2
f ()= f(xy)=>, 21y y y=12.
xeDy x=1

Then the conditional pmf of X givenY =y is

g(x|y) = f(x.y) :(X+yj/(y+2j: X+y . x=123 y=12.
fy (¥) 21 7 3(y+2)

and the conditional pmf of Y given X =x is

(y[x) = f(x,y)=(x+y)/(2x+3j= X+ Y 123
f. (X) 21 21 2X+3 o

<
Il

=
A



» Conditional pmfis a well-defined pmf

®  h(y]x)>0. f(x,y)=0if (x,y) & D.
> (X, y/
@ Z h(y‘X) _ Z f(X! y) _ yeby f (X) .
=y oy fx (%) f(0  f(x)

» Conditional mean and conditional variance
Let u(Y) be a function of Y. Then the conditional expectation of u(Y) is given by

EQU(Y)[X =x)= > u(y)h(y[x).

yeDy
When u(Y) =Y,
E(Y|X =x) = Z yh(y ). > Conditional mean
yeDy
When u(Y)=[Y —E(Y|X =x)], ____— Conditional variance

Var(Y |X = x) {[Y E(Y X =x)]'|X —x} S [y—E(Y|X =x) ] h(y[x).
yeDy

Example 1 (c.n.t.)

E(Y|X=3)=th(y|3 Z VT_%.
2 y+3 20
Var(Y|X = 3)_2[;/ E(Y|X = 3)] h(y[3) = Z(y——j 5 el



Section 4.4 Bivariate Distribution of continuous type

O Idea: (bivariate) discrete RV — (bivariate) continuous RV

Definition | joint probability density function (joint pdf)
Let X and Y be two continuous RVs. The function f (x, y): D —

[0, +00) Is called the joint probability density function (joint pdf)

of X if: T |
@D f(x,y)>0; (x,y)eD. Motivation: The outcome is a tuple of 2

scalars whose range are intervals or union
@ ” f(x,y)dxdy =1; of intervals

D
®  P[(X,Y)eA]=P({(x, y)eA}):”f(x, y)dxdy, AcD.
A
Remark :
Y <A [1Very often, we extend the definition domain of f (x, y) from D to Rx R by letting
| f(x,y) =0 for (x,y) & D and thus [ v | 7 (x, y)dxdy =1.
: o o

L X [1n this course, we only consider a special space A in the 3 of the definiton:
A is rectangular with its line segments parallel to the coordinate axis.

In this case, A= {(x, y) |a <x<b, c<Ly< d}.Then the double integral becomes

P((x,y) e A) =J.:Ld f (x, y)dydx.



Remark3:  Joint pdf can be seen as an extension of joint pmf by
extending the 'summation' to 'integral’.

O mass — density summation — integral
O pmf — pdf Mean

O joint pmf — joint pdf Variance

O marginal pmf — marginal pdf Covariance

O conditional pmf— conditional pdf Correlation

Definition | Marginal pdf
The marginal probability density function of X or Y Is defined by

f ()= f(x,y)dy: Dy —[0,+) £, (y) = j: f (x, y)dx: D, — [0, +)
x € D, ={all possible values of x in D}. y € D, ={all possible values of y in D}.
fy (X): R —[0,+00) by letting f, (x) =0 for x ¢ Dy | | f, (y): R — [0,+00) by letting f, (y) =0 fory ¢ D,

Definition | Mathematical expectation
Let u(X,Y) be a function of X and Y whose marginal pdf is given by
f (X, y). Thus the mathematical expectation of u(X,Y) is defined by

E[u(X,Y)]= j: jf:u(x, y) (X, y)dxdy



» When u(X,Y)=X,

EQ) = [0 77 xf (o y)dady = 77 xfy(x)dx.
> When u(X, Y)=(X—E(X))?,

Var(X) = [*2 [T2(EQ0)2f (e, y)dx dy = [ (X-EX)? fy (x)dx.
Example 1
Let X and Y have the joint pdf f (X, y) = %(1— Xy) with 0 <x<1, 0<y<1.

Compute f, (x), f, (y), E(X) and Var(X).
Solution:

R (=] Fxdy = [ 2 Ay =2 - 200G ¥ = 5020

f,(y) = : f(x,y)dx = _[01%(1— xy)dx = %(1—% y) <« Due to the symmetry.

+00 1 4 1 4 1 1 4
E(X):LO xf (x)dx:joxg(l_zx)dng[zxz (1)_6)(3‘(1)}25

13
162

Var(X) = f:[x— E(X)] f (x)dx = j:(x—g)z %(1—%x)dx —

You should verify the details by yourself!



Quiz
Let X and Y have the joint pdf f (x, y)=gx2(1—|y|) with —1<x<1, -1<y<l.

={(x,¥)[0<x<1,0<y<x}. Compute E(X) and P(A).

Solution:

3 3 3
00 =[S x @-IyDdy = [ > x*@-y)dy + [~ W+ y)dy

1 0
=§x2[y—£y2} +§x{y+1y2} S li3e 3
2 27 | 72 27 |, 2" T2 27 T2 2
1
E(X) = xf, (x)dx:jllgx?’dx{g x“} - 0.
-1

We have two ways to compute P(A):

P(A) = Hf(x y)dxdy = H 2 X*(L-|y|)dydx = H 2 x2(1-y)dydx = j[ X (y——y )}

1
= (—x?’——x“)dx:Px“—ixﬂ :i.
0°2 4 8 20 o 40

P(A) = [[ f(x, y)dydx = jjjjgxza—wbdxdy: ﬂga—wb} dy = jo(———xl [ypdy

Iy vy oy 1 Yoyt oy 1] 111
|| - -L4Zjdy=| - - 4oy =—-Z_—4
o| 2 2 272 27]. 710 8 4

9
40°

1
2



Definition | independent Continuous Variables
Two continuous variables X and Y are independent if and only if,

F(x,y) =t (¥) 1, (y), xeDy,yeDb,
Otherwise, X and Y are said to be dependent.

Example 1 (Revisited)

Since f (X, Y) :%(1—xy) ;«t{%(l—%x)}{%(l—%y)}: f, (x)f,(y), X andY are dependent.

Definition | Covariance and correlation coefficient
The covariance of X and Y iIs given by

Cov(X,Y) = E[(X —E(X))(Y —E(Y))]= E(XY)—E(X)E(Y),

where E(XY) = [ [ xyf (x, y)dxdy
The correlation coefficients Is defined as
Cov(X,Y
p(X.Y) = (X.7)

Jvar(X) Var(Y)




Let X and Y have the joint pdf f (, y) and marginal pdfs are fx(x) and f, (y).
Then the conditional pdf, mean, and variance of Y, given that X=x, are

h(y|x) = ff(x(’x? for f, (x) >0,

X

E(Y[X =x)= [ yh(y[x)dy.

Var(Y|[X =x)=E(Y-E(Y|X = x)]2|x = X) =j_+:(y—E(Y X = x))*h(y|x)dy
=E(Y2[X =x)-[E(Y|X =x) ]

Example 2
Let X and Y be continuous RVs that have
f(x,y)=2,0<x<y<]

Question:
(a)  Sketch the support of X and Y.
(b) Compute the marginal pmfs f, (x) and f, ().
(c) Compute the conditional pdf, conditional mean, conditional variance
of Y, given X = x.

3 7 1
d Compute P(= <Y <—|X =2).
(d) p (4 2 4)



Example 2 (c.n.t.) ty

: 17
. /
Solution: B

(a) The graph for the support of X and Y is listed righthand. | -

) L )=[ f(xy)dy= 1 f(X,y)dy =2(1—x) 0<x<1.
f ()= f(xy)dx= _'Oy f(x,y)dy =2y 0<y<Ll.

(€)  h(y[x)=

f(x y) 2 1

0<x<y<l.
f, (X) 2(1x) T1-x’

E(Y|X—x) j yh(y|x)dy jyﬁ y_ﬁ{%yﬂ :%(x+l).

Var(Y [X =x) = [y=E(Y|X =x)] h(y[x)dy

[ 1 | 1 1 L (1=X%)?
= _Z(x+D) | —dy=——| v=Z(1+x) | |* = .
Jx{y 2( )} 1—x 7 1—x[y 2( )} 12
3 ! 1 7/8 1 78 1 1 4 1
d PE<Y<—|X=)=["hyvDdy=[" ——dy==-x="==.
@ P 8‘ Db (y‘4) V=l i ¥ =5"37




Section Bivariate Normal Distribution

Let X and Y be two continuous RVs and have the joint pdf

f(%,Y) = exp[—lq(x y)}
| 270, Gy /1 p° 2

2 2
ahereq(x. 1)~ 1 Zl(x_ﬂxJ _Zp(x—uxj(y—mj{y—m) ]>o
—pP I U Oy Oy

Uy =E(X), 1, =E(Y), 0y :w/Var(X),aY :Q/Var(Y),p Is the correlation coefficient.
Then X and Y are said to be bivariate normal distributed.

» Property:
Given that Y =y is normal distribution, The probability distribution of X with mean

Ly +G—Xp(y—yY) and variance (1- p°)o? is given by
Oy

(o2
XY =y~N(uy +—=%p(y—u),(1- p*)o%).

Oy

Similarly,  Y|X =X~ N(g, +—X p(X— 1), (1= p?)52).

Oy



Example 1

Observe a group of college students, Let X and Y denote the grade points in high school
and the first year in college have a bivariate normal distribution with parameters
Uy =2.9 U, =2.4 o, =04 o, =0.5 p=0.8
Compute P(2.1<Y <3.3) and P(2.1<Y <3.3|X =3.2)

Solution:

21-24 Y -24 33-24
< <

P(2.1<Y <3.3) =P(
0.5 0.5 0.5

)= ®(1.8) — ®(-0.6) = 0.69

Note that Y |X =X~ N(g, +ﬂp(x—yx),(1—,02)0$),

Ox
when X =3.2, Y |X =3.2~N(2.7,0.09),
21-27 Y -27 3.3-2.7

v/0.09 ) +/0.09 ) v/0.09 )

— ®(2) — d(~2) = 0.95.

P(2.1<Y <3.3|X =3.2) = P(




Theorem [Bivariate Normal: Uncorrelation Implies Independence]
If X and Y have a bivariate normal distribution with correlation
coefficient p, then X and Y are independent if and only if p = 0.
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