ISyE 3770, Spring 2024 Statistics and Applications

Bivariate Probability Distribution

Instructor: Jie Wang
H. Milton Stewart School of Industrial and Systems Engineering Georgia Tech

jwang3163@gatech.edu
Office: ISyE Main 445

Chapter $4 \quad$ Bivariate Distributions

Section 4.1 Bivariate Distributions with the discrete type

$>$ Motivation

very often, the outcome of a random experiment is a tuple of several things of interests:

- Observe female college students to obtain information such as height \boldsymbol{x}, and weight y.
- Observe high school students to obtain information such as rank \boldsymbol{x}, and score of college entrance examination y.
$>$ In order to define joint probability mass function (joint pmf):
* Complete way :
(1)identify the Sample Space S;
(2)Define a $R V Z=\left[\begin{array}{l}X \\ Y\end{array}\right]: S \rightarrow Z(S)$;
(3)Define a pmf for $Z, f(z): Z(S) \rightarrow[0,1]$.

* Simplified way :

(1)Ignore the Sample Space S;
(2)Specify $Z(S)$ directly and denote it by D;
(3)Define the $p m f$ for $Z, f(z): D \rightarrow[0,1]$;

Definition [joint probability mass function (joint pmf)

Let X and Y be $2 R V \mathrm{~s}$. The probability that $X=x$ and $Y=y$ is denoted by $f(x, y)=P(X=x, Y=y)$.
The function $f(x, y)$: $\mathrm{D} \rightarrow[0,1]$ is called the joint probability mass function (joint pmf) of (X, Y) if:
(1) $0 \leq f(x, y) \leq 1$;
(2) $\sum_{(x, y) \in D} f(x, y)=1$;
(3) $P[(X, Y) \in A] \triangleq P(\{(x, y) \in A\})=\sum_{(x, y) \in A} f(x, y), \quad A \subseteq D$.

Example 1

Roll a pair of fair dice. The sample space contains 36 outcomes. And let X denote the smaller outcome and Y the larger outcome on the die.
For instance, if the outcome is (3,2), then $X=2, Y=3$.
Obviously, $\mathrm{P}(\{X=2, Y=3\})=1 / 36+1 / 36=2 / 36$.
$P(\{X=2, Y=2\})=1 / 36$.
Furthermore, the joint pmf of X and Y is: $f(x, y)= \begin{cases}1 / 36, & 1 \leq x=y \leq 6 \\ 2 / 36, & 1 \leq x<y \leq 6\end{cases}$

Definition [Marginal pmf

Let X and Y have the joint probability mass function $f(x, y): \mathrm{D} \rightarrow$ $[0,1]$. Sometimes we are interested in the pmf of X or Y alone, which is called the marginal probability mass function of X or Y and defined by

$$
\begin{array}{ll}
f_{X}(x)=\sum_{y \in D_{Y}} f(x, y)=P(X=x), & x \in D_{X}=\{\text { all possible values of } X \text { in } D\} . \\
f_{Y}(y)=\sum_{x \in D_{X}} f(x, y)=P(Y=y), & y \in D_{Y}=\{\text { all possible values of } Y \text { in } D\} .
\end{array}
$$

Definition [independent Random Variables

The random variables X and Y are independent if and only if, for every $x \in D_{X}$ and $y \in D_{Y}$,

$$
P(\underline{X}=\underline{x}, \underline{Y} \equiv \underline{y})=P(\underline{X}=\underline{x}) P(\underline{Y}=\underline{y})
$$

or equivalently, $A \cap B$
Event A Event B

$$
f(x, y)=f_{X}(x) f_{Y}(y)
$$

otherwise, X and Y are said to be dependent.

Example 2

Let the joint $p m f$ of X and Y be defined by

$$
f(x, y)=\frac{x+y}{21}, \quad x=1,2,3, \quad y=1,2 .
$$

Check if $R V X$ and Y are independent.
Solution:

$$
\begin{aligned}
& f_{X}(x)=\sum_{y \in D_{Y}} f(x, y)=\sum_{y=1}^{2} \frac{x+y}{21}=\frac{2 x+3}{21}, \quad x=1,2,3 . \\
& f_{Y}(y)=\sum_{x \in D_{X}} f(x, y)=\sum_{x=1}^{3} \frac{x+y}{21}=\frac{3 y+6}{21}, \quad y=1,2 . \\
& f(x, y)=\frac{x+y}{21} \neq \frac{2 x+3}{21} \cdot \frac{3 y+6}{21}=f_{X}(x) f_{Y}(y) \Rightarrow X \text { and } Y \text { are dependent. }
\end{aligned}
$$

What's the interpretation of $f_{X}(x)$ and $f_{Y}(y)$ and independence?
Consider the conditional pmf :
$f(y \mid x)=P(Y=y \mid X=x)=\frac{f(x, y)}{f_{X}(x)} ; f(x \mid y)=P(X=x \mid Y=y)=\frac{f(x, y)}{f_{Y}(x)}$

$>$ Expectation

Let X_{1} and X_{2} be discrete $R V$ with their joint $p m f f\left(x_{1}, x_{2}\right): \mathrm{D} \rightarrow[0,1]$. Consider a function $u\left(x_{1}, x_{2}\right)$ of x_{1} and x_{2}. Then:

Expectations of functions of bivariate RVs are computed just as with univariate $R V$ s.
(a) The mathematical expectation of $u\left(X_{1}, X_{2}\right)$, if exists, is given by

$$
E\left[u\left(X_{1}, X_{2}\right)\right]=\sum_{\left(x_{1}, x_{2}\right) \in D} u\left(x_{1}, x_{2}\right) f\left(x_{1}, x_{2}\right) .
$$

(b) If $u_{i}\left(X_{1}, X_{2}\right)=X_{i}$ for $i=1,2$, then $\quad E(X)=\sum_{(x, y) \in \bar{S}} x f(x, y)=\sum_{x \in \bar{S}_{X}} x f_{X}(x)$.

$$
E\left[u_{i}\left(X_{1}, X_{2}\right)\right]=E\left(X_{i}\right)=u_{i}
$$

is called the mean of X_{i} for $i=1,2$.
(c) If $u_{i}\left(X_{1}, X_{2}\right)=\left(X_{i}-u_{i}\right)^{2}$ for $i=1,2$, then

$$
E\left[u_{i}\left(X_{1}, X_{2}\right)\right]=E\left[\left(X_{i}-u_{i}\right)^{2}\right]=\sigma_{i}^{2}=\operatorname{Var}\left(X_{i}\right)
$$

is called the variance of X_{i} for $i=1,2$.

Example 1 - revisited

Recall that X and Y are discrete $R V s$ with joint $p m f$ $f(X, Y): \mathrm{D} \rightarrow[0,1]$ with $D_{X}=D_{Y}=\{1,2,3,4,5,6\}$

$$
f(x, y)= \begin{cases}2 / 36, & 1 \leq x<y \leq 6 \\ 1 / 36, & 1 \leq x=y \leq 6\end{cases}
$$

Compute $E(X+Y)$:

Solution:

$$
\begin{gathered}
E(X+Y)=\sum_{(x, y) \in D}(x+y) f(x, y)=\sum_{1 \leq x y \leq 6}(x+y) \cdot \frac{1}{36}+\sum_{1 \leq x x y \leq 6}(x+y) \frac{2}{36} \\
=\sum_{x=1}^{6} 2 x \cdot \frac{1}{36}+\sum_{x=1}^{6} \sum_{y=x+1}^{6}(x+y) \cdot \frac{2}{36}=\frac{252}{36} .
\end{gathered}
$$

Work it by yourself!

Chapter 4
Section 4.2

Bivariate Distributions

The correlation coefficient
recall that for $u(X, Y)$, its expectation $E[u(X, Y)]=\sum_{(x, y) \in D} u(x, y) f(x, y)$.
Definition [Covariance of \mathbf{X} and \mathbf{Y}]
Take $u(X, Y)=[X-E(X)][Y-E(Y)]$

$$
E[(X-E(X))(Y-E(Y))]=\operatorname{Cov}(X, Y),
$$ which is called the covariance of X and Y.

- $\operatorname{Cov}(X, Y)=E(X Y)-E(X) E(Y) \longrightarrow$ Verify it by yourself!

When $\operatorname{Cov}(X, Y)=0$, we say X and Y are uncorrelated.

- Interpretation: Roughly speaking, a positive or negative covariance indicates that the values of $X-E(X)$ and $Y-E(Y)$ obtained in a single experiment 'tend' to have the same or the opposite sign.

Example 1: Demonstration of positively correlated and negatively correlated RVs Assume that X and Y are uniformly distributed over the ellipses.

positively correlated

negatively correlated

Independence of X and Y could imply the uncorrelation of X and Y.
Consider the case that X and Y are independent:

$$
\begin{aligned}
E(X Y) & =\sum_{(x, y) \in D} x y f(x, y)=\sum_{x \in D_{X}} \sum_{y \in D_{Y}} x y f_{X}(x) f_{Y}(y) \\
& =\sum_{x \in D_{X}} x f_{X}(x)\left[\sum_{y \in D_{Y}} y f_{Y}(y)\right]=E(X) E(Y)
\end{aligned}
$$

Therefore, $\operatorname{cov}(X, Y)=E(X Y)-E(X) E(Y)=0$.

$$
\begin{aligned}
& f(x, y)=f_{X}(x) f_{Y}(y) \\
& \Rightarrow D=D_{X} D_{Y}
\end{aligned}
$$

Independent of $2 \mathrm{RVs} \Rightarrow$ uncorrelation of 2 RVs .
However, the converse is not true, that is to say, there exists X and Y which are uncorrelated but not independent.

Example 2 (uncorrelation doesn't imply independence)
Let X and Y be RVs that take values $(1,0),(0,1),(-1,0),(0,-1)$ and with probability $\frac{1}{4}$, as shown in the figure below.

Solution: \quad To find marginal pmf of X and $Y, D_{X}=D_{Y}=\{-1,0,-1\}$.
$f_{X}(x)=\left\{\begin{array}{ll}1 / 4, & x=1 \\ 1 / 2, & x=0 \\ 1 / 4, & x=-1\end{array}, \quad f_{Y}(y)= \begin{cases}1 / 4, & y=1 \\ 1 / 2, & y=0 \\ 1 / 4, & y=-1\end{cases}\right.$
$\operatorname{Cov}(X, Y)=E(X Y)-E(X) E(Y)=0-0 \cdot 0=0$.
$f_{X}(0) f_{Y}(1)=\frac{1}{2} \cdot \frac{1}{4}=\frac{1}{8} \neq f(0,1)=\frac{1}{4} \Rightarrow X$ and Y are not independent !

Definition [correlation coefficients]

The correlation coefficients of X and Y that have nonzero variance is defined as

$$
\rho(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X)} \sqrt{\operatorname{Var}(Y)}} .
$$

- It is a normalized version of $\operatorname{Cov}(X, Y)$ and in fact $-1 \leq \rho \leq 1$
- Interpretation: $\rho>0($ or $\rho<0)$ indicate the values of $X-$ $E(X)$ and $Y-E(Y)$ 'tend' to have the same(or opposite, respectively) sign.
- $\rho>0$ (or $\rho<0)$ have the same interpretation as $\operatorname{Cov}(X, Y)>$ 0 (or $\operatorname{Cov}(X, Y)<0)$
- The size of $|\rho|$ provides a normalized measure of the extent to which this is true.
- $\rho=1$ or $\rho=-1$ if and only if there exists a positive (or negative, respectively) constant c such that

$$
Y-E(Y)=c[X-E(X)]
$$

Example 3

Consider n independent tosses of a coin with probability of a head equal to p. Let X and Y be the number if heads and of tails, respectively. Calculate the correlation coefficient of \boldsymbol{X} and \boldsymbol{Y}.

Solution:

$$
\begin{aligned}
& X+Y=n \Rightarrow E(X)+E(Y)=n \Rightarrow X-E(X)=-[Y-E(Y)] \\
& \operatorname{Cov}(X, Y)=E[(X-E(X))(Y-E(Y))]=-E\left[(Y-E(Y))^{2}\right]=-\operatorname{Var}(Y) \\
& \operatorname{Var}(X)=E\left[(X-E(X))^{2}\right]=E\left[(Y-E(Y))^{2}\right]=\operatorname{Var}(Y) \\
& \Rightarrow \rho(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X)} \sqrt{\operatorname{Var}(Y)}}=\frac{-\operatorname{Var}(Y)}{\sqrt{\operatorname{Var}(Y)} \sqrt{\operatorname{Var}(Y)}}=-1 .
\end{aligned}
$$

Chapter 4
 Bivariate Distributions

Section 4.3 CONDITIONAL DISTRIBUTIONS

$>$ Motivation

- Let X and Y have the joint $\operatorname{pmf} f(x, y): \mathrm{D} \rightarrow[0,1]$.
- The marginal pmf of X and Y are

$$
f_{X}(x): D_{X} \rightarrow[0,1] \text { and } f_{Y}(y): D_{Y} \rightarrow[0,1] .
$$

- By definition,

$$
\begin{gathered}
f(x, y)=P(X=x, Y=y) \triangleq P(\{X=x, Y=y\}) . \\
f_{X}(x)=P(X=x) \triangleq P(\{X=x\})=\sum_{y \in D_{Y}} f(x, y) . \\
f_{Y}(y)=P(Y=y) \triangleq P(\{Y=y\})=\sum_{x \in D_{X}} f(x, y) .
\end{gathered}
$$

- Let $A=\{X=x\}, B=\{Y=y\}$,

$$
A \cap B=\{X=x\} \cap\{Y=y\} \triangleq\{X=x, Y=y\} .
$$

Recall the conditional probability of event A given event B is

$$
\left.P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{f(x, y)}{f_{Y}(y)} \text { (under the assumption } f_{Y}(y)>0\right) .
$$

Definition [conditional probability mass function]

Conditional pmf of \boldsymbol{X} given $Y=y$ is defined by

$$
g(x \mid y)=\frac{f(x, y)}{f_{Y}(y)}, \quad \text { provided that } f_{Y}(y)>0
$$

Similarly, conditional pmf of \boldsymbol{Y} given that $X=x$ is defined

$$
h(y \mid x)=\frac{f(x, y)}{f_{X}(x)}, \quad \text { provided that } f_{X}(x)>0
$$

Example 1: Let the joint $p m f$ of X and Y be defined by

$$
f(x, y)=\frac{x+y}{21}, \quad x=1,2,3, \quad y=1,2 .
$$

We have shown

$$
\begin{aligned}
f_{X}(x)=\sum_{y \in D_{Y}} f(x, y)=\sum_{y=1}^{2} \frac{x+y}{21}=\frac{2 x+3}{21}, & x=1,2,3 . \\
f_{Y}(y)=\sum_{x \in D_{X}} f(x, y)=\sum_{x=1}^{3} \frac{x+y}{21}=\frac{y+2}{7}, & y=1,2 .
\end{aligned}
$$

Then the conditional pmf of X given $Y=y$ is

$$
g(x \mid y)=\frac{f(x, y)}{f_{Y}(y)}=\left(\frac{x+y}{21}\right) /\left(\frac{y+2}{7}\right)=\frac{x+y}{3(y+2)}, \quad x=1,2,3 \quad y=1,2 .
$$

and the conditional pmf of Y given $X=x$ is

$$
h(y \mid x)=\frac{f(x, y)}{f_{X}(x)}=\left(\frac{x+y}{21}\right) /\left(\frac{2 x+3}{21}\right)=\frac{x+y}{2 x+3}, \quad x=1,2,3 \quad y=1,2 .
$$

$>$ Conditional $p m f$ is a well-defined $p m f$
(1) $h(y \mid x) \geq 0$.

$$
h(y \mid x) \geq 0
$$

$$
f(x, y)=0 \text { if }(x, y) \notin D
$$

(2) $\sum_{y \in D_{Y}} h(y \mid x)=\sum_{y \in D_{Y}} \frac{f(x, y)}{f_{X}(x)}=\frac{\sum_{y \in D_{Y}} f(x, y)}{f_{X}(x)}=\frac{f_{X}(x)}{f_{X}(x)}=1$.
$>$ Conditional mean and conditional variance
Let $u(Y)$ be a function of Y. Then the conditional expectation of $u(Y)$ is given by

$$
E(u(Y) \mid X=x)=\sum_{y \in D_{Y}} u(y) h(y \mid x) .
$$

When $u(Y)=Y$,

$$
E(Y \mid X=x)=\sum_{y \in D_{Y}} y h(y \mid x) \longrightarrow \text { Conditional mean }
$$

When $u(Y)=[Y-E(Y \mid X=x)]^{2}$,

Conditional variance

$$
\operatorname{Var}(Y \mid X=x) \triangleq E\left\{[Y-E(Y \mid X=x)]^{2} \mid X=x\right\}=\sum_{y \in D_{Y}}[y-E(Y \mid X=x)]^{2} h(y \mid x)
$$

Example 1 (c.n.t.)

$$
\begin{aligned}
& E(Y \mid X=3)=\sum_{y \in D_{Y}} y h(y \mid 3)=\sum_{y=1}^{2} y \cdot \frac{y+3}{9}=\frac{14}{9} . \\
& \operatorname{Var}(Y \mid X=3)=\sum_{y \in D_{y}}[y-E(Y \mid X=3)]^{2} h(y \mid 3)=\sum_{y=1}^{2}\left(y-\frac{14}{9}\right)^{2} \cdot \frac{y+3}{9}=\frac{20}{81} .
\end{aligned}
$$

Section 4.4 Bivariate Distribution of continuous type
\square Idea: (bivariate) discrete RV \rightarrow (bivariate) continuous RV
Definition [joint probability density function (joint pdf) Let X and Y be two continuous $R V$ s. The function $f(x, y): \mathrm{D} \rightarrow$ $[0,+\infty$) is called the joint probability density function (joint $p d f$) of X if:
(1) $\quad f(x, y) \geq 0 ; \quad(x, y) \in D$.
(2)
$\iint_{D} f(x, y) d x d y=1 ; \quad$ of intervals
$P[(X, Y) \in A] \triangleq P(\{(x, y) \in A\})=\iint_{A} f(x, y) d x d y, \quad A \subseteq D$.

Remark :

\square Very often, we extend the definition domain of $f(x, y)$ from D to $R \times R$ by letting $f(x, y)=0$ for $(x, y) \notin D$ and thus $\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) d x d y=1$.
$x \square$ In this course, we only consider a special space A in the (3) of the definiton:
A is rectangular with its line segments parallel to the coordinate axis.
In this case, $A=\{(x, y) \mid a \leq x \leq b, c \leq y \leq d\}$. Then the double integral becomes

$$
P((x, y) \in A)=\int_{a}^{b} \int_{c}^{d} f(x, y) d y d x .
$$

Remark3: Joint pdf can be seen as an extension of joint pmf by extending the 'summation' to 'integral'.
\square mass \rightarrow density
$\square \mathrm{pmf} \rightarrow \mathrm{pdf}$
\square joint pmf \rightarrow joint pdf
\square marginal pmf \rightarrow marginal pdf
\square conditional pmf \rightarrow conditional pdf
summation \rightarrow integral

Mean
Variance
Covariance
Correlation

Definition [Marginal pdf

The marginal probability density function of X or Y is defined by
$f_{X}(x)=\int_{-\infty}^{+\infty} f(x, y) d y: D_{X} \rightarrow[0,+\infty)$

$$
x \in D_{X}=\{\text { all possible values of } x \text { in } D\} .
$$

$f_{X}(x): R \rightarrow[0,+\infty)$ by letting $f_{X}(x)=0$ for $x \notin D_{X}$

$$
\begin{aligned}
f_{Y}(y)= & \int_{-\infty}^{+\infty} f(x, y) d x: D_{Y} \rightarrow[0,+\infty) \\
& y \in D_{Y}=\{\text { all possible values of } y \text { in } D\} . \\
f_{Y}(y): & R \rightarrow[0,+\infty) \text { by letting } f_{Y}(y)=0 \text { for } y \notin D_{Y}
\end{aligned}
$$

Definition [Mathematical expectation]

Let $u(X, Y)$ be a function of X and Y whose marginal pdf is given by $f(x, y)$. Thus the mathematical expectation of $u(X, Y)$ is defined by

$$
E[u(X, Y)]=\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} u(x, y) f(x, y) d x d y
$$

$>$ When $u(X, Y)=X$,

$$
E(X)=\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x f(x, y) d x d y=\int_{-\infty}^{+\infty} x f_{X}(x) d x
$$

$>$ When $u(X, Y)=(X-E(X))^{2}$,
$\operatorname{Var}(X)=\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty}(X-E(X))^{2} f(x, y) d x d y=\int_{-\infty}^{+\infty}\left(X-E(X)^{2} f_{X}(x) d x\right.$.

Example 1

Let X and Y have the joint $\operatorname{pdf} f(x, y)=\frac{4}{3}(1-x y)$ with $0 \leq x \leq 1,0 \leq y \leq 1$.
Compute $f_{X}(x), f_{Y}(y), E(X)$ and $\operatorname{Var}(X)$.
Solution:

$$
\begin{aligned}
& f_{X}(x)=\int_{-\infty}^{+\infty} f(x, y) d y=\int_{0}^{1} \frac{4}{3}(1-x y) d y=\frac{4}{3}-\left.\frac{4}{3}(x)\left(\frac{1}{2} y^{2}\right)\right|_{0} ^{1}=\frac{4}{3}\left(1-\frac{1}{2} x\right) \\
& f_{Y}(y)=\int_{-\infty}^{+\infty} f(x, y) d x=\int_{0}^{1} \frac{4}{3}(1-x y) d x=\frac{4}{3}\left(1-\frac{1}{2} y\right) \quad \leftarrow \text { Due to the symmetry. } \\
& E(X)=\int_{-\infty}^{+\infty} x f_{X}(x) d x=\int_{0}^{1} x \frac{4}{3}\left(1-\frac{1}{2} x\right) d x=\frac{4}{3}\left[\left.\frac{1}{2} x^{2}\right|_{0} ^{1}-\left.\frac{1}{6} x^{3}\right|_{0} ^{1}\right]=\frac{4}{9} \\
& \operatorname{Var}(X)=\int_{-\infty}^{+\infty}[x-E(X)]^{2} f_{X}(x) d x=\int_{0}^{1}\left(x-\frac{4}{9}\right)^{2} \frac{4}{3}\left(1-\frac{1}{2} x\right) d x=\frac{13}{162}
\end{aligned}
$$

Quiz

Let X and Y have the joint $\operatorname{pdf} f(x, y)=\frac{3}{2} x^{2}(1-|y|)$ with $-1<x<1,-1<y<1$. $A=\{(x, y) \mid 0<x<1,0<y<x\}$. Compute $E(X)$ and $P(A)$.

Solution:

$$
\begin{aligned}
f_{X}(x)=\int_{-1}^{1} \frac{3}{2} x^{2}(1-|y|) d y & =\int_{0}^{1} \frac{3}{2} x^{2}(1-y) d y+\int_{-1}^{0} \frac{3}{2} x^{2}(1+y) d y \\
& =\frac{3}{2} x^{2}\left[y-\frac{1}{2} y^{2}\right]_{0}^{1}+\frac{3}{2} x^{2}\left[y+\frac{1}{2} y^{2}\right]_{-1}^{0}=\frac{3}{2} x^{2} \times \frac{1}{2}+\frac{3}{2} x^{2} \times \frac{1}{2}=\frac{3}{2} x^{2} .
\end{aligned}
$$

$E(X)=\int_{-1}^{1} x f_{X}(x) d x=\int_{-1}^{1} \frac{3}{2} x^{3} d x=\left[\frac{3}{8} x^{4}\right]_{-1}^{1}=0$.
We have two ways to compute $P(A)$:

$$
\begin{aligned}
& P(A)=\iint_{A} f(x, y) d x d y=\int_{0}^{1} \int_{0}^{x} \frac{3}{2} x^{2}(1-|y|) d y d x=\int_{0}^{1} \int_{0}^{x} \frac{3}{2} x^{2}(1-y) d y d x=\int_{0}^{1}\left[\frac{3}{2} x^{2}\left(y-\frac{1}{2} y^{2}\right)\right]_{0}^{x} d x \\
& =\int_{0}^{1}\left(\frac{3}{2} x^{3}-\frac{3}{4} x^{4}\right) d x=\left[\frac{3}{8} x^{4}-\frac{3}{20} x^{5}\right]_{0}^{1}=\frac{9}{40} . \\
& \left.P(A)=\iint_{A} f(x, y) d y d x=\int_{0}^{1} \int_{y}^{1} \frac{3}{2} x^{2}(1-|y|) d x d y=\int_{0}^{1}\left[\frac{x^{3}}{2}(1-|y|)\right]_{y}^{1} d y=\int_{0}^{1}\left(\frac{1}{2}-\frac{y^{3}}{2}\right)(1-|y|) d y\right]_{0} \\
& =\int_{0}^{1}\left[\frac{y^{4}}{2}-\frac{y^{3}}{2}-\frac{y}{2}+\frac{1}{2}\right] d y=\left[\frac{y^{5}}{10}-\frac{y^{4}}{8}-\frac{y^{2}}{4}+\frac{1}{2} y\right]_{0}^{1}=\frac{1}{10}-\frac{1}{8}-\frac{1}{4}+\frac{1}{2}=\frac{9}{40} .
\end{aligned}
$$

Definition [independent Continuous Variables
Two continuous variables X and Y are independent if and only if,

$$
f(x, y)=f_{X}(x) f_{Y}(y), \quad x \in D_{X}, y \in D_{Y}
$$

Otherwise, X and Y are said to be dependent.

Example 1 (Revisited)

Since $f(x, y)=\frac{4}{3}(1-x y) \neq\left[\frac{4}{3}\left(1-\frac{1}{2} x\right)\right]\left[\frac{4}{3}\left(1-\frac{1}{2} y\right)\right]=f_{X}(x) f_{Y}(y), X$ and Y are dependent.

Definition [Covariance and correlation coefficient]

The covariance of X and Y is given by

$$
\begin{gathered}
\operatorname{Cov}(X, Y)=E[(X-E(X))(Y-E(Y))]=E(X Y)-E(X) E(Y), \\
\quad \text { where } E(X Y)=\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x y f(x, y) d x d y
\end{gathered}
$$

The correlation coefficients is defined as

$$
\rho(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X)} \sqrt{\operatorname{Var}(Y)}} .
$$

Definition 4.4-6 [conditional probability density function]

Let X and Y have the joint $\operatorname{pdf} f(x, y)$ and marginal pdfs are $f_{X}(x)$ and $f_{Y}(y)$. Then the conditional pdf, mean, and variance of Y, given that $X=x$, are

$$
\begin{aligned}
& h(y \mid x)=\frac{f(x, y)}{f_{X}(x)} \text { for } f_{X}(x)>0, \\
& E(Y \mid X=x)=\int_{-\infty}^{+\infty} y h(y \mid x) d y, \\
& \begin{aligned}
\operatorname{Var}(Y \mid X=x) & =E\left([Y-E(Y \mid X=x)]^{2} \mid X=x\right)=\int_{-\infty}^{+\infty}(y-E(Y \mid X=x))^{2} h(y \mid x) d y \\
& =E\left(Y^{2} \mid X=x\right)-[E(Y \mid X=x)]^{2}
\end{aligned}
\end{aligned}
$$

Example 2

Let X and Y be continuous $R V s$ that have

$$
f(x, y)=2,0 \leq x \leq y \leq 1,
$$

Question:
(a) Sketch the support of X and Y.
(b) Compute the marginal pmfs $f_{X}(x)$ and $f_{Y}(y)$.
(c) Compute the conditional pdf, conditional mean, conditional variance of Y, given $X=x$.
(d) Compute $P\left(\left.\frac{3}{4} \leq Y \leq \frac{7}{8} \right\rvert\, X=\frac{1}{4}\right)$.

Example 2 (c.n.t.)

Solution:
(a) The graph for the support of X and Y is listed righthand.
(b)

$$
\begin{array}{ll}
\text { (b) } \quad f_{X}(x)=\int_{-\infty}^{+\infty} f(x, y) d y=\int_{x}^{1} f(x, y) d y=2(1-x) \quad 0 \leq x \leq 1 \\
& f_{Y}(y)=\int_{-\infty}^{+\infty} f(x, y) d x=\int_{0}^{y} f(x, y) d y=2 y \\
\text { (c) } \quad h(y \mid x)=\frac{f(x, y)}{f_{X}(x)}=\frac{2}{2(1-x)}=\frac{1}{1-x}, \quad 0 \leq x \leq y \leq 1 . \\
& E(Y \mid X=x)=\int_{-\infty}^{+\infty} y h(y \mid x) d y=\int_{x}^{1} y \frac{1}{1-x} d y=\frac{1}{1-x}\left[\frac{1}{2} y^{2}\right]_{x}^{1}=\frac{1}{2}(x+1) .
\end{array}
$$

$\operatorname{Var}(Y \mid X=x)=\int_{-\infty}^{+\infty}[y-E(Y \mid X=x)]^{2} h(y \mid x) d y$

$$
=\int_{x}^{1}\left[y-\frac{1}{2}(x+1)\right]^{2} \frac{1}{1-x} d y=\left.\frac{1}{1-x}\left[y-\frac{1}{2}(1+x)\right]^{3}\right|_{x} ^{1}=\frac{(1-x)^{2}}{12} .
$$

(d) $\quad P\left(\left.\frac{3}{4} \leq Y \leq \frac{7}{8} \right\rvert\, X=\frac{1}{4}\right)=\int_{3 / 4}^{7 / 8} h\left(y \left\lvert\, \frac{1}{4}\right.\right) d y=\int_{3 / 4}^{7 / 8} \frac{1}{1-1 / 4} d y=\frac{1}{8} \times \frac{4}{3}=\frac{1}{6}$.

Section 4.5 Bivariate Normal Distribution

Definition [Bivariate Normal]

Let X and Y be two continuous $R V s$ and have the joint pdf

$$
f(x, y)=\frac{1}{2 \pi \sigma_{X} \sigma_{Y} \sqrt{1-p^{2}}} \exp \left[-\frac{1}{2} q(x, y)\right]
$$

where $q(x, y)=\frac{1}{1-\rho^{2}}\left[\left(\frac{x-\mu_{X}}{\sigma_{X}}\right)^{2}-2 \rho\left(\frac{x-\mu_{X}}{\sigma_{X}}\right)\left(\frac{y-\mu_{Y}}{\sigma_{Y}}\right)+\left(\frac{y-\mu_{Y}}{\sigma_{Y}}\right)^{2}\right] \geq 0$
$\mu_{X}=E(X), \mu_{Y}=E(Y), \sigma_{X}=\sqrt{\operatorname{Var}(X)}, \sigma_{Y}=\sqrt{\operatorname{Var}(Y)}, \rho$ is the correlation coefficient.
Then X and Y are said to be bivariate normal distributed.
$>$ Property:
Given that $Y=y$ is normal distribution, The probability distribution of X with mean $\mu_{X}+\frac{\sigma_{X}}{\sigma_{Y}} \rho\left(y-\mu_{Y}\right)$ and variance $\left(1-\rho^{2}\right) \sigma_{X}^{2}$ is given by

$$
X \left\lvert\, Y=y \sim N\left(\mu_{X}+\frac{\sigma_{X}}{\sigma_{Y}} \rho\left(y-\mu_{Y}\right),\left(1-\rho^{2}\right) \sigma_{X}^{2}\right) .\right.
$$

Similarly, $\quad Y \left\lvert\, X=x \sim N\left(\mu_{Y}+\frac{\sigma_{Y}}{\sigma_{X}} \rho\left(x-\mu_{X}\right),\left(1-\rho^{2}\right) \sigma_{Y}^{2}\right)\right.$.

Example 1

Observe a group of college students, Let X and Y denote the grade points in high school and the first year in college have a bivariate normal distribution with parameters
$\mu_{X}=2.9$
$\mu_{Y}=2.4$
$\sigma_{X}=0.4$
$\sigma_{Y}=0.5$
$\rho=0.8$

Compute $P(2.1<Y<3.3)$ and $P(2.1<Y<3.3 \mid X=3.2)$

Solution:

$$
P(2.1<Y<3.3)=P\left(\frac{2.1-2.4}{0.5}<\frac{Y-2.4}{0.5}<\frac{3.3-2.4}{0.5}\right)=\Phi(1.8)-\Phi(-0.6)=0.69
$$

Note that $Y \left\lvert\, X=x \sim N\left(\mu_{Y}+\frac{\sigma_{Y}}{\sigma_{X}} \rho\left(x-\mu_{X}\right),\left(1-\rho^{2}\right) \sigma_{Y}^{2}\right)\right.$,
when $X=3.2, Y \mid X=3.2 \sim N(2.7,0.09)$,

$$
\begin{aligned}
P(2.1<Y<3.3 \mid X=3.2) & =P\left(\frac{2.1-2.7}{\sqrt{0.09}}<\frac{Y-2.7}{\sqrt{0.09}}<\frac{3.3-2.7}{\sqrt{0.09}}\right) \\
= & \Phi(2)-\Phi(-2)=0.95
\end{aligned}
$$

Theorem [Bivariate Normal: Uncorrelation Implies Independence] If X and Y have a bivariate normal distribution with correlation coefficient ρ, then X and Y are independent if and only if $\rho=0$.

