ISyE 3770, Spring 2024 Statistics and Applications

Bivariate Probability Distribution

Instructor: Jie Wang
H. Milton Stewart School of
Industrial and Systems Engineering
Georgia Tech

jwang3163@gatech.edu Office: ISyE Main 445

Chapter 4 Bivariate Distributions

Section 4.1 Bivariate Distributions with the discrete type

Motivation

very often, the outcome of a random experiment is a **tuple** of several things of interests:

- Observe female college students to obtain information such as *height x*, and *weight y*.
- Observe high school students to obtain information such as *rank x*, and *score of college entrance examination y*.

> In order to define joint probability mass function (joint pmf):

* Complete way:

①identify the Sample Space *S*;

②Define a
$$RV Z = \begin{bmatrix} X \\ Y \end{bmatrix} : S \to Z(S);$$

③ Define a *pmf* for Z, $f(z): Z(S) \rightarrow [0,1]$.

* Simplified way:

- ①Ignore the Sample Space *S*;
- ②Specify Z(S) directly and denote it by D;
- ③Define the *pmf* for Z, $f(z): D \rightarrow [0,1]$;

equivalently, for
$$\begin{bmatrix} X \\ Y \end{bmatrix}$$
, $f(x, y): D \rightarrow [0, 1]$.

Definition [joint probability mass function (joint pmf)]

Let *X* and *Y* be 2 *RV*s. The probability that X = x and Y = y is denoted by f(x, y) = P(X = x, Y = y).

The function f(x, y): D \rightarrow [0,1] is called the **joint probability mass** function (**joint** *pmf*) of (*X*, *Y*) *if*:

$$10 \le f(x, y) \le 1;$$

$$2 \sum_{(x,y)\in D} f(x,y) = 1;$$

Example 1

Roll a pair of fair dice. The sample space contains 36 outcomes. And let *X* denote the smaller outcome and *Y* the larger outcome on the die.

For instance, if the outcome is (3,2), then X=2, Y=3.

Obviously,
$$P({X = 2, Y = 3}) = 1/36 + 1/36 = 2/36$$
.

$$P({X = 2, Y = 2}) = 1/36.$$

Furthermore, the *joint pmf* of *X* and *Y* is:
$$f(x, y) = \begin{cases} 1/36, & 1 \le x = y \le 6 \\ 2/36, & 1 \le x < y \le 6 \end{cases}$$

Definition [Marginal *pmf*]

Let X and Y have the joint probability mass function $f(x, y) : D \rightarrow [0,1]$. Sometimes we are interested in the pmf of X or Y alone, which is called the **marginal probability mass function of** X or Y and defined by

$$f_X(x) = \sum_{y \in D_Y} f(x, y) = P(X = x), \qquad x \in D_X = \{\text{all possible values of } X \text{ in } D\}.$$

$$f_X(y) = \sum_{y \in D_Y} f(x, y) = P(Y = y), \qquad y \in D_X = \{\text{all possible values of } Y \text{ in } D\}.$$

$$f_Y(y) = \sum_{x \in D_X} f(x, y) = P(Y = y),$$
 $y \in D_Y = \{\text{all possible values of } Y \text{ in } D\}.$

Definition [independent Random Variables]

The random variables X and Y are **independent** if and only if, for every $x \in D_X$ and $y \in D_Y$,

$$P(\underline{X} = \underline{x}, \underline{Y} = \underline{y}) = P(\underline{X} = \underline{x})P(\underline{Y} = \underline{y})$$
 or equivalently, $A \cap B$ Event A $f(x, y) = f_X(x)f_Y(y)$.

otherwise, *X* and *Y* are said to be **dependent**.

Example 2

Let the joint *pmf* of X and Y be defined by

$$f(x, y) = \frac{x + y}{21},$$
 $x = 1, 2, 3,$ $y = 1, 2.$

Check if *RV X* and *Y* are independent.

Solution:

$$f_X(x) = \sum_{y \in D_Y} f(x, y) = \sum_{y=1}^2 \frac{x+y}{21} = \frac{2x+3}{21}, \qquad x = 1, 2, 3.$$

$$f_Y(y) = \sum_{x \in D_X} f(x, y) = \sum_{x=1}^3 \frac{x+y}{21} = \frac{3y+6}{21}, \qquad y = 1, 2.$$

$$f(x, y) = \frac{x+y}{21} \neq \frac{2x+3}{21} \cdot \frac{3y+6}{21} = f_X(x)f_Y(y) \Rightarrow X \text{ and } Y \text{ are dependent.}$$

What's the interpretation of $f_X(x)$ and $f_Y(y)$ and independence?

Consider the *conditional pmf*:

$$f(y|x) = P(Y = y|X = x) = \frac{f(x,y)}{f_X(x)}; f(x|y) = P(X = x|Y = y) = \frac{f(x,y)}{f_Y(x)}$$

> Expectation

Let X_1 and X_2 be discrete RV with their joint pmf $f(x_1, x_2) : D \rightarrow [0,1]$. Consider a function $u(x_1, x_2)$ of x_1 and x_2 . Then:

Expectations of functions of bivariate RVs are computed just as with univariate RVs.

(a) The **mathematical expectation** of $u(X_1, X_2)$, if exists, is given by

$$E[u(X_1, X_2)] = \sum_{(x_1, x_2) \in D} u(x_1, x_2) f(x_1, x_2).$$

(b) If
$$u_i(X_1, X_2) = X_i$$
 for $i = 1, 2$, then
$$E[u_i(X_1, X_2)] = E[X_i] = \sum_{(x, y) \in \overline{S}} x f(x, y) = \sum_{x \in \overline{S_X}} x f_X(x).$$

$$E[u_i(X_1, X_2)] = E[X_i] = u_i$$

is called the **mean** of X_i for i = 1, 2.

(c) If
$$u_i(X_1, X_2) = (X_i - u_i)^2$$
 for $i = 1, 2$, then
$$E[u_i(X_1, X_2)] = E[(X_i - u_i)^2] = \sigma_i^2 = Var(X_i)$$

is called the **variance** of X_i for i = 1, 2.

Example 1 - revisited

Recall that *X* and *Y* are discrete *RVs* with joint *pmf* $f(X,Y): D \to [0,1] \text{ with } D_X = D_Y = \{1, 2, 3, 4, 5, 6\}$ $f(x,y) = \begin{cases} 2/36, & 1 \le x < y \le 6 \\ 1/36, & 1 \le x = y \le 6 \end{cases}$

Compute E(X+Y):

Solution:

$$E(X+Y) = \sum_{(x,y)\in D} (x+y)f(x,y) = \sum_{1\le x=y\le 6} (x+y) \cdot \frac{1}{36} + \sum_{1\le x
$$= \sum_{x=1}^{6} 2x \cdot \frac{1}{36} + \sum_{x=1}^{6} \sum_{y=x+1}^{6} (x+y) \cdot \frac{2}{36} = \frac{252}{36}.$$$$

Work it by yourself!

Chapter 4

Bivariate Distributions

Section 4.2

The correlation coefficient

recall that for
$$u(X,Y)$$
, its expectation $E[u(X,Y)] = \sum_{(x,y)\in D} u(x,y)f(x,y)$.

Definition [Covariance of X and Y]

Take
$$u(X,Y) = [X - E(X)][Y - E(Y)]$$

$$E[(X - E(X))(Y - E(Y))] = Cov(X,Y),$$

which is called the covariance of X and Y.

➤ Motivation: To

study the relation

between *X* and *Y*.

- Cov(X,Y) = E(XY) E(X)E(Y) Verify it by yourself! When Cov(X,Y) = 0, we say X and Y are uncorrelated.
 - Interpretation: Roughly speaking, a positive or negative covariance indicates that the values of X E(X) and Y E(Y) obtained in a single experiment 'tend' to have the same or the opposite sign.

Example 1: Demonstration of positively correlated and negatively correlated RVs Assume that *X* and *Y* are uniformly distributed over the ellipses.

Independence of X and Y could imply the uncorrelation of X and Y.

Consider the case that *X* and *Y* are independent:

$$E(XY) = \sum_{(x,y)\in D} xyf(x,y) = \sum_{x\in D_X} \sum_{y\in D_Y} xyf_X(x)f_Y(y)$$
$$= \sum_{x\in D_X} xf_X(x) \left[\sum_{y\in D_Y} yf_Y(y) \right] = E(X)E(Y).$$

Therefore, cov(X, Y) = E(XY) - E(X)E(Y) = 0. Independent of 2 RVs \Rightarrow uncorrelation of 2 RVs.

$$f(x, y) = f_X(x) f_Y(y)$$

$$\Rightarrow D = D_X D_Y$$

However, the converse is not true, that is to say, there exists X and Y which are *uncorrelated* but *not independent*.

Example 2 (uncorrelation doesn't imply independence)

Let X and Y be RVs that take values (1,0), (0,1), (-1,0), (0,-1)

and with probability
$$\frac{1}{4}$$
, as shown in the figure below.

Q1: what are the marginal pmf
of X and Y?
Q2: what is $Cov(X,Y)$?
Q3: Are X and Y independent?

Solution:

To find marginal pmf of X and Y, $D_X = D_Y = \{-1, 0, -1\}$.

$$f_X(x) = \begin{cases} 1/4, & x = 1 \\ 1/2, & x = 0 \\ 1/4, & x = -1 \end{cases}$$

$$f_{Y}(y) = \begin{cases} 1/4, & y = 1\\ 1/2, & y = 0\\ 1/4, & y = -1 \end{cases}$$

$$Cov(X,Y) = E(XY) - E(X)E(Y) = 0 - 0 \cdot 0 = 0.$$

$$f_X(0)f_Y(1) = \frac{1}{2} \cdot \frac{1}{4} = \frac{1}{8} \neq f(0,1) = \frac{1}{4} \Rightarrow X \text{ and } Y \text{ are not independent!}$$

Definition [correlation coefficients]

The correlation coefficients of X and Y that have nonzero variance is defined as

$$\rho(X,Y) = \frac{Cov(X,Y)}{\sqrt{Var(X)}\sqrt{Var(Y)}}.$$

- It is a normalized version of Cov(X,Y) and in fact $-1 \le \rho \le 1$
- Interpretation: $\rho > 0$ (or $\rho < 0$) indicate the values of X E(X) and Y E(Y) 'tend' to have the same(or opposite, respectively) sign.
- $\rho > 0$ (or $\rho < 0$) have the same interpretation as Cov(X,Y) > 0 (or Cov(X,Y) < 0)
- The size of $|\rho|$ provides a normalized measure of the extent to which this is true.
- $\rho = 1$ or $\rho = -1$ if and only if there exists a positive (or negative, respectively) constant c such that

$$Y - E(Y) = c \left[X - E(X) \right]$$

Example 3

Consider n independent tosses of a coin with probability of a head equal to p. Let X and Y be the number if heads and of tails, respectively. Calculate the correlation coefficient of X and Y.

Solution:

$$X + Y = n \Rightarrow E(X) + E(Y) = n \Rightarrow X - E(X) = -[Y - E(Y)]$$

$$Cov(X,Y) = E[(X - E(X))(Y - E(Y))] = -E[(Y - E(Y))^{2}] = -Var(Y)$$

$$Var(X) = E[(X - E(X))^{2}] = E[(Y - E(Y))^{2}] = Var(Y)$$

$$\Rightarrow \rho(X,Y) = \frac{Cov(X,Y)}{\sqrt{Var(X)}\sqrt{Var(Y)}} = \frac{-Var(Y)}{\sqrt{Var(Y)}\sqrt{Var(Y)}} = -1.$$

Bivariate Distributions

Section 4.3 CONDITIONAL DISTRIBUTIONS

Motivation

- Let X and Y have the joint pmf $f(x, y) : D \rightarrow [0,1]$.
- The marginal *pmf* of X and Y are

$$f_X(x): D_X \to [0,1] \text{ and } f_Y(y): D_Y \to [0,1].$$

• By definition,

$$f(x,y) = P(X = x, Y = y) \triangleq P(\{X = x, Y = y\}).$$

$$f_X(x) = P(X = x) \triangleq P(\{X = x\}) = \sum_{y \in D_Y} f(x,y).$$

$$f_Y(y) = P(Y = y) \triangleq P(\{Y = y\}) = \sum_{x \in D_X} f(x,y).$$

• Let $A = \{X = x\}, B = \{Y = y\},$ $A \cap B = \{X = x\} \cap \{Y = y\} \triangleq \{X = x, Y = y\}.$

Recall the conditional probability of event A given event B is

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{f(x, y)}{f_Y(y)}$$
 (under the assumption $f_Y(y) > 0$).

Definition [conditional probability mass function]

Conditional pmf of X given Y=y is defined by

$$g(x|y) = \frac{f(x,y)}{f_Y(y)},$$
 provided that $f_Y(y) > 0$

Similarly, conditional pmf of Y given that X=x is defined

$$h(y|x) = \frac{f(x, y)}{f_x(x)},$$
 provided that $f_x(x) > 0$

Example 1: Let the joint *pmf* of X and Y be defined by

$$f(x, y) = \frac{x+y}{21},$$
 $x = 1, 2, 3,$ $y = 1, 2.$

We have shown

$$f_X(x) = \sum_{y \in D_Y} f(x, y) = \sum_{y=1}^2 \frac{x+y}{21} = \frac{2x+3}{21}, \qquad x = 1, 2, 3.$$

$$f_Y(y) = \sum_{x \in D_Y} f(x, y) = \sum_{x=1}^3 \frac{x+y}{21} = \frac{y+2}{7}, \qquad y = 1, 2.$$

Then the conditional pmf of X given Y = y is

$$g(x|y) = \frac{f(x,y)}{f_Y(y)} = \left(\frac{x+y}{21}\right) / \left(\frac{y+2}{7}\right) = \frac{x+y}{3(y+2)}, \quad x = 1,2,3 \quad y = 1,2.$$

and the conditional pmf of Y given X = x is

$$h(y|x) = \frac{f(x,y)}{f_y(x)} = \left(\frac{x+y}{21}\right) / \left(\frac{2x+3}{21}\right) = \frac{x+y}{2x+3}, \qquad x = 1,2,3 \qquad y = 1,2.$$

Conditional pmf is a well-defined pmf

$$f(x, y) = 0$$
 if $(x, y) \notin D$.

$$\frac{1}{f_{Y}(x)} = \frac{\sum_{y \in D_{Y}} f(x, y)}{f_{Y}(x)} = \frac{f_{X}(x)}{f_{Y}(x)} = 1.$$

Conditional mean and conditional variance

Let u(Y) be a function of Y. Then the **conditional expectation** of u(Y) is given by

$$E(u(Y)|X=x) = \sum_{y \in D} u(y)h(y|x).$$

When u(Y) = Y,

$$E(Y|X=x) = \sum_{y \in P} yh(y|x).$$

Conditional mean

When
$$u(Y) = \left[Y - E(Y | X = x) \right]^2$$
,

$$Var(Y | X = x) \triangleq E\left\{ \left[Y - E(Y | X = x) \right]^2 | X = x \right\} = \sum_{y \in D_v} \left[y - E(Y | X = x) \right]^2 h(y | x).$$

Example 1 (c.n.t.)
$$E(Y|X=3) = \sum_{y \in D_Y} yh(y|3) = \sum_{y=1}^2 y \cdot \frac{y+3}{9} = \frac{14}{9}$$
.

$$Var(Y|X=3) = \sum_{y \in D_{Y}} \left[y - E(Y|X=3) \right]^{2} h(y|3) = \sum_{y=1}^{2} \left(y - \frac{14}{9} \right)^{2} \cdot \frac{y+3}{9} = \frac{20}{81}.$$

Section 4.4 Bivariate Distribution of continuous type

□ Idea: (bivariate) discrete RV → (bivariate) continuous RV

Definition [joint probability density function (joint pdf)]

Let X and Y be two **continuous** RVs. The function f(x, y): D \rightarrow $[0, +\infty)$ is called the **joint probability density function** (**joint** pdf) of X if:

- $(1) f(x,y) \ge 0; (x,y) \in D.$

Motivation: The outcome is a tuple of 2 scalars whose range are intervals or union of intervals

$$(3) \qquad P[(X,Y) \in A] \triangleq P(\{(x,y) \in A\}) = \iint_A f(x,y) dx dy, \qquad A \subseteq D.$$

Remark:

- □ Very often, we extend the definition domain of f(x, y) from D to $R \times R$ by letting f(x, y) = 0 for $(x, y) \notin D$ and thus $\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) dx dy = 1$.
- In this course, we only consider a special space A in the \Im of the definiton:

A is **rectangular** with its line segments parallel to the coordinate axis.

In this case, $A = \{(x, y) | a \le x \le b, c \le y \le d\}$. Then the double integral becomes

$$P((x, y) \in A) = \int_a^b \int_c^d f(x, y) dy dx.$$

Remark3: Joint pdf can be seen as an extension of joint pmf by extending the 'summation' to 'integral'.

 \square mass \rightarrow density

 $summation \rightarrow integral$

 \square pmf \rightarrow pdf

Mean

 \square joint pmf \rightarrow joint pdf

Variance

■ marginal pmf → marginal pdf

Covariance

□ conditional pmf→ conditional pdf

Correlation

Definition [Marginal *pdf*]

The marginal probability density function of X or Y is defined by

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy : D_X \to [0, +\infty)$$

$$x \in D_X = \{\text{all possible values of } x \text{ in } D\}.$$

$$f_X(x) : R \to [0, +\infty) \text{ by letting } f_X(x) = 0 \text{ for } x \notin D_X$$

$$f_{Y}(y) = \int_{-\infty}^{+\infty} f(x, y) dx : D_{Y} \to [0, +\infty)$$

$$y \in D_{Y} = \{\text{all possible values of } y \text{ in } D\}.$$

$$f_{Y}(y) : R \to [0, +\infty) \text{ by letting } f_{Y}(y) = 0 \text{ for } y \notin D_{Y}$$

Definition [Mathematical expectation]

Let u(X, Y) be a function of X and Y whose marginal pdf is given by f(x, y). Thus the mathematical expectation of u(X, Y) is defined by

$$E[u(X,Y)] = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} u(x,y) f(x,y) dxdy$$

 \triangleright When u(X,Y)=X,

$$E(X) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x f(x, y) dx dy = \int_{-\infty}^{+\infty} x f_X(x) dx.$$

 \triangleright When $u(X,Y)=(X-E(X))^2$,

$$Var(X) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} (X - E(X))^2 f(x, y) dx dy = \int_{-\infty}^{+\infty} (X - E(X))^2 f(x) dx.$$

Example 1

Let X and Y have the joint pdf $f(x, y) = \frac{4}{3}(1-xy)$ with $0 \le x \le 1$, $0 \le y \le 1$.

Compute $f_X(x)$, $f_Y(y)$, E(X) and Var(X).

$$f_{X}(x) = \int_{-\infty}^{+\infty} f(x, y) dy = \int_{0}^{1} \frac{4}{3} (1 - xy) dy = \frac{4}{3} - \frac{4}{3} (x) (\frac{1}{2} y^{2}) \Big|_{0}^{1} = \frac{4}{3} (1 - \frac{1}{2} x)$$

$$f_{Y}(y) = \int_{-\infty}^{+\infty} f(x, y) dx = \int_{0}^{1} \frac{4}{3} (1 - xy) dx = \frac{4}{3} (1 - \frac{1}{2} y) \quad \leftarrow \text{Due to the symmetry.}$$

$$E(X) = \int_{-\infty}^{+\infty} x f_{X}(x) dx = \int_{0}^{1} x \frac{4}{3} (1 - \frac{1}{2} x) dx = \frac{4}{3} \left[\frac{1}{2} x^{2} \Big|_{0}^{1} - \frac{1}{6} x^{3} \Big|_{0}^{1} \right] = \frac{4}{9}$$

$$Var(X) = \int_{-\infty}^{+\infty} \left[x - E(X) \right]^{2} f_{X}(x) dx = \int_{0}^{1} (x - \frac{4}{9})^{2} \frac{4}{3} (1 - \frac{1}{2} x) dx = \frac{13}{162}.$$

You should verify the details by yourself!

Quiz

Let *X* and *Y* have the joint pdf $f(x, y) = \frac{3}{2}x^2(1-|y|)$ with -1 < x < 1, -1 < y < 1.

$$A = \{(x, y) | 0 < x < 1, 0 < y < x \}$$
. Compute $E(X)$ and $P(A)$.

Solution:

Solution:

$$f_X(x) = \int_{-1}^{1} \frac{3}{2} x^2 (1 - |y|) dy = \int_{0}^{1} \frac{3}{2} x^2 (1 - y) dy + \int_{-1}^{0} \frac{3}{2} x^2 (1 + y) dy$$

$$= \frac{3}{2} x^2 \left[y - \frac{1}{2} y^2 \right]_{0}^{1} + \frac{3}{2} x^2 \left[y + \frac{1}{2} y^2 \right]_{-1}^{0} = \frac{3}{2} x^2 \times \frac{1}{2} + \frac{3}{2} x^2 \times \frac{1}{2} = \frac{3}{2} x^2.$$

 $E(X) = \int_{-1}^{1} x f_X(x) dx = \int_{-1}^{1} \frac{3}{2} x^3 dx = \left| \frac{3}{8} x^4 \right|^{1} = 0.$

We have two ways to compute P(A):

$$P(A) = \iint_{A} f(x, y) dx dy = \int_{0}^{1} \int_{0}^{x} \frac{3}{2} x^{2} (1 - |y|) dy dx = \int_{0}^{1} \int_{0}^{x} \frac{3}{2} x^{2} (1 - y) dy dx = \int_{0}^{1} \left[\frac{3}{2} x^{2} (y - \frac{1}{2} y^{2}) \right]_{0}^{x} dx$$
$$= \int_{0}^{1} (\frac{3}{2} x^{3} - \frac{3}{4} x^{4}) dx = \left[\frac{3}{8} x^{4} - \frac{3}{20} x^{5} \right]_{0}^{1} = \frac{9}{40}.$$

$$P(A) = \iint_{A} f(x, y) dy dx = \int_{0}^{1} \int_{y}^{1} \frac{3}{2} x^{2} (1 - |y|) dx dy = \int_{0}^{1} \left[\frac{x^{3}}{2} (1 - |y|) \right]_{y}^{1} dy = \int_{0}^{1} (\frac{1}{2} - \frac{y^{3}}{2}) (1 - |y|) dy$$
$$= \int_{0}^{1} \left[\frac{y^{4}}{2} - \frac{y^{3}}{2} - \frac{y}{2} + \frac{1}{2} \right] dy = \left[\frac{y^{5}}{10} - \frac{y^{4}}{8} - \frac{y^{2}}{4} + \frac{1}{2} y \right]_{0}^{1} = \frac{1}{10} - \frac{1}{8} - \frac{1}{4} + \frac{1}{2} = \frac{9}{40}.$$

Definition [independent Continuous Variables]

Two continuous variables *X* and *Y* are **independent** if and only if,

$$f(x, y) = f_X(x) f_Y(y), \qquad x \in D_X, y \in D_Y$$

Otherwise, *X* and *Y* are said to be **dependent**.

Example 1 (Revisited)

Since
$$f(x, y) = \frac{4}{3}(1 - xy) \neq \left[\frac{4}{3}(1 - \frac{1}{2}x)\right] \left[\frac{4}{3}(1 - \frac{1}{2}y)\right] = f_X(x)f_Y(y)$$
, X and Y are dependent.

Definition [Covariance and correlation coefficient]

The **covariance** of *X* and *Y* is given by

$$Cov(X,Y) = E[(X - E(X))(Y - E(Y))] = E(XY) - E(X)E(Y),$$

where
$$E(XY) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} xyf(x, y) dxdy$$

The correlation coefficients is defined as

$$\rho(X,Y) = \frac{Cov(X,Y)}{\sqrt{Var(X)}\sqrt{Var(Y)}}.$$

Definition 4.4-6 [conditional probability density function]

Let X and Y have the joint pdf f(x, y) and marginal pdfs are $f_X(x)$ and $f_Y(y)$.

Then the **conditional pdf**, **mean**, and **variance** of Y, given that X=x, are

$$h(y|x) = \frac{f(x,y)}{f_X(x)} \text{ for } f_X(x) > 0,$$

$$E(Y|X=x) = \int_{-\infty}^{+\infty} yh(y|x)dy,$$

$$Var(Y | X = x) = E([Y - E(Y | X = x)]^{2} | X = x) = \int_{-\infty}^{+\infty} (y - E(Y | X = x))^{2} h(y | x) dy$$
$$= E(Y^{2} | X = x) - [E(Y | X = x)]^{2}$$

Example 2

Let X and Y be continuous RVs that have

$$f(x, y) = 2, 0 \le x \le y \le 1,$$

Question:

- (a) Sketch the support of X and Y.
- (b) Compute the marginal pmfs $f_X(x)$ and $f_Y(y)$.
- (c) Compute the conditional pdf, conditional mean, conditional variance of Y, given X = x.

(d) Compute
$$P(\frac{3}{4} \le Y \le \frac{7}{8} | X = \frac{1}{4})$$
.

Example 2 (c.n.t.)

Solution:

(a) The graph for the support of
$$X$$
 and Y is listed righthand.

(a) The graph for the support of
$$\lambda$$
 and I is fisted righthand

(b)
$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy = \int_{x}^{1} f(x, y) dy = 2(1 - x) \qquad 0 \le x^{1} \le 1.$$

$$f_Y(y) = \int_{-\infty}^{+\infty} f(x, y) dx = \int_{0}^{y} f(x, y) dy = 2y \qquad 0 \le y \le 1.$$

(c)
$$h(y|x) = \frac{f(x,y)}{f_{y}(x)} = \frac{2}{2(1-x)} = \frac{1}{1-x}, \quad 0 \le x \le y \le 1.$$

$$E(Y|X=x) = \int_{-\infty}^{+\infty} yh(y|x)dy = \int_{x}^{1} y \frac{1}{1-x} dy = \frac{1}{1-x} \left[\frac{1}{2} y^{2} \right]^{1} = \frac{1}{2} (x+1).$$

$$Var(Y | X = x) = \int_{-\infty}^{+\infty} \left[y - E(Y | X = x) \right]^{2} h(y | x) dy$$

$$= \int_{x}^{1} \left[y - \frac{1}{2}(x+1) \right]^{2} \frac{1}{1-x} dy = \frac{1}{1-x} \left[y - \frac{1}{2}(1+x) \right]^{3} \Big|_{x}^{1} = \frac{(1-x)^{2}}{12}.$$

$$P(\frac{3}{4} \le Y \le \frac{7}{8} \left| X = \frac{1}{4}) = \int_{3/4}^{7/8} h(y \left| \frac{1}{4}) dy \right| = \int_{3/4}^{7/8} \frac{1}{1 - 1/4} dy = \frac{1}{8} \times \frac{4}{3} = \frac{1}{6}.$$

Section 4.5 Bivariate Normal Distribution

Definition [Bivariate Normal]

Let *X* and *Y* be two continuous *RVs* and have the joint pdf

$$f(x, y) = \frac{1}{2\pi\sigma_x \sigma_y \sqrt{1 - p^2}} \exp\left[-\frac{1}{2}q(x, y)\right]$$

where
$$q(x, y) = \frac{1}{1 - \rho^2} \left[\left(\frac{x - \mu_X}{\sigma_X} \right)^2 - 2\rho \left(\frac{x - \mu_X}{\sigma_X} \right) \left(\frac{y - \mu_Y}{\sigma_Y} \right) + \left(\frac{y - \mu_Y}{\sigma_Y} \right)^2 \right] \ge 0$$

 $\mu_X = E(X), \mu_Y = E(Y), \sigma_X = \sqrt{Var(X)}, \sigma_Y = \sqrt{Var(Y)}, \rho$ is the **correlation coefficient**.

Then X and Y are said to be **bivariate normal distributed**.

> Property:

Given that Y = y is normal distribution, The probability distribution of X with **mean**

$$\mu_X + \frac{\sigma_X}{\sigma_Y} \rho(y - \mu_Y)$$
 and **variance** $(1 - \rho^2) \sigma_X^2$ is given by

$$X | Y = y \sim N(\mu_X + \frac{\sigma_X}{\sigma_Y} \rho(y - \mu_Y), (1 - \rho^2) \sigma_X^2).$$

Similarly,
$$Y | X = x \sim N(\mu_Y + \frac{\sigma_Y}{\sigma_X} \rho(x - \mu_X), (1 - \rho^2) \sigma_Y^2).$$

Example 1

Observe a group of college students, Let X and Y denote the grade points in high school and the first year in college have a bivariate normal distribution with parameters

$$\mu_{X} = 2.9$$

$$\mu_{\rm y} = 2.4$$

$$\sigma_{x} = 0.4$$

$$\mu_{x} = 2.9$$
 $\mu_{y} = 2.4$ $\sigma_{x} = 0.4$ $\sigma_{y} = 0.5$ $\rho = 0.8$

$$\rho = 0.8$$

Compute P(2.1 < Y < 3.3) and P(2.1 < Y < 3.3 | X = 3.2)

Solution:

$$P(2.1 < Y < 3.3) = P(\frac{2.1 - 2.4}{0.5} < \frac{Y - 2.4}{0.5} < \frac{3.3 - 2.4}{0.5}) = \Phi(1.8) - \Phi(-0.6) = 0.69$$

Note that
$$Y | X = x \sim N(\mu_Y + \frac{\sigma_Y}{\sigma_X} \rho(x - \mu_X), (1 - \rho^2) \sigma_Y^2),$$

when
$$X = 3.2$$
, $Y \mid X = 3.2 \sim N(2.7, 0.09)$,

$$P(2.1 < Y < 3.3 | X = 3.2) = P(\frac{2.1 - 2.7}{\sqrt{0.09}} < \frac{Y - 2.7}{\sqrt{0.09}} < \frac{3.3 - 2.7}{\sqrt{0.09}})$$
$$= \Phi(2) - \Phi(-2) = 0.95.$$

Theorem [Bivariate Normal: Uncorrelation Implies Independence]

If *X* and *Y* have a bivariate normal distribution with correlation coefficient ρ , then *X* and *Y* are independent if and only if $\rho = 0$.