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➢ Chapter 3 Continuous Distribution

➢ Section 3.1    RV of the continuous type

Definition [ Continuous RV]

A RV 𝑋: 𝑆 → 𝑋 𝑆 is said to be continuous if there exists a function 

𝑓 𝑥 : 𝑋 𝑆 → [0,+∞) such that

1. 𝑓 𝑥 ≥ 0, 𝑥 ∈ 𝑋 𝑆

2. 𝑋(𝑆)𝑓׬ 𝑥 𝑑𝑥 = 1

3. If 𝑎, 𝑏 ⊆ 𝑋 𝑆 , then 𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 = 𝑎׬
𝑏
𝑓 𝑥 𝑑𝑥.

Here, 𝑓 𝑥 is called the probability density function (pdf) of 𝑋.

Motivation: RVs with continuous range of possible values are 
common in practice.



Remark:

• We often extend the domain of f(x) from X(S) to R and 

let f(x)=0 for x∉ X(S).From now on, we consider pdf 

f(x): R → [0,+∞) .X(S) is called the support of f(x).

• Then the 3 conditions become:

➢ f(x)≥0 for  x∈R

➢ ∞−׬
+∞

𝑓 𝑥 𝑑𝑥 = 1

➢ 𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 = 𝑎׬
𝑏
𝑓(𝑥) 𝑑𝑥.

• For any single value a, 𝑃 𝑋 = 𝑎 = 𝑎׬
𝑎
𝑓 𝑥 𝑑𝑥 = 0. 

Therefore, including or excluding the endpoints of an 

interval has no effect on its probability:

𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 = 𝑃 𝑎 < 𝑋 ≤ 𝑏 = 𝑃 𝑎 ≤ 𝑋 < 𝑏 =
𝑃(𝑎 < 𝑋 < 𝑏). The area 

= ( )P a X b 



   

   

  

Remark:
𝑑 𝐹(𝑥)

𝑑𝑥
= 𝑓(𝑥).

F(x) accumulates (or, more simply, cumulates) all of the 
probability less than or equal to x.

 

 For very small 0,

( , ) ( ) ( ) .
x

x
P x x f x dx f x





 
+



+ = 

• Interpretation of pdf The pdf f(x) in the 

picture can be 

seen as the 

probability mass 

per unit length

near x.

Definition [ Cumulative distribution function (cdf)]
The cumulative distribution function or cdf of a continuous RV X, 
denoted by F(x), is given by
 𝑥 𝐹 𝑥 = 𝑃 𝑋 ≤ 𝑥 = ∫−∞ 𝑓(𝑡) 𝑑𝑡



Example 1 [ Uniform distribution ]:

Let the random variable X denote the outcome when a point is 

selected randomly from [a, b] with −∞ < a < b < ∞.

Define 

the pdf of 

X:

1
, .

( )
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otherwise
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𝑃 𝑋 ≤ 𝑥 =
𝑥−𝑎

𝑏−𝑎
  implies the probability of selecting a 

point from the interval [a,x] is proportional to the length of 

the interval [a, x].
Uniform distribution:

when a pmf is 

constant over the 

support.

denoted by

𝑋~𝑈(𝑎, 𝑏)O



Example 2:

Let Y be a continuous random variable with pdf g(y) = 2y, 0 < y < 1. 

Then the cdf of Y is:
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computations of probabilities:

1 3 3 1 9 1 5
( ) ( ) ( ) .
2 4 4 2 16 4 16

1 1 1 15
( 2) (2) ( ) 1 .
4 4 16 16

P Y F F

P Y F F

  = − = − =

  = − = − =



➢ Mathematical expectation

Definition [ Expectation ]

Assume X is a continuous RV with range space X(S) and f(x) is its 

pdf. If                          exists, then it’s called the expectation or 

the expected value of g(X) and is denoted by E[g(X)]. That is,

( )
( ) ( )

X S
g x f x dx

( )
[ ( )] ( ) ( )

X S
E g X g x f x dx= 

Remark:

• Mathematical expectation is a linear operator. In other words,

• Letting f(x)=0 for x∉ X S , then we find the expectation for 

function g(x) can be expressed as:

     
1 2 1 2

1 1 2 2 1 1 2 2

, ( ) ( ) ,

( ) ( ) ( ) ( )

If c and c are constants g x and g x are functions

E c g x c g x c E g x c E g x+ = +

          

                  

[ ( )] ( ) ( )E g X g x f x dx
+

−
= 



For a continuous RV 𝑋 with pdf 𝑓(𝑥) :

➢Mean of 𝑋:

𝜇 = 𝐸 𝑋 = න
−∞

+∞

𝑥𝑓(𝑥) 𝑑𝑥

➢Variance of 𝑋:

𝑉𝑎𝑟 𝑋 = න
−∞

+∞

(𝑥 − 𝜇)2𝑓 𝑥 𝑑𝑥 = 𝐸 (𝑋 − 𝜇)2

➢Standard deviation of 𝑋:

𝜎 = 𝑉𝑎𝑟 𝑋
➢Moment generating function:   if it exists, then

𝑀 𝑡 = 𝐸 𝑒𝑡𝑋 = ∞−׬
∞
𝑒𝑡𝑥𝑓 𝑥 𝑑𝑥, −ℎ < 𝑡 < ℎ for some ℎ > 0.

It completely determines the distribution of 𝑋 and all moments exist 

and are finite:

➢ Moment of X:

2(0) ( ), (0) ( )M E X M E X = =

[ ] ( )r rE X x f x dx
+

−
= 



Example 3:

Let X have the pdf

1
, 0 100.
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Compute 𝐸(𝑋) and 𝑉𝑎𝑟(𝑋).

Actually, for 𝑋~𝑈 𝑎, 𝑏
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Example 4:
Let X be a continuous RV and have the pdf

, 0 .
( )

0, .

xxe x
f x

otherwise

−   
= 


Compute 𝐸(𝑋) and 𝑉𝑎𝑟(𝑋).

0

(1 ) (1 )
(1 )

20
0

(1 ) (1 )

2 2

2

:
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From the above 

examples,

We observe 

that 𝑓(𝑥) is not 

restricted to be 

“𝑓(𝑥) ≤ 1”. 

And actually, 

𝑓 𝑥  needn’t to 

be continuous. 

For example,

1
,  (0,1) (2,3).

( ) 2

0,   otherwise.

x
f x


 

= 





Definition 3.1-3[(100p)th percentile ]

It is a number 𝜋𝑝 such that the area under f (x) to the left of 

𝝅𝒑 is p. That is,

𝑝 = න
−∞

𝜋𝑝

𝑓 𝑥 𝑑𝑥 = 𝐹 𝜋𝑝

The 50th percentile is called the median. The 25th and 75th

percentiles are called the first and third quantiles, 

respectively. The median is called the 2nd quantile.



Example 5:

Let X be a continuous RV and have the pdf

3
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( 4)
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Compute 30th and 90th percentile.
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Section 3.2      exponential, gamma, Chi-
Square Distributions

Chapter 3 Continuous distribution

➢Poisson distribution.

It can be used to describe the number of occurrences of the 

same event in a given continuous interval with pmf 𝑓 𝑥 =
𝜆𝑥𝑒−𝜆

𝑥!
, 𝑥 = 0,1, … 𝐸 𝑋 = 𝜆, 𝑉𝑎𝑟 𝑋 = 𝜆.

Now consider the APP with mean number of occurrences 

𝜆 in a unit interval:

• For an interval with length T, the number of occurrence, say X , 

has 𝐸 𝑋 = 𝜆𝑇

• And thus its pmf is 𝑓 𝑥 =
(𝜆𝑇)𝑥𝑒−𝜆𝑇

𝑥!
, 𝑥 = 0,1, …

• 𝑃 𝑋 = 0 = 𝑒−𝜆𝑇 = 𝑃(no occurrence in the interval with length 

T)      

frequency



Let W denote the waiting time until the first occurrence during the APP.

➢pdf of W

Idea:

①Derive cdf of W: F(w).

② f(w)=
𝑑 𝐹(𝑤)

𝑑𝑤

 

( ) ( )    Assume that the waiting time is nonnegative. Then

( ) 0 for 0. 

For 0,  ( ) ( ) 1 ( ).

where ( ) (no occurrences in 0, ) .

Therefore, ( ) 1  for 0

( ) ( )

w

w

w

F w P W w

F w w
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P W w P w e

F w e w

f w F w e
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


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−

= 

= 

 =  = − 

 = =

= − 

 = = , 0.w 

What is 𝜆?

The mean number 

of occurrences per 

unit interval is λ

We often let λ = Τ1 𝜃 and say that the RV has an 

exponential distribution :

c.n.t



 

𝜃

Accordingly, the waiting time 

W until the first occurrence in 

a Poisson process has an 

exponential distribution with 

θ = 1/λ.

➢mgf, mean and variance

 

( 1 )

0
0

2
2 2

2 3

22 2

1 1 1 1 1
( ) ( ) , .

1 1

2
( ) , ( ) (0) , (0) ( ) 2 .

(1 ) (1 )
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x
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 
 

 

 


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mean waiting time

Definition [ Exponential distribution ]
A RV X has an exponential distribution if its pdf is defined by
 𝑥 1 − 𝑓 𝑥 = 𝑒 𝜃, 𝑥 ≥ 0, 𝜃 > 0.



Example 1

Customers arrive in a certain shop according to APP at a mean 

rate of 20 per hour. What’s the probability that the shopkeeper 

will have to wait more than 5 minutes for the arrival of the 

first customer?

Solution:

Let X denote the waiting time in minutes until the first 

customer arrives, and note that λ = 1/3 is the mean number of 

arrivals per minute. Thus,

𝜃 = Τ1 𝜆 = 3 and 𝑓 𝑥 =
1

3
𝑒−

1

3
𝑥
, 𝑥 ≥ 0.

Hence 𝑃 𝑋 > 5 = 5׬

∞ 1

3
𝑒−

1

3
𝑥𝑑𝑥 = 𝑒−

5

3.



Consider APP with mean λ in a unit interval, 

Let W denote the waiting time until the αth occurrence.

➢pdf of W

Idea:

①Derive cdf of W: F(w).

② f(w)=
𝑑 𝐹(𝑤)

𝑑𝑤

 
1

0

1

0

For 0,  ( ) ( ) 1 ( ).

where ( ) (number of occurrences in 0,  smaller than )

( )
 .

!

( )
Therefore, ( ) 1  for 0
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=

 =  = − 

 =

=
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



since the number of 

occurrences in the interval 

[0,w] has a Poisson 

distribution with

mean λw.



Since W is a continuous RV, 
𝑑 𝐹(𝑤)

𝑑𝑤
, if exists, is equal

to the pdf of W. 

When w > 0, we have

➢pdf of W (c.n.t.)
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−
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A pdf of this form is said to be of the gamma type, and W is 

said to have a gamma distribution.



 

𝛤 𝑡 = න
0

+∞

𝑦𝑡−1𝑒−𝑦𝑑𝑦 , 𝑡 > 0.

Γ
1

2
= 𝜋, Γ 1 = Γ 2 = 1,

And for 𝑛 ≥ 2, Γ 𝑛 = 𝑛 − 1 Γ 𝑛 − 1 .

The last statement is proved by induction on n. It’s easy to see that , Γ 1 = 1 .

For 𝑛 ≥ 2, we will use integration by parts.

Γ
1

2
= 𝜋 is due to the definite integration 0׬

+∞
𝑒−𝑥2

𝑑𝑥 =
𝜋

2
, but we don’t 

need to know how to derive it now.

Integration by parts
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Definition [ Gamma function ]



 

Γ(𝛼) 𝜃

Accordingly, W, the waiting time until the 𝛼th occurrence in the APP, has a 

Gamma distribution with parameters 𝜶 and 𝜽 =
𝟏

𝝀
.

➢ Gamma pdf f(x) is a well-defined pdf
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Definition [ Gamma distribution ]
A RV X has a Gamma distribution if its pdf is defined by
 𝑥 1 𝛼 −1 −𝜃 𝑓 𝑥 = 𝛼 𝑥 𝑒 , 𝑥 ≥ 0.



➢Mean and Variance
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Now we construct another gamma pdf!
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➢Mean and Variance (c.n.t.)

A special case is that 𝛼 = 1, Gamma distribution reduces 

to exponential distribution. 𝛼 can be non-integer!

 

𝑔 𝑥 =
Γ 𝛼+𝛽

Γ 𝛼 Γ 𝛽
𝑥𝛼−1(1 − 𝑥)𝛽−1, 0 < 𝑥 < 1.

     
         

          

     
         

          

     
         

          
A RV X has a Beta distribution if its pdf is defined by

Definition [ Beta distribution ]
Let X1 and X2 have independent gamma distributions with 
parameters α, θ and β, θ, respectively. Take X=X1/(X1 + X2).


