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Discrete Distribution

Starting from this section, some typical random experiments and
corresponding distribution will be introduced.

Section 2.4 Binomial distribution

» Bernoulli experiment

The outcome can be classified in one of two mutually
exclusive and exhaustive ways--say either success or failure.
(e.g. female or male; life or death)

» Bernoulli trials

When a Bernoulli experiment 1s performed several
independent times and the probability of success—say, p—
remains the same from trial to trial. In other words, we let p
donate the probability of success on each trial. And we define
q = 1 — p to donate the probability of failure.



Example 1:

You are a fan of lottery. For a lottery, the probability of

winning 1is Tloo’ If you buy the lottery for 10 successive days,

1

that corresponds to 10 Bernoulli trials with P=T50g: Assuming
independence

» Bernoulli distribution
e Let X be aRV associated with a Bernoulli trial with the
probability of success p.

* Define RV
X:5—= X(S) CR, S = {Success, Failure}

X (Success) = 1, X (Failure) = 0, X(S)=1{0,1}
* The pmf of X can be written as:
f:X(8) ={0,1} = [0,1],
r— f(z) =p*(1—p)' "
 The RV X has a Bernoulli distribution with the following
characteristic:
E[X]=p, Var[X]=pg, M(t)=E[e™]=(1-p)+p-e"



» In a sequence of n Bernoulli trials, we shall let X; denote the
Bernoulli random variable associated with the i-th trial. An
observed sequence of n Bernoulli trials will then be an n-
tuple of zeros and ones, and we often call this collection a
random sample of size n from a Bernoulli distribution

Example 2

Out of millions of instant lottery tickets, suppose that 20%

are winners. If 5 tickets are purchased, then (0,0,0,1,0) is a

random sample. Assuming independence between

purchasing different tickets, the probability of this sample 1s
p = (0.2)(0.8).

Multiplication Rule:
Suppose events Aq, Ao, ..., A, are mutually independent,

P(AiN---NA,) =P(A1)- - P(Ay).



Binomial Distribution

* Motivation: We are interested in the number of successes in n Bernoulli trials,
the order of the occurrence is not concerned.
A binomial experiment satisfies the following properties:

1. A Bernoulli experiment (i.e., Success & Failure) is performed n times.
Multiplication rule of probability:

P(ANnB)=P(A)P(B)
3. Probability of success on each trial is a constant p; the probability of failure

2. Trials are independent.

1sq=1-—p. Remark: f(x) refers to binomial

, , probability, X is said to have a
4. Define RV X as # of successes in n trials. Mieefal afeiauiion, densics

o X :5—X(5)={0,1,...,n}. as X ~ b(n,p)

e When z € X (S5), # of ways of selecting x successes in n trials is (Z)

n—x

e Since trials are independent, the probability of each way is p(1 — p)

e pmf of X: Why pmf s
well-defined?



Example 2 (revisited)
Let the probability of producing a winning ticket to be 20%.

If X is the number of winning tickets, where n = 5 tickets
are purchased, then the probability of purchasing 2 winning

tickets is
f(2)=P(X =2) = (Z) (0.2)%(0.8)%, X ~ b(5,0.2).

» cdf of Binomial distribution
* Assume X have a Binomial distribution b(n, p), the cdf of X is

Ed
Fo) =P <a)= 3 f) =2 (0 )ra-pr

yeX(S5): y<z y=0
Here x € (—o0, ), and | x| denotes the largest integer that is no more than x.



* Assume X have a Binomial distribution b(n, p), the cdf of X is
L]
Fo) =P <o) = 3 =Y (1)pa-pr

yeX(S): y<z y=0 Y

Example 3
Chickens are raised for laying eggs. Let p = 0.5 be the
probability that the newly hatched chick is a female. Assuming
independence, let X be the number of female chicks out of 10
newly hatched chicks selected at random.
e Obviously, X ~ b(10,0,5). Compute

P(X <5),P(X=6),P(X =6).

Solution:

X

P(X<5)=>) (10) (0.5)*(0.5)1"*  P(X>6)=1-P(X <5).

10

i

)(0.5)6(0.5)4.



» mgf of Binomial distribution
Assume X have a binomial distribution b(n, p), the mgf of X is

n

M(t) = E[e'*] = Z el <Z>px(1 _p)ne

x=0

n
n t\x n—x
o 1 .
From the expansion of Z (.CU) (p € ) ( p )

n =0

(a+b)n:;(x)“xbn_x’ = [(1 — p) +p€t]n, t € (—00,00).

with a = pet,b =1 —p.

n—1
e M'(t)=n [(1 —p)+ pet} pet, which implies

M'(0) = E[X] = np.

n—

o M"(t) =n(n-1) [(1 —p) —l—pet} n_z(pet)2 +n [(1 —p) —I—pet] 1pet, which

implies
M"(0) = E[X?] = n(n — 1)p* + np.

o Var[X] = E[X?] — (E[X])* = np(1 - p).
Besides, when n = 1, the Binomial distribution reduces to
Bernoulli distribution.



Section 2.5 Negative Binomial distribution

* Motivation: We are interested in the situation that we observe a
sequence of independent Bernoulli trials until exactly r
successes occur, where 7 1s a fixed positive integer.

 Define RV X to be the trial number, on which the r-th success
1s observed.

X: S§—=>X(8)={rr+1,...}

* Let f(x) denote the pmf of X.

def A
f(x) = P({At the z-th trial, r-th success is observed}) -~

= P({{for the first * — 1 trials, » — 1 success have been observedﬂ

ﬂ {At the x-th trial, the outcome is success}
def B




Special Case of Negative Binomial Distribution forr = 1
o f(z)=p(l-p)* "
e For fixed k£ € N,

0 . k
POX>R = Y p-pt = P gy
r=k+1

PX<k)=1-P(X>k)=1—(1-p)*

Example 1
* Biology students are checking eye color of fruit flies.
* Forindividual fly, P(white)=1/4, P(red)=3/4.
 Assume the observations are independent Bernoulli trials.
At least 4 Flies:  P(X >4)=P(X >3) = (1 —1/4)° = (3/4)°
At most 4 Flies: P(X <4)=1-(1-1/4)*
4 Flies:  P(X =4) = (1/4)(3/4)°



»Mean and Variance
Prove the following for X having a negative binomial distribution:

1 —
Ex| =" varx]= " _ p),
p p
Proof- The mgf of X is * Direct Calculation
Using mgf
0 . 1 (e @] . 1 T—7
M =B = 3 (77 D —p = e 3 (77 ) [0
(pe’)”

where (1 —p)e’ < 1.




Section 2.6 Poisson Distribution

There are experiments that result in counting the number of
times particular events occur at given times or with given
physical objects.

* The number of flaws 1n a 100 feet long
E.g. wire
* The number of customers that arrive at a
ticket window between 9p.m. to 10p.m.

Counting such events can be looked upon as observations
of a random variable associated with an approximate
Poisson process(APP), provided that the conditions in the
following definition are satisfied.



Let the number of occurrences of some event in a given continuous
interval be counted. Then we have an APP with parameter A = 0 if

(a) The numbers of occurrences in nonoverlapping
subintervals are independent.

(b) The probability of exactly one occurrence in a
sufficiently short subinterval of length h 1s approximately Ah.

(c) The probability of two or more occurrences in a
sufficiently short subinterval 1s essentially 0.

Consider a random experiment desired by App. Let X denote the
number of occurrences in an interval of length 1. We aim to find an
approximation for P(X = x), where x 1s a nonnegative integer.

(D Partition the interval
into a number of
111 nonoverlapping
nnn subintervals

S | =
S | —



@1If n is sufficiently large (n > x), P(X = x) can be
approximated by the probability that exactly x of these
n subintervals each has one occurrence.

® L By condition (b), the probability of one
occurrence in anyone subinterval of length 1/n
is approximately A/n.
II. By condition (c), the probability of 2 or more
occurrences in any one subinterval is essentially
0. That 1s, For each subinterval there 1s either

no occurrence or one occurrence. [The

iy . A
probability of occurrence 1s —.

Conditions | and Il implies that the occurrence and non-occurrence in
each interval can be treated as Bernoulli trials. /

III. By condition (a), we have a sequence of n

Bernoulli trials with probability p Number of Occurrence

: A follows b(1, &)
approximately equal to —. n



(4) Therefore, P(X = x) can be approximated by the binomial
probability:

P(X =x)~ G )(——)“

x'( - )’
® Ifletn — oo, then
y n! A ___x
},l_r)gx(n x)'( )(——) _},1_52(,,_ TP .( )(1 )

Now for fixed n, we have:

fies 1 n(n-1)---(n—x+1)

; Al 1.(1— -
n—)oo(n_x)|nx nl_EI; n* n—)oo|: ( _) ( _)]

lim(1 —) =™ lim(1- —)‘x =

n—>00C

Wehave P(X = x)=Ilim B ( ——) (l——) ﬂ’x -
n—o (p—x)!n x!

Since we know lim(1+ -—) =e"

n—»o0

we replace x with — A.



Definition 2.6-2

2 What is the
It can be verified that interpretation
Ae—A of 1?
f(x): - $=O,1,...
!

is a well-defined pmf. Ifa RV X has f(x) as its pmf, then X is said
to have a Poisson distribution.

» Mean and Variance
The mgf of a Poisson  distribution for a RV X is

= A% = (Neb)?
M(t) - E[etX] - Zet — — e A Z ( ')
=0 ’ =0

Z.

— o~ Aere’ — gA(e'—1) Lis the average
number, or variance

, of occurrences in the
M'(t) = Aetere 1) — M’'(0) = A=E[X] interval

Mll(t) — Aete/\(e‘_l) k4 A282te,\(e‘_1) —y MII(O) =X A /\2 — ]E[X2]
Var[X] = E[X?] — (E[X])? = A



Example 1
In a large city, telephone calls to 110 come on the average of

2 every 3 minutes. If one models with App, what 1s the
probability of five or more calls arriving in a 9-minute period?

Solution. Let X denote the number of calls in a 9-min period.
Then E[X] = 6 = ), which implies f(z) = &
Hence, P(X >5)=1—-P(X <4)=1-— Eizo 6:65!_6
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