ISyE 3770 Assignment 2: Discrete and Continuous Distributions

Due date: 11:59 PM, Tuesday, Feb 6, 2024.

Question 1 (Mathematical Expectation May not Exist!). Let the pmf of X be defined by $f(x) = \frac{6}{\pi^2 x^2}, x = 1, 2, ...$ Show that $\mathbb{E}[X] = +\infty$, and thus, does not exist. (11 points)

Question 2 (mgf). For the following moment generating function of a random variable X, (i) Give the name of the distribution of X (if it has a name), (ii) find the values of mean and variance, (iii) calculate $P(1 \le X \le 2)$:

(a) $M(t) = (0.3 + 0.7e^t)^5;$	(3 points)
(b) $M(t) = \frac{0.3e^t}{1 - 0.7e^t}, t < -\ln(0.7);$	(2 points)
(c) $M(t) = 0.45 + 0.55e^t$;	(2 points)
(d) $M(t) = 0.3e^t + 0.4e^{2t} + 0.2e^{3t} + 0.1e^{4t};$	(2 points)
(e) $M(t) = \sum_{x=1}^{10} (0.1)e^{tx}$.	(2 points)

Question 3 (Binomial Distribution). In a lab experiment involving inorganic syntheses of molecular precursors to organometallic ceramics, the final step of a five-step reaction involves the formation of a metal-metal bond. The probability of such a bond forming is p = 0.20. Let X equal the number of successful reactions out of n = 25 experiments.

- (a) Find the probability that X is at most 4. (2 points)
- (b) Find the probability that X is at least 5. (3 points)
- (c) Find the probability that X is equal to 6. (3 points)
- (d) Give the mean, variance, and standard deviation of X. (3 points)

Question 4 (Variant of Geometric Distribution). Let X equal the number of flips of a fair coin that are required to observe the same face on consecutive flips.

(a) Find the pmf of X .	(3 points)
(b) Find the mgf of X .	(3 points)
(c) Use the mgf to find the values of the mean and variance of X .	(3 points)
(d) Find the value of $P(X \le 3), P(X \ge 5)$, and $P(X = 3)$.	(3 points)

Question 5 (Poisson Distribution). Flaws in a certain type of drapery material appear on the average of one in 150 square feet. If we assume a Poisson distribution, find the probability of at most one flaw appearing in 225 square feet. (11 points) **Question 6** (Continuous Random Variable). For each of the following functions, (i) find the constant c such that f(x) is a pdf of a random variable X; (ii) find the cdf $F(x) = P(X \le x)$; (iii) plot graphs of the pdf f(x) and the distribution function F(x), and (iv) find mean and variance:

(a)
$$f(x) = x^3/4, 0 < x < c.$$
 (3 points)

(b)
$$f(x) = (3/16)x^2, -c < x < c.$$
 (4 points)

(c) $f(x) = c/\sqrt{x}, 0 < x < 1$. Is this pdf bounded? (4 points)

Question 7 (Uniform Distribution). *Customers arrive randomly at a bank tellers window. Given that one customer arrived during a particular 10-minute period, let X equal the time within the 10 minutes that the customer arrived. If X is U(0, 10), find:*

(a) The pdf of
$$X$$
; (3 points)

- (b) $P(X \ge 8);$ (2 points)
- (c) $P(2 \le X < 8);$ (2 points)

(d)
$$\mathbb{E}[X]$$
; (2 points)

(e) $\operatorname{Var}(X)$. (2 points)

Question 8 (Percentile). Consider the pdf f(x) = (x+1)/2, -1 < x < 1. Find

 (a) $\pi_{0.64}$;
 (3 points)

 (b) $q_1 \triangleq \pi_{0.25}$;
 (4 points)

 (c) $\pi_{0.81}$.
 (4 points)

Question 9 (Exponential Distribution). Let X have an exponential distribution with mean $\Theta > 0$. Show that

$$P(X > x + y \mid X > x) = P(X > y).$$
 (11 points)