ISyE 3770 Assignment 2: Discrete and Continuous Distributions

Due date: 11:59 PM, Tuesday, Feb 6, 2024.

Question 1 (Mathematical Expectation May not Exist!). Let the pmf of X be defined by $f(x)=\frac{6}{\pi^{2} x^{2}}, x=1,2, \ldots$. Show that $\mathbb{E}[X]=+\infty$, and thus, does not exist.
(11 points)

Question 2 (mgf). For the following moment generating function of a random variable X, (i) Give the name of the distribution of X (if it has a name), (ii) find the values of mean and variance, (iii) calculate $P(1 \leq X \leq 2)$:
(a) $M(t)=\left(0.3+0.7 e^{t}\right)^{5}$;
(b) $M(t)=\frac{0.3 e^{t}}{1-0.7 e^{t}}, \quad t<-\ln (0.7)$;
(c) $M(t)=0.45+0.55 e^{t}$;
(d) $M(t)=0.3 e^{t}+0.4 e^{2 t}+0.2 e^{3 t}+0.1 e^{4 t}$;
(e) $M(t)=\sum_{x=1}^{10}(0.1) e^{t x}$. (2 points)

Question 3 (Binomial Distribution). In a lab experiment involving inorganic syntheses of molecular precursors to organometallic ceramics, the final step of a five-step reaction involves the formation of a metal-metal bond. The probability of such a bond forming is $p=0.20$. Let X equal the number of successful reactions out of $n=25$ experiments.
(a) Find the probability that X is at most 4.
(b) Find the probability that X is at least 5 .
(c) Find the probability that X is equal to 6.
(d) Give the mean, variance, and standard deviation of X.

Question 4 (Variant of Geometric Distribution). Let X equal the number of flips of a fair coin that are required to observe the same face on consecutive flips.
(a) Find the pmf of X.
(b) Find the mgf of X.
(c) Use the mgf to find the values of the mean and variance of X.
(d) Find the value of $P(X \leq 3), P(X \geq 5)$, and $P(X=3)$.

Question 5 (Poisson Distribution). Flaws in a certain type of drapery material appear on the average of one in 150 square feet. If we assume a Poisson distribution, find the probability of at most one flaw appearing in 225 square feet.
(11 points)

Question 6 (Continuous Random Variable). For each of the following functions, (i) find the constant c such that $f(x)$ is a pdf of a random variable X; (ii) find the cdf $F(x)=P(X \leq x)$; (iii) plot graphs of the pdf $f(x)$ and the distribution function $F(x)$, and (iv) find mean and variance:
(a) $f(x)=x^{3} / 4,0<x<c$.
(b) $f(x)=(3 / 16) x^{2},-c<x<c$.
(c) $f(x)=c / \sqrt{x}, 0<x<1$. Is this pdf bounded?
(4 points)

Question 7 (Uniform Distribution). Customers arrive randomly at a bank tellers window. Given that one customer arrived during a particular 10-minute period, let X equal the time within the 10 minutes that the customer arrived. If X is $U(0,10)$, find:
(a) The pdf of X;
(3 points)
(b) $P(X \geq 8)$;
(2 points)
(c) $P(2 \leq X<8)$;
(d) $\mathbb{E}[X]$;
(2 points)
(e) $\operatorname{Var}(X)$.

Question 8 (Percentile). Consider the pdf $f(x)=(x+1) / 2,-1<x<1$. Find
(a) $\pi_{0.64}$;
(3 points)
(b) $q_{1} \triangleq \pi_{0.25}$;
(4 points)
(c) $\pi_{0.81}$.
(4 points)

Question 9 (Exponential Distribution). Let X have an exponential distribution with mean $\Theta>0$. Show that

$$
\begin{equation*}
P(X>x+y \mid X>x)=P(X>y) \tag{11points}
\end{equation*}
$$

