## ISyE 3770, Spring 2024 Statistics and Applications

## Introduction to Random Variables

Instructor: Jie Wang<br>H. Milton Stewart School of Industrial and Systems Engineering Georgia Tech

jwang3163@gatech.edu
Office: ISyE Main 445

Chapter 2.1
Section 2.1

## Discrete Distribution

Random variable of the discrete type


For the latter case, we can define a function $X$ to associate the outcomes with numerical values.

Example 1: Rolling a die: $\quad S=\{1,2,3,4,5,6\}$.
$X(i)=i, \quad i=1,2,3,4,5,6$.
Flipping a coin: $S=\{H, T\}$.

$$
X(H) \triangleq 0, X(T) \triangleq 1 .
$$

## Definition [ Random Variable (RV)]

- Given a random experiment with sample space $S$, a function $X: S \rightarrow$ $B \subseteq \mathbb{R}$ that assign one and only one real number $X(s)=x$ for each $s \in S$ is called random variable.
- In other words, A random variable is a function from a sample space $S$ into the real numbers.


## Definition [ Discrete Random Variable ]

The range of $X$ is the set

$$
B=\{x \mid X(s)=x, s \in S\} .
$$

A RV is called discrete if its range B is finite or countable.

Given an experiment with sample space

$$
S=\left\{s_{1}, \ldots, s_{n}\right\}
$$

with a probability function $P_{r}$ on $S$, and we define a random variable $X$ with range $B=\left\{x_{1}, \ldots, x_{m}\right\}$, we can define a probability function $P$ on $B$ in the following way:

$$
\begin{gathered}
P\left(X=x_{i}\right) \triangleq P\left(\left\{X=x_{i}\right\}\right)=P_{r}\left(\left\{s_{j} \mid X\left(s_{j}\right)=x_{i}, s_{j} \in S\right\}\right) \\
P(X \in A) \triangleq P(\{X \in A\})=P_{r}\left(\left\{s_{j} \mid X\left(s_{j}\right) \in A, s_{j} \in S\right\}\right)
\end{gathered}
$$

Note that $A \subseteq B$

Notation Remark: Random variables will always be denoted with uppercase letters. The numerical values of RV will be denoted by the corresponding lowercase letters

$$
X \rightarrow \text { a RV, } \quad x \rightarrow \text { the numerical value of a RV. }
$$

Thus, the random variable $X$ can take the value $x$.

## Definition [ probability mass function (pmf)]

Suppose that $X: S \rightarrow B \subseteq \mathbb{R}$ is a discrete random variable. Then a function $f(x): B \rightarrow[0,1]$ is called a pmf, if

- $f(x)>0, x \in B ;$
- $\sum_{x \in B} f(x)=1$;
- $P(X \in A)=\sum_{x \in A} f(x)$, where $A \subseteq B$.
- We often extend the definition domain of $f(x)$ from $B$ to $\mathbb{R}$ and let $f(x)=0$ for $x \notin \mathrm{~B}$.
- B is the range of $X$ and is also called the support of $f(x)$.
- From now on, we consider pmf $f(x): \mathbb{R} \rightarrow[0,1]$.


## Definition [ Cumulative distribution function (cdf)]

The cumulative distribution function or cdf of a random variable $X$, denoted by $F(x)$, is defined by

$$
F(x)=P(X \leq x) \triangleq P(\{s \mid X(s) \leq x, s \in S\}), \quad x \in(-\infty, \infty) .
$$

- Remark: cdf of $X$ is also called the distribution function of $X$


## Definition [ uniform distribution ]

When a pmf is constant over the support.
Example 2: Rolling a die. $S=\{1,2,3,4,5,6\} \rightarrow B=\{1,2,3,4,5,6\}$

- Define a RV $X(s)=s$ for $\forall s \in S$.
- $\operatorname{pmf} f(x)=\left\{\begin{aligned} 1 / 6, & \text { if } x \in B, \\ 0, & \text { if } x \notin B .\end{aligned}\right.$
- $\operatorname{cdf} F(x)=P(X \leq x)=\left\{\begin{aligned} 0, & \text { if } x<1, \\ k / 6, & \text { if } k \leq x<k+1, k=1,2,3,4,5, \\ 1, & \text { if } x \geq 6\end{aligned}\right.$


## Definition [ line graph ]

A line graph of the $\operatorname{pmf} f(x)$ of the random variable $X$ is a graph having a vertical line segment drawn from $(x, 0)$ to $(x, f(x))$ at each $x \in S$.

Example 2 [Revisited]:



## Definition [ probability histogram ]

If a RV $X$ assumes only integer values, a probability histogram of pmf $f(x)$ is a graphical representation that has a rectangle of height $f(x)$ and a base of length 1 , centered at $x$ for each $x \in S$.


Probability Histogram

Section $2.2 \quad$ Mathematical expectation
We will learn many probability distributions, it's important to introduce concepts in summarizing their key characteristics.

- Expectation
- Variance
$>$ Motivation Example.
A man proposes a game: let the other player throw a die and the player receives payment as follows:

$$
\begin{aligned}
A=\{1,2,3\} & \rightarrow 1 \text { dollar } \\
B=\{4,5\} & \rightarrow 2 \text { dollars } \\
C=\{6\} & \rightarrow 3 \text { dollars }
\end{aligned}
$$

$$
X: S \triangleq A \bigcup B \bigcup C \rightarrow X(S)=\{1,2,3\} .
$$

Now let $X$ be a RV to represent the payment, the pmf of $X$ is: $f(x)=\frac{4-x}{6}, \quad x=1,2,3$ $f: X(S) \rightarrow\{1 / 6,1 / 3,1 / 2\}$

- The man charge the player 2 dollars for each play. Can the man make profit if the game is repeated endlessly?

Solution. Payment of
$\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ occurs $\left[\begin{array}{l}3 / 6 \\ 2 / 6 \\ 1 / 6\end{array}\right]$ of the times.

Longrun average value of $X$ The average payment is $1 \cdot 3 / 6+2 \cdot 2 / 6+3 \cdot 1 / 6=5 / 3$. $=\boldsymbol{E}(\boldsymbol{X})$ So the man can earn $2-5 / 3=1 / 3$ per play on average.

More generally, we are interested in long run average value of a function of $X$, say $g(X)$.

## Definition [ Expectation]

Assume $X$ is a discrete RV with range space $X(S)$ and $f(x)$ is its pmf. If $\sum_{x \in X(S)} g(x) f(x)$ exists, then it is called the expectation or the expected value of $g(X)$, denoted as $\mathbb{E}[g(X)]$. That is,

$$
\mathbb{E}[g(X)]=\sum_{x \in X(S)} g(x) f(x) .
$$

## Example 1

Let $X$ be a RV with $X(S)=\{-1,0,1\}$ and its pmf is $f(x)=1 / 3$ for any $x \in X(S)$. What is $\mathbb{E}\left[X^{2}\right]$ ?

Solution. $\mathbb{E}\left[X^{2}\right]=\sum_{x \in X(S)} x^{2} f(x)=(-1)^{2} \cdot 1 / 3+0^{2} \cdot 1 / 3+1^{2} \cdot 1 / 3=2 / 3$.

## $>$ Properties of mathematical expectation

## Theorem 2.2-1

Consider a RV $X: S \rightarrow X(S)$ and its pmf $f: X(S) \rightarrow[0,1]$. When the mathematical expectation exists, it satisfies the following properties:

- If $c$ is a constant, then $\mathbb{E}[c]=c$.
- If $c$ is a constant, and $g$ is a function,

$$
\mathbb{E}[c g(X)]=c \mathbb{E}[g(X)] .
$$

- If $c_{1}, c_{2}$ are constants, and $g_{1}, g_{2}$ are functions,

$$
\mathbb{E}\left[c_{1} g_{1}(X)+c_{2} g_{2}(X)\right]=c_{1} \mathbb{E}\left[g_{1}(X)\right]+c_{2} \mathbb{E}\left[g_{2}(X)\right]
$$

## Example 2

Let $g(x)=(x-b)^{2}$, where $b$ is a constant to be chosen. Suppose $\mathbb{E}\left[(X-b)^{2}\right]$ exists. Find the value of $b$ such that $\mathbb{E}\left[(X-b)^{2}\right]$ is minimal.
Solution. Notice that

$$
\begin{aligned}
h(b) & \triangleq \mathbb{E}\left[(X-b)^{2}\right]=\mathbb{E}\left[X^{2}-2 b \cdot X+b^{2}\right] \\
& =\mathbb{E}\left[X^{2}\right]-2 b \cdot \mathbb{E}[X]+b^{2}
\end{aligned}
$$

Besides,

$$
\frac{\partial h(b)}{\partial b}=-2 \mathbb{E}[X]+2 b, \quad \frac{\partial^{2} h(b)}{\partial b^{2}}=2>0
$$

Therefore, when $\frac{\partial h(b)}{\partial b}=0, \mathbb{E}\left[(X-b)^{2}\right]$ is minimal.
Then $b=\mathbb{E}[X]$.

## Mean is the Minimum Mean

Squared Error (MMSE)
estimator.

## Section 2.3 Special mathematical expectation

$>$ Mean of RV: The expectation of $X$ is also called the mean of $X$.

$$
\mathbb{E}[X]=\sum_{x \in X(S)} x f(x)=\sum_{i=1}^{k} u_{i} f\left(u_{i}\right)
$$

$>$ Mechanic Interpretation:

- $u_{i}$ : the distance of the $i$-th point from the origin.
- $f\left(u_{i}\right)$ : the weight of the $i$-th point.
- $u_{i} f\left(u_{i}\right)$ : a moment having a moment arm of length $u_{i}$.
- $\mathbb{E}[X]$ : the 1 st order moment about the system; the centroid.


## Why $\mathbb{E}[X]$ is the centroid?

If we choose $\mathbb{E}[X]$ as the new origin, then we compute the 1 st order moment again:

$$
\mathbb{E}[X-E[X]]=0
$$

Hence, the 1 st order moment about $\mathbb{E}[X]$ is zero, i.e., $\mathbb{E}[X]$ is centroid.

## Variance of RV

$$
\begin{aligned}
\operatorname{Var}[X] & \triangleq \mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]=\sum_{x \in X(S)}(x-\mathbb{E}[X])^{2} f(x) \\
& =\mathbb{E}\left[X^{2}-2 X \mathbb{E}[X]+(\mathbb{E}[X])^{2}\right] \\
& =\mathbb{E}\left[X^{2}\right]-2 \mathbb{E}[X \mathbb{E}[X]]+(\mathbb{E}[X])^{2} \\
& =\mathbb{E}\left[X^{2}\right]-2 \mathbb{E}[X] \cdot \mathbb{E}[X]+(\mathbb{E}[X])^{2} \\
& =\mathbb{E}\left[X^{2}\right]-(\mathbb{E}[X])^{2}
\end{aligned}
$$

- The positive square root of the variance of the $\mathrm{RV} X$ is called the standard deviation, denoted as $\delta_{X}$.


## Example 1:

Let $X$ equal to the number of spots after a 6 -sided die is rolled. The probability model is

$$
f(x)=P(X=i)=1 / 6, \quad i=1,2, \ldots, 6 .
$$

Mean of $X: \mathbb{E}[X]=1 / 6 *(1+2+\cdots+6)=7 / 2$.
Variance of $X: \operatorname{Var}[X]=\mathbb{E}\left[X^{2}\right]-(\mathbb{E}[X])^{2}=\frac{91}{6}-\frac{49}{4}=\frac{35}{12}$

## Example 2 [ Interpretational standard deviation]

Let $X$ have $\operatorname{pmf} f(x)=1 / 3$ for $x=-1,0,1$, then


$$
\mathbb{E}[X]=0, \quad \operatorname{Var}[X]=2 / 3, \quad \delta_{X}=\sqrt{2 / 3}
$$

Let $Y$ have $\operatorname{pmf} f(x)=1 / 3$ for $x=-2,0,2$, then


$$
\mathbb{E}[X]=0, \quad \operatorname{Var}[X]=8 / 3, \quad \delta_{X}=2 \sqrt{2 / 3}
$$

Standard deviation is a measure of the dispersion or spread of the points belonging to the range space of RV.
$>$ Properties of variance
Let $X$ be a RV, then

$$
\operatorname{Var}[c]=0, \quad \operatorname{Var}[c X]=c^{2} \operatorname{Var}[X] .
$$

## $r$-th moment of the distribution

- Let $r$ be a positive integer. If $\mathbb{E}\left[X^{r}\right]=\sum_{x \in X(S)} x^{r} f(x)$ exists and is finite, then it is called the $r$-th moment of the distribution about the origin.
- In addition, $\mathbb{E}\left[(X-b)^{r}\right]=\sum_{x \in X(S)}(x-b)^{r} f(x)$ is called the $r$-th moment of the distribution about $b$.
- $\mathbb{E}\left[(X)_{r}\right] \triangleq \mathbb{E}[X(X-1) \cdots(X-r+1)]$ is called the $r$-th factorial moment.
- Mean
- Variance
- Standard deviation
$\square$ moments

Characteristics of
$\rightarrow$ distribution of
probability

We now define a function that will help us generate the moments of a distribution:

## Definition [ Moment generating function (mgf)]

Let $X$ be a discrete RV with range space $X(S)$. If there exists $h>0$ such that $\mathbb{E}\left[e^{t X}\right]=\sum_{x \in X(S)} e^{t x} f(x)$ exists and is finite for $-h<t<h$, then the function defined by $M(t)=\mathbb{E}\left[e^{t X}\right]$ is called the moment-generating function of $X$.
$>$ Properties of mgf:
I. $\quad M(0)=1$.
II. If two RVs have the same mgf, they must have the same distribution of probability.

## Example 3:

Suppose $X$ has the mgf

$$
M(t)=e^{t} \cdot \frac{3}{6}+e^{2 t} \cdot \frac{2}{6}+e^{3 t} \cdot \frac{1}{6}, \quad-\infty<t<\infty,
$$

then the support of the $\mathrm{pmf} f(x)$ of $X$ is $S=\{1,2,3\}$, and the associated pmf $f(x)=\frac{4-x}{6}, x=1,2,3$.

$$
\begin{aligned}
M^{\prime}(t) & =\sum_{x \in X(S)} x e^{t x} f(x) \\
M^{\prime \prime}(t) & =\sum_{x \in X(S)} x^{2} e^{t x} f(x) \quad \text { Noted } \\
M^{(r)}(t) & =\sum_{x \in X(S)} x^{r} e^{t x} f(x)
\end{aligned}
$$



$$
\text { in } 1^{\text {st }}, 2^{\text {nd }}, \ldots \text { order }
$$

- Interchange of the differentiation and summation.

Putting $t=0$, we find $M^{\prime}(0)=\mathbb{E}[X], M^{\prime \prime}(0)=\mathbb{E}\left[X^{2}\right], M^{(r)}(0)=\mathbb{E}\left[X^{r}\right]$.
Remark: The moments can be computed by differentiating $M(t)$ !

## Example 4:

Suppose $X$ has the geometric distribution, that is, the pmf of $X$ is

$$
f(x)=q^{x-1} p, \quad x=1,2, \ldots, n, \ldots, \quad p \triangleq 1-q
$$

Then the mgf of $X$ is

$$
\begin{aligned}
M(t) & =\mathbb{E}\left[e^{t X}\right]=\sum_{x=1}^{\infty} e^{t x} \cdot q^{x-1} p=\frac{p}{q} \sum_{x=1}^{\infty}\left(q e^{t}\right)^{x} \\
& =\frac{p}{q}\left[\left(q e^{t}\right)+\left(q e^{t}\right)^{2}+\cdots\right] \\
& =\frac{p}{q} \frac{q e^{t}}{1-q e^{t}}=\frac{p e^{t}}{1-q e^{t}}, \quad \text { provided that } q e^{t}<1 \Longleftrightarrow t<-\ln q
\end{aligned}
$$

To find the mean and variance of $X$,

$$
\begin{aligned}
& M^{\prime}(t)=\frac{p e^{t}}{1-q e^{t}}-\frac{\left(p e^{t}\right)\left(-q e^{t}\right)}{\left(1-q e^{t}\right)^{2}}=\frac{p e^{t}}{\left(1-q e^{t}\right)^{2}} \\
& M^{\prime \prime}(t)=\frac{p e^{t}\left(1+q e^{t}\right)}{\left(1-q e^{t}\right)^{3}}
\end{aligned}
$$

$$
\begin{aligned}
M^{\prime}(0) & =\mathbb{E}[X]=\frac{p}{(1-q)^{2}}=\frac{1}{p} \\
M^{\prime \prime}(0) & =\mathbb{E}\left[X^{2}\right]=\frac{1+q}{p^{2}} \\
\operatorname{Var}[X] & =\mathbb{E}\left[X^{2}\right]-(\mathbb{E}[X])^{2}=\frac{1+q}{p^{2}}-\frac{1}{p^{2}}=\frac{q}{p^{2}}
\end{aligned}
$$

