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Scatter Diagram
• Many problems in engineering and science involve exploring the relationships between two
or more variables.
• Regression analysis is a statistical technique that is very useful for these types of
problems.
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Simple Linear Regression

iii XY ebb ++= 10

Based on the scatter diagram, it is probably reasonable to assume that the mean of
the random variable Y is related to X by the following simple linear regression model:

ni ,,2,1 !=

Intercept Slope
ie

Random error

where the slope and intercept of the line are called regression coefficients.

•The case of simple linear regression considers a single regressor or predictor x and a
dependent or response variable Y.

Response Regressor or Predictor

!!ε i ~N(0,σ
2)
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Mean response

ie

406 CHAPTER 11 SIMPLE LINEAR REGRESSION AND CORRELATION

previously, the expected value of Y for each value of x is

where the intercept !0 and the slope !1 are unknown regression coefficients. We assume that
each observation, Y, can be described by the model

(11-2)

where " is a random error with mean zero and (unknown) variance #2. The random errors cor-
responding to different observations are also assumed to be uncorrelated random variables.

Suppose that we have n pairs of observations (x1, y1), (x2, y2), p , (xn, yn). Figure 11-3
shows a typical scatter plot of observed data and a candidate for the estimated regression
line. The estimates of !0 and !1 should result in a line that is (in some sense) a “best fit” to
the data. The German scientist Karl Gauss (1777–1855) proposed estimating the parameters
!0 and !1 in Equation 11-2 to minimize the sum of the squares of the vertical deviations in
Fig. 11-3.

We call this criterion for estimating the regression coefficients the method of least
squares. Using Equation 11-2, we may express the n observations in the sample as

(11-3)

and the sum of the squares of the deviations of the observations from the true regression 
line is

(11-4)

The least squares estimators of !0 and !1, say, and must satisfy
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Figure 11-3 Deviations of the data from the
estimated regression model.
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Simple Linear Regression
The method of least squares is used to estimate the parameters, β0 and β1 by
minimizing the sum of the squares of the vertical deviations in Figure 11-3.

Figure 11-3 Deviations of the data from the estimated regression model.

sum of the squares of the error

Minimize

Least Square Normal Equations



6

Least Square Estimates

Alternative 
Notation
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Fitted (estimated) 
regression model
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Simplifying these two equations yields

(11-6)

Equations 11-6 are called the least squares normal equations. The solution to the normal
equations results in the least squares estimators and !̂1.!̂0
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The least squares estimates of the intercept and slope in the simple linear regression
model are

(11-7)

(11-8)
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The fitted or estimated regression line is therefore

(11-9)

Note that each pair of observations satisfies the relationship

where ei " yi % is called the residual. The residual describes the error in the fit of the
model to the ith observation yi. Later in this chapter we will use the residuals to provide
information about the adequacy of the fitted model.

Notationally, it is occasionally convenient to give special symbols to the numerator and
denominator of Equation 11-8. Given data (x1, y1), (x2, y2), p , (xn, yn), let
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Example 1: Gas purity 

Find the least square estimates of the simple linear regression describing the relationship
between Purity (y) and Hydrocarbon Levels (x).
Also, calculate the predicted purity when hydrocarbon level is 1.01. Find the prediction error.
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data1 <- read.table("Example_1.txt", header=FALSE)
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Fitted model

408 CHAPTER 11 SIMPLE LINEAR REGRESSION AND CORRELATION

Computer software programs are widely used in regression modeling. These programs
typically carry more decimal places in the calculations. Table 11-2 shows a portion of the
output from Minitab for this problem. The estimates and are highlighted. In subse-
quent sections we will provide explanations for the information provided in this computer
output.

!̂1!̂0

EXAMPLE 11-1 Oxygen Purity
We will fit a simple linear regression model to the oxygen
purity data in Table 11-1. The following quantities may be
computed:
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20
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20

i"1
 yi " 1,843.21

Therefore, the least squares estimates of the slope and inter-
cept are

and

The fitted simple linear regression model (with the coefficients
reported to three decimal places) is

This model is plotted in Fig. 11-4, along with the sample data.
Practical Interpretation: Using the regression model, we

would predict oxygen purity of " 89.23% when the
hydrocarbon level is x " 1.00%. The purity 89.23% may be
interpreted as  an estimate of the true population mean purity
when x " 1.00%, or as an estimate of a new observation
when x = 1.00%. These estimates are, of course, subject to
error; that is, it is unlikely that a future observation on purity
would be exactly 89.23% when the hydrocarbon level is
1.00%. In subsequent sections we will see how to use confi-
dence intervals and prediction intervals to describe the error
in estimation from a regression model.
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Results using R
Call:
lm(formula = data1[, 2] ~ data1[, 1])

Residuals:
Min       1Q   Median       3Q      Max 

-1.83029 -0.73334  0.04497  0.69969  1.96809 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept)   74.283 1.593   46.62  < 2e-16 ***
data1[, 1]    14.947 1.317   11.35 1.23e-09 ***
---
Signif. codes:  
0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.087 on 18 degrees of freedom
Multiple R-squared:  0.8774, Adjusted R-squared:  0.8706 
F-statistic: 128.9 on 1 and 18 DF,  p-value: 1.227e-09
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Example 2: Diabetes and Obesity
• Diabetes and obesity are serious health concerns in the US. 

Measuring the amount of body fat of a person is one way to 
monitor body weight control. To measure body fat accurately 
one needs x-ray machine.

• BMI = mass (kg) / (height(m))^2 is used as a proxy to body 
fat. 

• In a study of 250 men at Brigham Young U, both BMI x and 
body fat y were measured. The summary statistics are:

Fit a linear regression model 
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Body fat example 
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Continue: body fat vs BMI

• Use the equation of the fitted line to predict that 
body fat would be observed, on average, for a 
man with BMI = 30

• Suppose the observed body fat of a man with a 
BMI of 25 is 25%, find the residual for that 
observation. 
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For a man 13142 30 use our

model predicted body fat

Y 1.846 27.652

1.846 30 27.652

27.728

For 13142 25 use our model

predicted body fat

y 1.846 25 27 652

18.498
observed Y is 25

underestimate residual b J
25 18.498
6.502
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Example 3: sale price and taxes
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11-4. An article in Technometrics by S. C. Narula and J. F.
Wellington [“Prediction, Linear Regression, and a Minimum
Sum of Relative Errors” (Vol. 19, 1977)] presents data on the
selling price and annual taxes for 24 houses. The data are
shown in the following table.

Taxes
Sale (Local, School),

Price/1000 County)/1000
25.9 4.9176
29.5 5.0208
27.9 4.5429
25.9 4.5573
29.9 5.0597
29.9 3.8910
30.9 5.8980
28.9 5.6039
35.9 5.8282
31.5 5.3003
31.0 6.2712
30.9 5.9592

Taxes
Sale (Local, School),

Price/1000 County)/1000
30.0 5.0500
36.9 8.2464
41.9 6.6969
40.5 7.7841
43.9 9.0384
37.5 5.9894
37.9 7.5422
44.5 8.7951
37.9 6.0831
38.9 8.3607
36.9 8.1400
45.8 9.1416

(a) Assuming that a simple linear regression model is
appropriate, obtain the least squares fit relating selling
price to taxes paid. What is the estimate of !2?

(b) Find the mean selling price given that the taxes paid are
x " 7.50.

(c) Calculate the fitted value of y corresponding to x "
5.8980. Find the corresponding residual.

(d) Calculate the fitted for each value of xi used to fit the
model. Then construct a graph of versus the correspon-
ding observed value yi and comment on what this plot
would look like if the relationship between y and x was a
deterministic (no random error) straight line. Does the
plot actually obtained indicate that taxes paid is an
effective regressor variable in predicting selling price?

11-5. The number of pounds of steam used per month by a
chemical plant is thought to be related to the average ambient
temperature (in# F) for that month. The past year’s usage and
temperature are shown in the following table:

ŷi
ŷi

Month Temp. Usage/1000
Jan. 21 185.79
Feb. 24 214.47
Mar. 32 288.03
Apr. 47 424.84
May 50 454.58
June 59 539.03

Month Temp. Usage/1000
July 68 621.55
Aug. 74 675.06
Sept. 62 562.03
Oct. 50 452.93
Nov. 41 369.95
Dec. 30 273.98

(a) Assuming that a simple linear regression model is appro-
priate, fit the regression model relating steam usage (y) to
the average temperature (x). What is the estimate of !2?
Graph the regression line.

(b) What is the estimate of expected steam usage when the
average temperature is 55#F?

(c) What change in mean steam usage is expected when the
monthly average temperature changes by 1#F?

(d) Suppose the monthly average temperature is 47#F. Calculate
the fitted value of y and the corresponding residual.

11-6. The following table presents the highway gasoline
mileage performance and engine displacement for Daimler-
Chrysler vehicles for model year 2005 (source: U.S. Environ-
mental Protection Agency).
(a) Fit a simple linear model relating highway miles per gal-

lon ( y) to engine displacement (x) in cubic inches using
least squares.

(b) Find an estimate of the mean highway gasoline mileage
performance for a car with 150 cubic inches engine
displacement.

(c) Obtain the fitted value of y and the corresponding residual
for a car, the Neon, with an engine displacement of 122
cubic inches.

Engine 
Displacement MPG

Carline (in3) (highway)
300C/SRT-8 215 30.8
CARAVAN 2WD 201 32.5
CROSSFIRE ROADSTER 196 35.4
DAKOTA PICKUP 2WD 226 28.1
DAKOTA PICKUP 4WD 226 24.4
DURANGO 2WD 348 24.1
GRAND CHEROKEE 2WD 226 28.5
GRAND CHEROKEE 4WD 348 24.2
LIBERTY/CHEROKEE 2WD 148 32.8
LIBERTY/CHEROKEE 4WD 226 28
NEON/SRT-4/SX 2.0 122 41.3
PACIFICA 2WD 215 30.0
PACIFICA AWD 215 28.2
PT CRUISER 148 34.1
RAM 1500 PICKUP 2WD 500 18.7
RAM 1500 PICKUP 4WD 348 20.3
SEBRING 4-DR 165 35.1
STRATUS 4-DR 148 37.9
TOWN & COUNTRY 2WD 148 33.8
VIPER CONVERTIBLE 500 25.9
WRANGLER/TJ 4WD 148 26.4
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data = read.table("house.txt",header=FALSE)

price = data[,1]

tax = data[,2]

plot(tax,price,xlab="Tax",ylab="Price")

abline(13.3202,3.3244)30 35 40 45

4
5

6
7

8
9

Price

Ta
x
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summary(model)

Call:
lm(formula = price ~ tax)

Residuals:
Min      1Q  Median      3Q     Max 

-3.8343 -2.3157 -0.3669  1.9787  6.3168 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept)  13.3202     2.5717   5.179 3.42e-05 ***
tax           3.3244     0.3903   8.518 2.05e-08 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.961 on 22 degrees of freedom
Multiple R-squared:  0.7673, Adjusted R-squared:  0.7568 
F-statistic: 72.56 on 1 and 22 DF,  p-value: 2.051e-08

model = lm(price~tax)

Regression model: 

taxprice

Prediction 
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Model Diagonosis
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Adequacy of Regression Model

Figure 11-9 Patterns for residual 
plots. (a) satisfactory, (b) funnel, 

(c) double bow, (d) nonlinear. 
[Adapted from Montgomery, 

Peck, and Vining (2001).]

Analysis of Residual Patterns is useful for checking:

• Independency assumption
• Constant variance

Plot residuals (ei) against
predicted response (ŷi)



20

House example residual plot

• model = lm(price~tax)
• res = resid(model)
• plot(price, res)
• abline(0, 0) 
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Adequacy of Regression Model

Histogram for residuals:

• Normality assumption

Histogram of res

res
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Adequacy of Regression Model

Boxplots:

• It is used to detect observations with large residuals (Outliers)

*

-1
.5

0.
0

1.
0
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Adequacy of Regression Model

Coefficient of Determination (R2)
R-square statistic

R2 is called the coefficient of determination and is often used to judge
the adequacy of a regression model.
0 ≤ R2 ≤ 1;
• We often refer (loosely) to R2 as the amount of variability in the data
explained or accounted for by the regression model.
• It is the square of the correlation coefficient between Y and X
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Figure 11-10 Normal probability plot of residuals,
Example 11-7.

Figure 11-11 Plot of residuals versus predicted oxygen
purity , Example 11-7.ŷ
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Table 11-4 Oxygen Purity Data from Example 11-1, Predicted Values, and Residuals

Hydrocarbon Oxygen Predicted Residual
Level, x Purity, y Value, e ! y "

1 0.99 90.01 89.081 0.929
2 1.02 89.05 89.530 "0.480
3 1.15 91.43 91.473 "0.043
4 1.29 93.74 93.566 0.174
5 1.46 96.73 96.107 0.623
6 1.36 94.45 94.612 "0.162
7 0.87 87.59 87.288 0.302
8 1.23 91.77 92.669 "0.899
9 1.55 99.42 97.452 1.968

10 1.40 93.65 95.210 "1.560

ŷŷ
Hydrocarbon Oxygen Predicted Residual

Level, x Purity, y Value, e ! y "

11 1.19 93.54 92.071 1.469
12 1.15 92.52 91.473 1.047
13 0.98 90.56 88.932 1.628
14 1.01 89.54 89.380 0.160
15 1.11 89.85 90.875 "1.025
16 1.20 90.39 92.220 "1.830
17 1.26 93.25 93.117 0.133
18 1.32 93.41 94.014 "0.604
19 1.43 94.98 95.658 "0.678
20 0.95 87.33 88.483 "1.153

ŷŷ

The coefficient of determination is

(11-34)R2 !
SSR
SST

! 1 "
SSE
SST

R2

11-7.2 Coefficient of Determination (R2)

A widely used measure for a regression model is the following ratio of sum of squares.

The coefficient is often used to judge the adequacy of a regression model. Subsequently, we
will see that in the case where X and Y are jointly distributed random variables, R2 is the square
of the correlation coefficient between X and Y. From the analysis of variance identity in
Equations 11-24 and 11-25, 0 # R2 # 1. We often refer loosely to R2 as the amount of vari-
ability in the data explained or accounted for by the regression model. For the oxygen purity
regression model, we have R2 ! SSR SST ! 152.13 173.38 ! 0.877; that is, the model ac-
counts for 87.7% of the variability in the data.

$$
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Oxygen purity example: 

The model accounts for 87.7% of the variability in the data
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Interpretation

R = 0.38 R = 0.874
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Estimation of Variance (σ2)

The error sum of squares is
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An unbiased estimator of σ2 is

where SSE can be easily computed using (easier formula)
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Table 11-2 Minitab Output for the Oxygen Purity Data in Example 11-1

Regression Analysis
The regression equation is 

Purity ! 74.3 " 14.9 HC Level

Predictor Coef SE Coef T P
Constant 74.283 1.593 46.62 0.000
HC Level 14.947 1.317 11.35 0.000

S ! 1.087 R-Sq ! 87.7% R-Sq (adj) ! 87.1%

Analysis of Variance

Source DF SS MS F P
Regression 1 152.13 152.13 128.86 0.000
Residual Error 18 21.25 SSE 1.18
Total 19 173.38

Predicted Values for New Observations

New Obs Fit SE Fit 95.0% CI 95.0% PI
1 89.231 0.354 (88.486, 89.975) (86.830, 91.632)

Values of Predictors for New Observations

New Obs HC Level
1 1.00

#̂ 2

$̂1

$̂0

Estimating #2

There is actually another unknown parameter in our regression model, #2 (the variance of the
error term %). The residuals are used to obtain an estimate of #2. The sum of
squares of the residuals, often called the error sum of squares, is

(11-12)

We can show that the expected value of the error sum of squares is E(SSE) ! (n & 2)#2.
Therefore an unbiased estimator of #2 is

SSE ! a
n

i!1
 ei2 ! a

n

i!1
1 yi & ŷi22

ei ! yi & ŷi

(11-14)SSE ! SST & $̂1Sxy

(11-13)#̂2 !
SSE
n & 2

Estimator 
of Variance

Computing SSE using Equation 11-12 would be fairly tedious. A more convenient computing
formula can be obtained by substituting into Equation 11-12 and simplifying.
The resulting computing formula is

ŷi ! $̂0 " $̂1xi
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summary(model)

Call:
lm(formula = price ~ tax)

Residuals:
Min      1Q  Median      3Q     Max 

-3.8343 -2.3157 -0.3669  1.9787  6.3168 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept)  13.3202     2.5717   5.179 3.42e-05 ***
tax           3.3244     0.3903   8.518 2.05e-08 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.961 on 22 degrees of freedom
Multiple R-squared:  0.7673, Adjusted R-squared:  0.7568 
F-statistic: 72.56 on 1 and 22 DF,  p-value: 2.051e-08

model = lm(price~tax)
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Confidence interval
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Mean and variance of the slope estimator

Confidence Interval for Regression Coefficients

Mean and variance of the intercept estimator11-4 HYPOTHESIS TESTS IN SIMPLE LINEAR REGRESSION 415

For the intercept, we can show in a similar manner that

(11-17)

Thus, is an unbiased estimator of the intercept !0. The covariance of the random vari-
ables and is not zero. It can be shown (see Exercise 11-98) that cov( ) "
#$2 .

The estimate of $2 could be used in Equations 11-16 and 11-17 to provide estimates of
the variance of the slope and the intercept. We call the square roots of the resulting variance
estimators the estimated standard errors of the slope and intercept, respectively.

x%Sxx
!̂0, !̂1!̂1!̂0

!̂0

E1!̂02 " !0 and V1!̂02 " $2 c 1n &
x2

Sxx
d

In simple linear regression the estimated standard error of the slope and the 
estimated standard error of the intercept are 

respectively, where is computed from Equation 11-13.$̂2

se1!̂12 " B $̂2

Sxx
  and  se1!̂02 " B$̂2 c 1n &

x2

Sxx
d

Estimated
Standard 

Errors

The Minitab computer output in Table 11-2 reports the estimated standard errors of the slope
and intercept under the column heading “SE coeff.”

11-4 HYPOTHESIS TESTS IN SIMPLE LINEAR REGRESSION

An important part of assessing the adequacy of a linear regression model is testing statistical
hypotheses about the model parameters and constructing certain confidence intervals. Hypothesis
testing in simple linear regression is discussed in this section, and Section 11-5 presents methods
for constructing confidence intervals. To test hypotheses about the slope and intercept of the re-
gression model, we must make the additional assumption that the error component in the
model, ', is normally distributed. Thus, the complete assumptions are that the errors are normally
and independently distributed with mean zero and variance $2, abbreviated NID(0, $2).

11-4.1 Use of t-Tests

Suppose we wish to test the hypothesis that the slope equals a constant, say, !1,0. The appro-
priate hypotheses are

(11-18)

where we have assumed a two-sided alternative. Since the errors 'i are NID(0, $2), it follows
directly that the observations Yi are NID(!0 & !1xi, $2). Now is a linear combination of !̂1

H1: !1 ( !1,0

H0: !1 " !1,0
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For the intercept, we can show in a similar manner that

(11-17)

Thus, is an unbiased estimator of the intercept !0. The covariance of the random vari-
ables and is not zero. It can be shown (see Exercise 11-98) that cov( ) "
#$2 .

The estimate of $2 could be used in Equations 11-16 and 11-17 to provide estimates of
the variance of the slope and the intercept. We call the square roots of the resulting variance
estimators the estimated standard errors of the slope and intercept, respectively.

x%Sxx
!̂0, !̂1!̂1!̂0

!̂0

E1!̂02 " !0 and V1!̂02 " $2 c 1n &
x2

Sxx
d

In simple linear regression the estimated standard error of the slope and the 
estimated standard error of the intercept are 

respectively, where is computed from Equation 11-13.$̂2

se1!̂12 " B $̂2

Sxx
  and  se1!̂02 " B$̂2 c 1n &

x2

Sxx
d

Estimated
Standard 

Errors

The Minitab computer output in Table 11-2 reports the estimated standard errors of the slope
and intercept under the column heading “SE coeff.”

11-4 HYPOTHESIS TESTS IN SIMPLE LINEAR REGRESSION

An important part of assessing the adequacy of a linear regression model is testing statistical
hypotheses about the model parameters and constructing certain confidence intervals. Hypothesis
testing in simple linear regression is discussed in this section, and Section 11-5 presents methods
for constructing confidence intervals. To test hypotheses about the slope and intercept of the re-
gression model, we must make the additional assumption that the error component in the
model, ', is normally distributed. Thus, the complete assumptions are that the errors are normally
and independently distributed with mean zero and variance $2, abbreviated NID(0, $2).

11-4.1 Use of t-Tests

Suppose we wish to test the hypothesis that the slope equals a constant, say, !1,0. The appro-
priate hypotheses are

(11-18)

where we have assumed a two-sided alternative. Since the errors 'i are NID(0, $2), it follows
directly that the observations Yi are NID(!0 & !1xi, $2). Now is a linear combination of !̂1

H1: !1 ( !1,0

H0: !1 " !1,0
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Mean and variance of the slope estimator

Confidence Interval for Slope

xx

xy

S
S

=1̂b xy 10
ˆˆ bb -=

The width of confidence interval indicates the overall quality of regression line.
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Confidence Interval for Intercept

Mean and variance of the intercept estimator

xx

xy

S
S

=1̂b xy 10
ˆˆ bb -=

The width of confidence interval indicates the overall quality of regression line.
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Gas purity example

11-5 CONFIDENCE INTERVALS 421

11-5 CONFIDENCE INTERVALS

11-5.1 Confidence Intervals on the Slope and Intercept

In addition to point estimates of the slope and intercept, it is possible to obtain confidence
interval estimates of these parameters. The width of these confidence intervals is a measure of
the overall quality of the regression line. If the error terms, !i, in the regression model are
normally and independently distributed,

are both distributed as t random variables with n " 2 degrees of freedom. This leads to the
following definition of 100(1 " #)% confidence intervals on the slope and intercept.

1$̂1 " $12%2&̂2%Sx x and 1$̂0 " $02%B&̂2 c 1n '
x2

Sx x
d

Under the assumption that the observations are normally and independently distributed,
a 100(1 " #)% confidence interval on the slope $1 in simple linear regression is

(11-29)

Similarly, a 100(1 " #)% confidence interval on the intercept $0 is

(11-30)( $0 ( $̂0 ' t#%2, n"2 B&̂2 c 1n '
x 

2

Sx x
d

$̂0 " t#%2, n"2  B&̂2 c 1n '
x2

Sx x
d

$̂1 " t#%2, n"2  B &̂2

Sx x
( $1 ( $̂1 ' t#%2, n"2  B &̂2

Sx x

Confidence
Intervals on
Parameters

EXAMPLE 11-4 Oxygen Purity Confidence Interval on the Slope
We will find a 95% confidence interval on the slope of the re-
gression line using the data in Example 11-1. Recall that

Sxx ) 0.68088, and (see Table 11-2).
Then, from Equation 11-29 we find

or

' 2.101 A 1.18
0.68088

14.947 " 2.101 A 1.18
0.68088

( $1 ( 14.947

$̂1 " t0.025,18  B &̂2

Sxx
( $1 ( $̂1 ' t0.025,18  B &̂2

Sxx

&̂2 ) 1.18$̂1 ) 14.947,

This simplifies to

Practical Interpretation: This CI does not include zero, so
there is strong evidence (at # ) 0.05) that the slope is not zero.
The CI is reasonably narrow ( 2.766) because the error vari-
ance is fairly small. 

*

12.181 ( $1 ( 17.713

11-5.2 Confidence Interval on the Mean Response

A confidence interval may be constructed on the mean response at a specified value of x, say,
x0. This is a confidence interval about E(Y !x0) ) +Y !x0

and is often called a confidence interval
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Computer software programs are widely used in regression modeling. These programs
typically carry more decimal places in the calculations. Table 11-2 shows a portion of the
output from Minitab for this problem. The estimates and are highlighted. In subse-
quent sections we will provide explanations for the information provided in this computer
output.

!̂1!̂0

EXAMPLE 11-1 Oxygen Purity
We will fit a simple linear regression model to the oxygen
purity data in Table 11-1. The following quantities may be
computed:

Sx x " a
20

i"1
x i

2 #

aa20

i"1
xib2

20
" 29.2892 #

123.9222
20

a
20

i"1
xi yi " 2,214.6566

a
20

i"1
 yi2 " 170,044.5321 a

20

i"1
xi2 " 29.2892

x " 1.1960 y " 92.1605

n " 20 a
20

i"1
xi " 23.92 a

20

i"1
 yi " 1,843.21

Therefore, the least squares estimates of the slope and inter-
cept are

and

The fitted simple linear regression model (with the coefficients
reported to three decimal places) is

This model is plotted in Fig. 11-4, along with the sample data.
Practical Interpretation: Using the regression model, we

would predict oxygen purity of " 89.23% when the
hydrocarbon level is x " 1.00%. The purity 89.23% may be
interpreted as  an estimate of the true population mean purity
when x " 1.00%, or as an estimate of a new observation
when x = 1.00%. These estimates are, of course, subject to
error; that is, it is unlikely that a future observation on purity
would be exactly 89.23% when the hydrocarbon level is
1.00%. In subsequent sections we will see how to use confi-
dence intervals and prediction intervals to describe the error
in estimation from a regression model.

ŷ

ŷ " 74.283 $ 14.947 x

!̂0 " y # !̂1x " 92.1605 # 114.9474821.196 " 74.28331

!̂1 "
Sx y

Sx x
"

10.17744
0.68088

" 14.94748
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Figure 11-4 Scatter
plot of oxygen 
purity y versus
hydrocarbon level x
and regression model

.ŷ " 74.283 $ 14.947x

" 0.68088

and

 " 2,214.6566 #
123.922 11,843.212

20
" 10.17744

 Sx y " a
20

i"1
xiyi #

aa20

i"1
xib aa20

i"1
 yib

20
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confint(model)
2.5 %   97.5 %

(Intercept) 70.93555 77.63108
data[, 1]   12.18107 17.71389
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Prediction interval

• Predicting response for new observation
• The new observation is independent of data used to 

build linear regression model
data <- read.table("Example_1.txt")
> x <- data[,1]
> y <- data[,2]
> model <- lm(y~x)
> predict(model, data.frame(x = 1), interval=c(“prediction”))
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Gas Purity Example

because Y0 is independent of If we use to estimate !2, we can show that

has a t distribution with n " 2 degrees of freedom. From this we can develop the following
prediction interval definition.

Y0 " Ŷ0B!̂2 c 1 #
1
n #

1x0 " x 22
Sx x

d
!̂2Ŷ0.

424 CHAPTER 11 SIMPLE LINEAR REGRESSION AND CORRELATION

A 100(1 " $) % prediction interval on a future observation at the value x0 is
given by

(11-33)

The value is computed from the regression model ŷ0 % &̂0 # &̂1x0.ŷ0

' Y0 ' ŷ0 # t$( 2, n"2 B!̂2 c1 #
1
n #

1x0 " x 22
Sx x

d
ŷ0 " t$(2, n"2 B!̂2 c 1 #

1
n #

1x0 " x 22
Sx x

d
Y0

Prediction
Interval

Notice that the prediction interval is of minimum width at and widens as 
increases. By comparing Equation 11-33 with Equation 11-31, we observe that the prediction
interval at the point x0 is always wider than the confidence interval at x0. This results because
the prediction interval depends on both the error from the fitted model and the error associated
with future observations.

0  x0 " x 0x0 % x

EXAMPLE 11-6 Oxygen Purity Prediction Interval
To illustrate the construction of a prediction interval, suppose
we use the data in Example 11-1 and find a 95% prediction in-
terval on the next observation of oxygen purity at x0 % 1.00%.
Using Equation 11-33 and recalling from Example 11-5 that

, we find that the prediction interval is

which simplifies to 

86.83 ' y0 ' 91.63

 B1.18 c1 #
1

20
#
11.00 "1.196022

0.68088
d' Y0 ' 89.23 # 2.101 

89.23 " 2.101B1.18 c1 #
1

20
#
11.00 " 1.196022

0.68088
d

ŷ0 % 89.23

This is a reasonably narrow prediction interval.
Minitab will also calculate prediction intervals. Refer to

the output in Table 11-2. The 95% PI on the future observation
at x0 % 1.00 is shown in the display.

By repeating the foregoing calculations at different levels
of x0, we may obtain the 95% prediction intervals shown
graphically as the lower and upper lines about the fitted re-
gression model in Fig. 11-8. Notice that this graph also shows
the 95% confidence limits on calculated in Example 11-5.
It illustrates that the prediction limits are always wider than
the confidence limits.

)Y  0  x0
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Hypothesis Test
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Hypothesis Test on Regression Parameters

Suppose we wish to test

An appropriate test statistic would be

We would reject the null hypothesis if

Slope:

An appropriate test statistic would be

Suppose we wish to test
Intercept:

Confidence Intervals can also be used to test the above hypotheses.
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Hypothesis Test on Slope

An important special case of the hypotheses on the slope is

These hypotheses relate to the significance of regression.
Failure to reject H0 is equivalent to concluding that there is no linear relationship
between x and Y.
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Continue house price

Call:
lm(formula = tax ~ price)

Residuals:
Min      1Q  Median      3Q     Max 

-1.4262 -0.3310  0.1312  0.4967  1.3135 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept)  -1.5844     0.9514  -1.665     0.11    
price         0.2308     0.0271   8.518 2.05e-08 ***
---
Signif. codes:  
0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.7802 on 22 degrees of freedom
Multiple R-squared:  0.7673, Adjusted R-squared:  0.7568 
F-statistic: 72.56 on 1 and 22 DF,  p-value: 2.051e-08

Regression model: !!y =0.2308x −1.5844
pricetax
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Deal with non-linearity
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Regression on transformed variables

• Deal with non-linearity: Sometimes visual 
inspections, or prior knowledge, tells us that 
there are some non-linear factors in regression 
model

• Examples:

11-9 REGRESSION ON TRANSFORMD VARIABLE 437

11-9 REGRESSION ON TRANSFORMED VARIABLES

We occasionally find that the straight-line regression model Y ! "0 # "1x # $ is inappropriate
because the true regression function is nonlinear. Sometimes nonlinearity is visually deter-
mined from the scatter diagram, and sometimes, because of prior experience or underlying the-
ory, we know in advance that the model is nonlinear. Occasionally, a scatter diagram will exhibit
an apparent nonlinear relationship between Y and x. In some of these situations, a nonlinear
function can be expressed as a straight line by using a suitable transformation. Such nonlinear
models are called intrinsically linear.

As an example of a nonlinear model that is intrinsically linear, consider the exponential
function

This function is intrinsically linear, since it can be transformed to a straight line by a logarithmic
transformation

This transformation requires that the transformed error terms ln $ are normally and indepen-
dently distributed with mean 0 and variance %2.

Another intrinsically linear function is

By using the reciprocal transformation z ! 1!x, the model is linearized to

Sometimes several transformations can be employed jointly to linearize a function. For ex-
ample, consider the function

Letting , we have the linearized form

For examples of fitting these models, refer to Montgomery, Peck, and Vining (2006) or
Myers (1990).

Transformations can be very useful in many situations where the true relationship
between the response Y and the regressor x is not well approximated by a straight line. The
utility of a transformation is illustrated in the following example.

ln Y* ! "0 # "1x # $

Y* ! 1&Y

Y !
1

exp 1"0 # "
1
x # $2

Y ! "0 # "1z # $

Y ! "0 # "1 
a1
xb # $

ln Y ! ln "0 # "1 x # ln $

Y ! "0e"1x$

EXAMPLE 11-9 Windmill Power
A research engineer is investigating the use of a windmill to
generate electricity and has collected data on the DC output
from this windmill and the corresponding wind velocity. The
data are plotted in Figure 11-14 and listed in Table 11-5 (p.439).

Inspection of the scatter diagram indicates that the rela-
tionship between DC output Y and wind velocity (x) may be
nonlinear. However, we initially fit a straight-line model to the

data. The regression model is

The summary statistics for this model are R2 ! 0.8745,
, and F0 ! 160.26 (the P-value isMSE ! %̂2 ! 0.0557

ŷ ! 0.1309 # 0.2411 x

'0.0001).
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an apparent nonlinear relationship between Y and x. In some of these situations, a nonlinear
function can be expressed as a straight line by using a suitable transformation. Such nonlinear
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function

This function is intrinsically linear, since it can be transformed to a straight line by a logarithmic
transformation

This transformation requires that the transformed error terms ln $ are normally and indepen-
dently distributed with mean 0 and variance %2.

Another intrinsically linear function is

By using the reciprocal transformation z ! 1!x, the model is linearized to

Sometimes several transformations can be employed jointly to linearize a function. For ex-
ample, consider the function

Letting , we have the linearized form

For examples of fitting these models, refer to Montgomery, Peck, and Vining (2006) or
Myers (1990).

Transformations can be very useful in many situations where the true relationship
between the response Y and the regressor x is not well approximated by a straight line. The
utility of a transformation is illustrated in the following example.
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EXAMPLE 11-9 Windmill Power
A research engineer is investigating the use of a windmill to
generate electricity and has collected data on the DC output
from this windmill and the corresponding wind velocity. The
data are plotted in Figure 11-14 and listed in Table 11-5 (p.439).

Inspection of the scatter diagram indicates that the rela-
tionship between DC output Y and wind velocity (x) may be
nonlinear. However, we initially fit a straight-line model to the

data. The regression model is

The summary statistics for this model are R2 ! 0.8745,
, and F0 ! 160.26 (the P-value isMSE ! %̂2 ! 0.0557

ŷ ! 0.1309 # 0.2411 x
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We occasionally find that the straight-line regression model Y ! "0 # "1x # $ is inappropriate
because the true regression function is nonlinear. Sometimes nonlinearity is visually deter-
mined from the scatter diagram, and sometimes, because of prior experience or underlying the-
ory, we know in advance that the model is nonlinear. Occasionally, a scatter diagram will exhibit
an apparent nonlinear relationship between Y and x. In some of these situations, a nonlinear
function can be expressed as a straight line by using a suitable transformation. Such nonlinear
models are called intrinsically linear.

As an example of a nonlinear model that is intrinsically linear, consider the exponential
function

This function is intrinsically linear, since it can be transformed to a straight line by a logarithmic
transformation

This transformation requires that the transformed error terms ln $ are normally and indepen-
dently distributed with mean 0 and variance %2.

Another intrinsically linear function is

By using the reciprocal transformation z ! 1!x, the model is linearized to

Sometimes several transformations can be employed jointly to linearize a function. For ex-
ample, consider the function

Letting , we have the linearized form

For examples of fitting these models, refer to Montgomery, Peck, and Vining (2006) or
Myers (1990).

Transformations can be very useful in many situations where the true relationship
between the response Y and the regressor x is not well approximated by a straight line. The
utility of a transformation is illustrated in the following example.
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EXAMPLE 11-9 Windmill Power
A research engineer is investigating the use of a windmill to
generate electricity and has collected data on the DC output
from this windmill and the corresponding wind velocity. The
data are plotted in Figure 11-14 and listed in Table 11-5 (p.439).

Inspection of the scatter diagram indicates that the rela-
tionship between DC output Y and wind velocity (x) may be
nonlinear. However, we initially fit a straight-line model to the

data. The regression model is

The summary statistics for this model are R2 ! 0.8745,
, and F0 ! 160.26 (the P-value isMSE ! %̂2 ! 0.0557

ŷ ! 0.1309 # 0.2411 x

'0.0001).
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A plot of the residuals versus is shown in Figure 11-15.
This residual plot indicates model inadequacy and implies that
the linear relationship has not captured all of the information
in the wind speed variable. Note that the curvature that was ap-
parent in the scatter diagram of Figure 11-14 is greatly
amplified in the residual plots. Clearly some other model form
must be considered.

We might initially consider using a quadratic model such as

to account for the apparent curvature. However, the scatter di-
agram of Figure 11-14 suggests that as wind speed increases,
DC output approaches an upper limit of approximately 2.5.
This is also consistent with the theory of windmill operation.
Since the quadratic model will eventually bend downward as
wind speed increases, it would not be appropriate for these
data. A more reasonable model for the windmill data that in-
corporates an upper asymptote would be

y ! "0 # "1 
 
a1
xb # $

y ! "0 # "1 x # "2 
 
x2 # $

ŷi
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Figure 11-14 Plot of DC output y versus wind velocity x
for the windmill data.
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Figure 11-15 Plot of residuals ei versus fitted
values for the windmill data.ŷi
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Figure 11-16 Plot of DC output versus for the
windmill data.
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Figure 11-17 Plot of residuals versus 
fitted values for the transformed model
for the windmill data.

ŷi

Figure 11-16 is a scatter diagram with the transformed variable
. This plot appears linear, indicating that the reciprocal

transformation is appropriate. The fitted regression model is

The summary statistics for this model are R2 ! 0.9800,
, and F0 ! 1128.43 (the P value is

&0.0001).
A plot of the residuals from the transformed model ver-

sus is shown in Figure 11-17. This plot does not reveal any
serious problem with inequality of variance. The normal prob-
ability plot, shown in Figure 11-18, gives a mild indication
that the errors come from a distribution with heavier tails than
the normal (notice the slight upward and downward curve at
the extremes). This normal probability plot has the z-score
value plotted on the horizontal axis. Since there is no strong
signal of model inadequacy, we conclude that the transformed
model is satisfactory.

ŷ

MSE ! '̂2 ! 0.0089

ŷ ! 2.9789 ( 6.9345 x¿

x¿ ! 1%x
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A plot of the residuals versus is shown in Figure 11-15.
This residual plot indicates model inadequacy and implies that
the linear relationship has not captured all of the information
in the wind speed variable. Note that the curvature that was ap-
parent in the scatter diagram of Figure 11-14 is greatly
amplified in the residual plots. Clearly some other model form
must be considered.

We might initially consider using a quadratic model such as

to account for the apparent curvature. However, the scatter di-
agram of Figure 11-14 suggests that as wind speed increases,
DC output approaches an upper limit of approximately 2.5.
This is also consistent with the theory of windmill operation.
Since the quadratic model will eventually bend downward as
wind speed increases, it would not be appropriate for these
data. A more reasonable model for the windmill data that in-
corporates an upper asymptote would be
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ŷi

1.0

20

2.0

3.0

0.0
D

C 
ou

tp
ut

, y
4 6 8 10

Wind velocity, x

Figure 11-14 Plot of DC output y versus wind velocity x
for the windmill data.

0.4

0.2

0.0

–0.2

–0.4

–0.6

0.4

ei

0.8 1.2 1.6 2.0 2.4
y

Figure 11-15 Plot of residuals ei versus fitted
values for the windmill data.ŷi
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Figure 11-17 Plot of residuals versus 
fitted values for the transformed model
for the windmill data.

ŷi

Figure 11-16 is a scatter diagram with the transformed variable
. This plot appears linear, indicating that the reciprocal

transformation is appropriate. The fitted regression model is

The summary statistics for this model are R2 ! 0.9800,
, and F0 ! 1128.43 (the P value is

&0.0001).
A plot of the residuals from the transformed model ver-

sus is shown in Figure 11-17. This plot does not reveal any
serious problem with inequality of variance. The normal prob-
ability plot, shown in Figure 11-18, gives a mild indication
that the errors come from a distribution with heavier tails than
the normal (notice the slight upward and downward curve at
the extremes). This normal probability plot has the z-score
value plotted on the horizontal axis. Since there is no strong
signal of model inadequacy, we conclude that the transformed
model is satisfactory.

ŷ

MSE ! '̂2 ! 0.0089

ŷ ! 2.9789 ( 6.9345 x¿

x¿ ! 1%x
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Example 4: Wind-mill power
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We occasionally find that the straight-line regression model Y ! "0 # "1x # $ is inappropriate
because the true regression function is nonlinear. Sometimes nonlinearity is visually deter-
mined from the scatter diagram, and sometimes, because of prior experience or underlying the-
ory, we know in advance that the model is nonlinear. Occasionally, a scatter diagram will exhibit
an apparent nonlinear relationship between Y and x. In some of these situations, a nonlinear
function can be expressed as a straight line by using a suitable transformation. Such nonlinear
models are called intrinsically linear.

As an example of a nonlinear model that is intrinsically linear, consider the exponential
function

This function is intrinsically linear, since it can be transformed to a straight line by a logarithmic
transformation

This transformation requires that the transformed error terms ln $ are normally and indepen-
dently distributed with mean 0 and variance %2.

Another intrinsically linear function is

By using the reciprocal transformation z ! 1!x, the model is linearized to

Sometimes several transformations can be employed jointly to linearize a function. For ex-
ample, consider the function

Letting , we have the linearized form

For examples of fitting these models, refer to Montgomery, Peck, and Vining (2006) or
Myers (1990).

Transformations can be very useful in many situations where the true relationship
between the response Y and the regressor x is not well approximated by a straight line. The
utility of a transformation is illustrated in the following example.

ln Y* ! "0 # "1x # $

Y* ! 1&Y

Y !
1

exp 1"0 # "
1
x # $2

Y ! "0 # "1z # $

Y ! "0 # "1 
a1
xb # $

ln Y ! ln "0 # "1 x # ln $

Y ! "0e"1x$

EXAMPLE 11-9 Windmill Power
A research engineer is investigating the use of a windmill to
generate electricity and has collected data on the DC output
from this windmill and the corresponding wind velocity. The
data are plotted in Figure 11-14 and listed in Table 11-5 (p.439).

Inspection of the scatter diagram indicates that the rela-
tionship between DC output Y and wind velocity (x) may be
nonlinear. However, we initially fit a straight-line model to the

data. The regression model is

The summary statistics for this model are R2 ! 0.8745,
, and F0 ! 160.26 (the P-value isMSE ! %̂2 ! 0.0557

ŷ ! 0.1309 # 0.2411 x

'0.0001).
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A plot of the residuals versus is shown in Figure 11-15.
This residual plot indicates model inadequacy and implies that
the linear relationship has not captured all of the information
in the wind speed variable. Note that the curvature that was ap-
parent in the scatter diagram of Figure 11-14 is greatly
amplified in the residual plots. Clearly some other model form
must be considered.

We might initially consider using a quadratic model such as

to account for the apparent curvature. However, the scatter di-
agram of Figure 11-14 suggests that as wind speed increases,
DC output approaches an upper limit of approximately 2.5.
This is also consistent with the theory of windmill operation.
Since the quadratic model will eventually bend downward as
wind speed increases, it would not be appropriate for these
data. A more reasonable model for the windmill data that in-
corporates an upper asymptote would be
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Figure 11-14 Plot of DC output y versus wind velocity x
for the windmill data.
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Figure 11-17 Plot of residuals versus 
fitted values for the transformed model
for the windmill data.

ŷi

Figure 11-16 is a scatter diagram with the transformed variable
. This plot appears linear, indicating that the reciprocal

transformation is appropriate. The fitted regression model is

The summary statistics for this model are R2 ! 0.9800,
, and F0 ! 1128.43 (the P value is

&0.0001).
A plot of the residuals from the transformed model ver-

sus is shown in Figure 11-17. This plot does not reveal any
serious problem with inequality of variance. The normal prob-
ability plot, shown in Figure 11-18, gives a mild indication
that the errors come from a distribution with heavier tails than
the normal (notice the slight upward and downward curve at
the extremes). This normal probability plot has the z-score
value plotted on the horizontal axis. Since there is no strong
signal of model inadequacy, we conclude that the transformed
model is satisfactory.

ŷ

MSE ! '̂2 ! 0.0089

ŷ ! 2.9789 ( 6.9345 x¿

x¿ ! 1%x
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Figure 11-18 Normal probability plot of
the residuals for the transformed model for
the windmill data.

EXERCISES FOR SECTION 11–9

11-77. Determine if the following models are intrinsically
linear. If yes, determine the appropriate transformation to
generate the linear model.

(a) (b)

(c) (d)

11-78. The vapor pressure of water at various temperatures
follows:

Y !
x

"0x # "1 # x$
Y ! "0"

x
1$

Y !
3 # 5x
x # $Y ! "0x"1$

(a) Draw a scatter diagram of these data. What type of
relationship seems appropriate in relating y to x?

Observation Vapor pressure
Number, i Temperature (K) (mm Hg)

1 273 4.6
2 283 9.2
3 293 17.5
4 303 31.8
5 313 55.3
6 323 92.5
7 333 149.4
8 343 233.7
9 353 355.1

10 363 525.8
11 373 760.0

(b) Fit a simple linear regression model to these data.
(c) Test for significance of regression using % ! 0.05. What

conclusions can you draw?
(d) Plot the residuals from the simple linear regression model

versus . What do you conclude about model adequacy?ŷi

Customer x y Customer x y
1 679 0.79 26 1434 0.31
2 292 0.44 27 837 4.20
3 1012 0.56 28 1748 4.88
4 493 0.79 29 1381 3.48
5 582 2.70 30 1428 7.58
6 1156 3.64 31 1255 2.63
7 997 4.73 32 1777 4.99
8 2189 9.50 33 370 0.59
9 1097 5.34 34 2316 8.19

10 2078 6.85 35 1130 4.79
continued

(e) The Clausis–Clapeyron relationship states that ln
where is the vapor pressure of water. Repeat parts 
(a)–(d). using an appropriate transformation.

11-79. An electric utility is interested in developing a model
relating peak hour demand ( y in kilowatts) to total monthly
energy usage during the month (x, in kilowatt hours). Data for
50 residential customers are shown in the following table.

Pv
1Pv2&'   

1
T ,

Table 11-5 Observed Values yi and Regressor Variable xi
for Example 11-9

Observation Wind Velocity DC Output,
Number, i (mph), xi yi

1 5.00 1.582
2 6.00 1.822
3 3.40 1.057

Observation Wind Velocity DC Output,
Number, i (mph), xi yi

4 2.70 0.500
5 10.00 2.236
6 9.70 2.386
7 9.55 2.294
8 3.05 0.558
9 8.15 2.166

10 6.20 1.866
11 2.90 0.653
12 6.35 1.930
13 4.60 1.562
14 5.80 1.737
15 7.40 2.088
16 3.60 1.137
17 7.85 2.179
18 8.80 2.112
19 7.00 1.800
20 5.45 1.501
21 9.10 2.303
22 10.20 2.310
23 4.10 1.194
24 3.95 1.144
25 2.45 0.123continued
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Figure 11-18 Normal probability plot of
the residuals for the transformed model for
the windmill data.
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11-77. Determine if the following models are intrinsically
linear. If yes, determine the appropriate transformation to
generate the linear model.

(a) (b)

(c) (d)

11-78. The vapor pressure of water at various temperatures
follows:

Y !
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"0x # "1 # x$
Y ! "0"

x
1$

Y !
3 # 5x
x # $Y ! "0x"1$

(a) Draw a scatter diagram of these data. What type of
relationship seems appropriate in relating y to x?

Observation Vapor pressure
Number, i Temperature (K) (mm Hg)

1 273 4.6
2 283 9.2
3 293 17.5
4 303 31.8
5 313 55.3
6 323 92.5
7 333 149.4
8 343 233.7
9 353 355.1

10 363 525.8
11 373 760.0

(b) Fit a simple linear regression model to these data.
(c) Test for significance of regression using % ! 0.05. What

conclusions can you draw?
(d) Plot the residuals from the simple linear regression model

versus . What do you conclude about model adequacy?ŷi

Customer x y Customer x y
1 679 0.79 26 1434 0.31
2 292 0.44 27 837 4.20
3 1012 0.56 28 1748 4.88
4 493 0.79 29 1381 3.48
5 582 2.70 30 1428 7.58
6 1156 3.64 31 1255 2.63
7 997 4.73 32 1777 4.99
8 2189 9.50 33 370 0.59
9 1097 5.34 34 2316 8.19

10 2078 6.85 35 1130 4.79
continued

(e) The Clausis–Clapeyron relationship states that ln
where is the vapor pressure of water. Repeat parts 
(a)–(d). using an appropriate transformation.

11-79. An electric utility is interested in developing a model
relating peak hour demand ( y in kilowatts) to total monthly
energy usage during the month (x, in kilowatt hours). Data for
50 residential customers are shown in the following table.

Pv
1Pv2&'   

1
T ,

Table 11-5 Observed Values yi and Regressor Variable xi
for Example 11-9

Observation Wind Velocity DC Output,
Number, i (mph), xi yi

1 5.00 1.582
2 6.00 1.822
3 3.40 1.057

Observation Wind Velocity DC Output,
Number, i (mph), xi yi

4 2.70 0.500
5 10.00 2.236
6 9.70 2.386
7 9.55 2.294
8 3.05 0.558
9 8.15 2.166

10 6.20 1.866
11 2.90 0.653
12 6.35 1.930
13 4.60 1.562
14 5.80 1.737
15 7.40 2.088
16 3.60 1.137
17 7.85 2.179
18 8.80 2.112
19 7.00 1.800
20 5.45 1.501
21 9.10 2.303
22 10.20 2.310
23 4.10 1.194
24 3.95 1.144
25 2.45 0.123continued
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Try fitting a linear model?

• Result of fitting linear regression model

• Residual plot indicates the linear
relationship does not capture all
the information in the wind-speed 
variable.
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We occasionally find that the straight-line regression model Y ! "0 # "1x # $ is inappropriate
because the true regression function is nonlinear. Sometimes nonlinearity is visually deter-
mined from the scatter diagram, and sometimes, because of prior experience or underlying the-
ory, we know in advance that the model is nonlinear. Occasionally, a scatter diagram will exhibit
an apparent nonlinear relationship between Y and x. In some of these situations, a nonlinear
function can be expressed as a straight line by using a suitable transformation. Such nonlinear
models are called intrinsically linear.

As an example of a nonlinear model that is intrinsically linear, consider the exponential
function

This function is intrinsically linear, since it can be transformed to a straight line by a logarithmic
transformation

This transformation requires that the transformed error terms ln $ are normally and indepen-
dently distributed with mean 0 and variance %2.

Another intrinsically linear function is

By using the reciprocal transformation z ! 1!x, the model is linearized to

Sometimes several transformations can be employed jointly to linearize a function. For ex-
ample, consider the function

Letting , we have the linearized form

For examples of fitting these models, refer to Montgomery, Peck, and Vining (2006) or
Myers (1990).

Transformations can be very useful in many situations where the true relationship
between the response Y and the regressor x is not well approximated by a straight line. The
utility of a transformation is illustrated in the following example.

ln Y* ! "0 # "1x # $

Y* ! 1&Y

Y !
1

exp 1"0 # "
1
x # $2

Y ! "0 # "1z # $

Y ! "0 # "1 
a1
xb # $

ln Y ! ln "0 # "1 x # ln $

Y ! "0e"1x$

EXAMPLE 11-9 Windmill Power
A research engineer is investigating the use of a windmill to
generate electricity and has collected data on the DC output
from this windmill and the corresponding wind velocity. The
data are plotted in Figure 11-14 and listed in Table 11-5 (p.439).

Inspection of the scatter diagram indicates that the rela-
tionship between DC output Y and wind velocity (x) may be
nonlinear. However, we initially fit a straight-line model to the

data. The regression model is

The summary statistics for this model are R2 ! 0.8745,
, and F0 ! 160.26 (the P-value isMSE ! %̂2 ! 0.0557

ŷ ! 0.1309 # 0.2411 x

'0.0001).

JWCL232_c11_401-448.qxd  1/1/70  6:05 AM  Page 437

438 CHAPTER 11 SIMPLE LINEAR REGRESSION AND CORRELATION

A plot of the residuals versus is shown in Figure 11-15.
This residual plot indicates model inadequacy and implies that
the linear relationship has not captured all of the information
in the wind speed variable. Note that the curvature that was ap-
parent in the scatter diagram of Figure 11-14 is greatly
amplified in the residual plots. Clearly some other model form
must be considered.

We might initially consider using a quadratic model such as

to account for the apparent curvature. However, the scatter di-
agram of Figure 11-14 suggests that as wind speed increases,
DC output approaches an upper limit of approximately 2.5.
This is also consistent with the theory of windmill operation.
Since the quadratic model will eventually bend downward as
wind speed increases, it would not be appropriate for these
data. A more reasonable model for the windmill data that in-
corporates an upper asymptote would be
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y ! "0 # "1 x # "2 
 
x2 # $

ŷi
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Figure 11-14 Plot of DC output y versus wind velocity x
for the windmill data.
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1.0

3.0

0.0
0.10

2.0

D
C 

ou
tp

ut
, y

0.20 0.30 0.40 0.50

x' = 1
x

Figure 11-16 Plot of DC output versus for the
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Figure 11-17 Plot of residuals versus 
fitted values for the transformed model
for the windmill data.

ŷi

Figure 11-16 is a scatter diagram with the transformed variable
. This plot appears linear, indicating that the reciprocal

transformation is appropriate. The fitted regression model is

The summary statistics for this model are R2 ! 0.9800,
, and F0 ! 1128.43 (the P value is

&0.0001).
A plot of the residuals from the transformed model ver-

sus is shown in Figure 11-17. This plot does not reveal any
serious problem with inequality of variance. The normal prob-
ability plot, shown in Figure 11-18, gives a mild indication
that the errors come from a distribution with heavier tails than
the normal (notice the slight upward and downward curve at
the extremes). This normal probability plot has the z-score
value plotted on the horizontal axis. Since there is no strong
signal of model inadequacy, we conclude that the transformed
model is satisfactory.

ŷ

MSE ! '̂2 ! 0.0089

ŷ ! 2.9789 ( 6.9345 x¿

x¿ ! 1%x
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A second try

• As wind speed increases, output (y) approach to 
an upper limit (consist with physics of windmill 
operation)

438 CHAPTER 11 SIMPLE LINEAR REGRESSION AND CORRELATION

A plot of the residuals versus is shown in Figure 11-15.
This residual plot indicates model inadequacy and implies that
the linear relationship has not captured all of the information
in the wind speed variable. Note that the curvature that was ap-
parent in the scatter diagram of Figure 11-14 is greatly
amplified in the residual plots. Clearly some other model form
must be considered.

We might initially consider using a quadratic model such as

to account for the apparent curvature. However, the scatter di-
agram of Figure 11-14 suggests that as wind speed increases,
DC output approaches an upper limit of approximately 2.5.
This is also consistent with the theory of windmill operation.
Since the quadratic model will eventually bend downward as
wind speed increases, it would not be appropriate for these
data. A more reasonable model for the windmill data that in-
corporates an upper asymptote would be
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Figure 11-14 Plot of DC output y versus wind velocity x
for the windmill data.
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1.0

3.0

0.0
0.10

2.0

D
C 

ou
tp

ut
, y

0.20 0.30 0.40 0.50

x' = 1
x

Figure 11-16 Plot of DC output versus for the
windmill data.

x¿ ! 1%x

ei

–0.4

–0.6
10

–0.2

0

0.2

0.4

2 3
yi

Figure 11-17 Plot of residuals versus 
fitted values for the transformed model
for the windmill data.

ŷi

Figure 11-16 is a scatter diagram with the transformed variable
. This plot appears linear, indicating that the reciprocal

transformation is appropriate. The fitted regression model is

The summary statistics for this model are R2 ! 0.9800,
, and F0 ! 1128.43 (the P value is

&0.0001).
A plot of the residuals from the transformed model ver-

sus is shown in Figure 11-17. This plot does not reveal any
serious problem with inequality of variance. The normal prob-
ability plot, shown in Figure 11-18, gives a mild indication
that the errors come from a distribution with heavier tails than
the normal (notice the slight upward and downward curve at
the extremes). This normal probability plot has the z-score
value plotted on the horizontal axis. Since there is no strong
signal of model inadequacy, we conclude that the transformed
model is satisfactory.

ŷ

MSE ! '̂2 ! 0.0089

ŷ ! 2.9789 ( 6.9345 x¿

x¿ ! 1%x

JWCL232_c11_401-448.qxd  1/18/10  2:17 PM  Page 438

438 CHAPTER 11 SIMPLE LINEAR REGRESSION AND CORRELATION

A plot of the residuals versus is shown in Figure 11-15.
This residual plot indicates model inadequacy and implies that
the linear relationship has not captured all of the information
in the wind speed variable. Note that the curvature that was ap-
parent in the scatter diagram of Figure 11-14 is greatly
amplified in the residual plots. Clearly some other model form
must be considered.

We might initially consider using a quadratic model such as

to account for the apparent curvature. However, the scatter di-
agram of Figure 11-14 suggests that as wind speed increases,
DC output approaches an upper limit of approximately 2.5.
This is also consistent with the theory of windmill operation.
Since the quadratic model will eventually bend downward as
wind speed increases, it would not be appropriate for these
data. A more reasonable model for the windmill data that in-
corporates an upper asymptote would be
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Figure 11-14 Plot of DC output y versus wind velocity x
for the windmill data.
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Figure 11-16 Plot of DC output versus for the
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Figure 11-17 Plot of residuals versus 
fitted values for the transformed model
for the windmill data.

ŷi

Figure 11-16 is a scatter diagram with the transformed variable
. This plot appears linear, indicating that the reciprocal

transformation is appropriate. The fitted regression model is

The summary statistics for this model are R2 ! 0.9800,
, and F0 ! 1128.43 (the P value is

&0.0001).
A plot of the residuals from the transformed model ver-

sus is shown in Figure 11-17. This plot does not reveal any
serious problem with inequality of variance. The normal prob-
ability plot, shown in Figure 11-18, gives a mild indication
that the errors come from a distribution with heavier tails than
the normal (notice the slight upward and downward curve at
the extremes). This normal probability plot has the z-score
value plotted on the horizontal axis. Since there is no strong
signal of model inadequacy, we conclude that the transformed
model is satisfactory.

ŷ

MSE ! '̂2 ! 0.0089

ŷ ! 2.9789 ( 6.9345 x¿

x¿ ! 1%x
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A plot of the residuals versus is shown in Figure 11-15.
This residual plot indicates model inadequacy and implies that
the linear relationship has not captured all of the information
in the wind speed variable. Note that the curvature that was ap-
parent in the scatter diagram of Figure 11-14 is greatly
amplified in the residual plots. Clearly some other model form
must be considered.

We might initially consider using a quadratic model such as

to account for the apparent curvature. However, the scatter di-
agram of Figure 11-14 suggests that as wind speed increases,
DC output approaches an upper limit of approximately 2.5.
This is also consistent with the theory of windmill operation.
Since the quadratic model will eventually bend downward as
wind speed increases, it would not be appropriate for these
data. A more reasonable model for the windmill data that in-
corporates an upper asymptote would be
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Figure 11-14 Plot of DC output y versus wind velocity x
for the windmill data.
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Figure 11-15 Plot of residuals ei versus fitted
values for the windmill data.ŷi

1.0

3.0

0.0
0.10

2.0

D
C 

ou
tp

ut
, y

0.20 0.30 0.40 0.50

x' = 1
x

Figure 11-16 Plot of DC output versus for the
windmill data.
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Figure 11-17 Plot of residuals versus 
fitted values for the transformed model
for the windmill data.

ŷi

Figure 11-16 is a scatter diagram with the transformed variable
. This plot appears linear, indicating that the reciprocal

transformation is appropriate. The fitted regression model is

The summary statistics for this model are R2 ! 0.9800,
, and F0 ! 1128.43 (the P value is

&0.0001).
A plot of the residuals from the transformed model ver-

sus is shown in Figure 11-17. This plot does not reveal any
serious problem with inequality of variance. The normal prob-
ability plot, shown in Figure 11-18, gives a mild indication
that the errors come from a distribution with heavier tails than
the normal (notice the slight upward and downward curve at
the extremes). This normal probability plot has the z-score
value plotted on the horizontal axis. Since there is no strong
signal of model inadequacy, we conclude that the transformed
model is satisfactory.

ŷ

MSE ! '̂2 ! 0.0089

ŷ ! 2.9789 ( 6.9345 x¿

x¿ ! 1%x
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A plot of the residuals versus is shown in Figure 11-15.
This residual plot indicates model inadequacy and implies that
the linear relationship has not captured all of the information
in the wind speed variable. Note that the curvature that was ap-
parent in the scatter diagram of Figure 11-14 is greatly
amplified in the residual plots. Clearly some other model form
must be considered.

We might initially consider using a quadratic model such as

to account for the apparent curvature. However, the scatter di-
agram of Figure 11-14 suggests that as wind speed increases,
DC output approaches an upper limit of approximately 2.5.
This is also consistent with the theory of windmill operation.
Since the quadratic model will eventually bend downward as
wind speed increases, it would not be appropriate for these
data. A more reasonable model for the windmill data that in-
corporates an upper asymptote would be
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Figure 11-14 Plot of DC output y versus wind velocity x
for the windmill data.
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windmill data.
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Figure 11-17 Plot of residuals versus 
fitted values for the transformed model
for the windmill data.

ŷi

Figure 11-16 is a scatter diagram with the transformed variable
. This plot appears linear, indicating that the reciprocal

transformation is appropriate. The fitted regression model is

The summary statistics for this model are R2 ! 0.9800,
, and F0 ! 1128.43 (the P value is

&0.0001).
A plot of the residuals from the transformed model ver-

sus is shown in Figure 11-17. This plot does not reveal any
serious problem with inequality of variance. The normal prob-
ability plot, shown in Figure 11-18, gives a mild indication
that the errors come from a distribution with heavier tails than
the normal (notice the slight upward and downward curve at
the extremes). This normal probability plot has the z-score
value plotted on the horizontal axis. Since there is no strong
signal of model inadequacy, we conclude that the transformed
model is satisfactory.

ŷ

MSE ! '̂2 ! 0.0089

ŷ ! 2.9789 ( 6.9345 x¿

x¿ ! 1%x
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A plot of the residuals versus is shown in Figure 11-15.
This residual plot indicates model inadequacy and implies that
the linear relationship has not captured all of the information
in the wind speed variable. Note that the curvature that was ap-
parent in the scatter diagram of Figure 11-14 is greatly
amplified in the residual plots. Clearly some other model form
must be considered.

We might initially consider using a quadratic model such as

to account for the apparent curvature. However, the scatter di-
agram of Figure 11-14 suggests that as wind speed increases,
DC output approaches an upper limit of approximately 2.5.
This is also consistent with the theory of windmill operation.
Since the quadratic model will eventually bend downward as
wind speed increases, it would not be appropriate for these
data. A more reasonable model for the windmill data that in-
corporates an upper asymptote would be
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Figure 11-14 Plot of DC output y versus wind velocity x
for the windmill data.
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Figure 11-15 Plot of residuals ei versus fitted
values for the windmill data.ŷi
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windmill data.
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Figure 11-17 Plot of residuals versus 
fitted values for the transformed model
for the windmill data.

ŷi

Figure 11-16 is a scatter diagram with the transformed variable
. This plot appears linear, indicating that the reciprocal

transformation is appropriate. The fitted regression model is

The summary statistics for this model are R2 ! 0.9800,
, and F0 ! 1128.43 (the P value is

&0.0001).
A plot of the residuals from the transformed model ver-

sus is shown in Figure 11-17. This plot does not reveal any
serious problem with inequality of variance. The normal prob-
ability plot, shown in Figure 11-18, gives a mild indication
that the errors come from a distribution with heavier tails than
the normal (notice the slight upward and downward curve at
the extremes). This normal probability plot has the z-score
value plotted on the horizontal axis. Since there is no strong
signal of model inadequacy, we conclude that the transformed
model is satisfactory.

ŷ

MSE ! '̂2 ! 0.0089

ŷ ! 2.9789 ( 6.9345 x¿

x¿ ! 1%x
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A plot of the residuals versus is shown in Figure 11-15.
This residual plot indicates model inadequacy and implies that
the linear relationship has not captured all of the information
in the wind speed variable. Note that the curvature that was ap-
parent in the scatter diagram of Figure 11-14 is greatly
amplified in the residual plots. Clearly some other model form
must be considered.

We might initially consider using a quadratic model such as

to account for the apparent curvature. However, the scatter di-
agram of Figure 11-14 suggests that as wind speed increases,
DC output approaches an upper limit of approximately 2.5.
This is also consistent with the theory of windmill operation.
Since the quadratic model will eventually bend downward as
wind speed increases, it would not be appropriate for these
data. A more reasonable model for the windmill data that in-
corporates an upper asymptote would be
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Figure 11-14 Plot of DC output y versus wind velocity x
for the windmill data.
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Figure 11-15 Plot of residuals ei versus fitted
values for the windmill data.ŷi
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Figure 11-16 Plot of DC output versus for the
windmill data.
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Figure 11-17 Plot of residuals versus 
fitted values for the transformed model
for the windmill data.

ŷi

Figure 11-16 is a scatter diagram with the transformed variable
. This plot appears linear, indicating that the reciprocal

transformation is appropriate. The fitted regression model is

The summary statistics for this model are R2 ! 0.9800,
, and F0 ! 1128.43 (the P value is

&0.0001).
A plot of the residuals from the transformed model ver-

sus is shown in Figure 11-17. This plot does not reveal any
serious problem with inequality of variance. The normal prob-
ability plot, shown in Figure 11-18, gives a mild indication
that the errors come from a distribution with heavier tails than
the normal (notice the slight upward and downward curve at
the extremes). This normal probability plot has the z-score
value plotted on the horizontal axis. Since there is no strong
signal of model inadequacy, we conclude that the transformed
model is satisfactory.
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ŷ ! 2.9789 ( 6.9345 x¿

x¿ ! 1%x
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A plot of the residuals versus is shown in Figure 11-15.
This residual plot indicates model inadequacy and implies that
the linear relationship has not captured all of the information
in the wind speed variable. Note that the curvature that was ap-
parent in the scatter diagram of Figure 11-14 is greatly
amplified in the residual plots. Clearly some other model form
must be considered.

We might initially consider using a quadratic model such as

to account for the apparent curvature. However, the scatter di-
agram of Figure 11-14 suggests that as wind speed increases,
DC output approaches an upper limit of approximately 2.5.
This is also consistent with the theory of windmill operation.
Since the quadratic model will eventually bend downward as
wind speed increases, it would not be appropriate for these
data. A more reasonable model for the windmill data that in-
corporates an upper asymptote would be
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Figure 11-14 Plot of DC output y versus wind velocity x
for the windmill data.
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Figure 11-16 Plot of DC output versus for the
windmill data.
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Figure 11-17 Plot of residuals versus 
fitted values for the transformed model
for the windmill data.

ŷi

Figure 11-16 is a scatter diagram with the transformed variable
. This plot appears linear, indicating that the reciprocal

transformation is appropriate. The fitted regression model is

The summary statistics for this model are R2 ! 0.9800,
, and F0 ! 1128.43 (the P value is

&0.0001).
A plot of the residuals from the transformed model ver-

sus is shown in Figure 11-17. This plot does not reveal any
serious problem with inequality of variance. The normal prob-
ability plot, shown in Figure 11-18, gives a mild indication
that the errors come from a distribution with heavier tails than
the normal (notice the slight upward and downward curve at
the extremes). This normal probability plot has the z-score
value plotted on the horizontal axis. Since there is no strong
signal of model inadequacy, we conclude that the transformed
model is satisfactory.

ŷ

MSE ! '̂2 ! 0.0089
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Summary

• Simple linear regression (one predictor)
• Method-of-least-square to find coefficient
• Model diagnosis

– Residual diagnosis: plot, normal plot, histogram
– R-score
– Confidence interval (slope, intercept, prediction)
– Hypothesis test (significance of linear model)

• Deal with non-linearity
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More example

11-2 SIMPLE LINEAR REGRESSION 411

11-4. An article in Technometrics by S. C. Narula and J. F.
Wellington [“Prediction, Linear Regression, and a Minimum
Sum of Relative Errors” (Vol. 19, 1977)] presents data on the
selling price and annual taxes for 24 houses. The data are
shown in the following table.

Taxes
Sale (Local, School),

Price/1000 County)/1000
25.9 4.9176
29.5 5.0208
27.9 4.5429
25.9 4.5573
29.9 5.0597
29.9 3.8910
30.9 5.8980
28.9 5.6039
35.9 5.8282
31.5 5.3003
31.0 6.2712
30.9 5.9592

Taxes
Sale (Local, School),

Price/1000 County)/1000
30.0 5.0500
36.9 8.2464
41.9 6.6969
40.5 7.7841
43.9 9.0384
37.5 5.9894
37.9 7.5422
44.5 8.7951
37.9 6.0831
38.9 8.3607
36.9 8.1400
45.8 9.1416

(a) Assuming that a simple linear regression model is
appropriate, obtain the least squares fit relating selling
price to taxes paid. What is the estimate of !2?

(b) Find the mean selling price given that the taxes paid are
x " 7.50.

(c) Calculate the fitted value of y corresponding to x "
5.8980. Find the corresponding residual.

(d) Calculate the fitted for each value of xi used to fit the
model. Then construct a graph of versus the correspon-
ding observed value yi and comment on what this plot
would look like if the relationship between y and x was a
deterministic (no random error) straight line. Does the
plot actually obtained indicate that taxes paid is an
effective regressor variable in predicting selling price?

11-5. The number of pounds of steam used per month by a
chemical plant is thought to be related to the average ambient
temperature (in# F) for that month. The past year’s usage and
temperature are shown in the following table:

ŷi
ŷi

Month Temp. Usage/1000
Jan. 21 185.79
Feb. 24 214.47
Mar. 32 288.03
Apr. 47 424.84
May 50 454.58
June 59 539.03

Month Temp. Usage/1000
July 68 621.55
Aug. 74 675.06
Sept. 62 562.03
Oct. 50 452.93
Nov. 41 369.95
Dec. 30 273.98

(a) Assuming that a simple linear regression model is appro-
priate, fit the regression model relating steam usage (y) to
the average temperature (x). What is the estimate of !2?
Graph the regression line.

(b) What is the estimate of expected steam usage when the
average temperature is 55#F?

(c) What change in mean steam usage is expected when the
monthly average temperature changes by 1#F?

(d) Suppose the monthly average temperature is 47#F. Calculate
the fitted value of y and the corresponding residual.

11-6. The following table presents the highway gasoline
mileage performance and engine displacement for Daimler-
Chrysler vehicles for model year 2005 (source: U.S. Environ-
mental Protection Agency).
(a) Fit a simple linear model relating highway miles per gal-

lon ( y) to engine displacement (x) in cubic inches using
least squares.

(b) Find an estimate of the mean highway gasoline mileage
performance for a car with 150 cubic inches engine
displacement.

(c) Obtain the fitted value of y and the corresponding residual
for a car, the Neon, with an engine displacement of 122
cubic inches.

Engine 
Displacement MPG

Carline (in3) (highway)
300C/SRT-8 215 30.8
CARAVAN 2WD 201 32.5
CROSSFIRE ROADSTER 196 35.4
DAKOTA PICKUP 2WD 226 28.1
DAKOTA PICKUP 4WD 226 24.4
DURANGO 2WD 348 24.1
GRAND CHEROKEE 2WD 226 28.5
GRAND CHEROKEE 4WD 348 24.2
LIBERTY/CHEROKEE 2WD 148 32.8
LIBERTY/CHEROKEE 4WD 226 28
NEON/SRT-4/SX 2.0 122 41.3
PACIFICA 2WD 215 30.0
PACIFICA AWD 215 28.2
PT CRUISER 148 34.1
RAM 1500 PICKUP 2WD 500 18.7
RAM 1500 PICKUP 4WD 348 20.3
SEBRING 4-DR 165 35.1
STRATUS 4-DR 148 37.9
TOWN & COUNTRY 2WD 148 33.8
VIPER CONVERTIBLE 500 25.9
WRANGLER/TJ 4WD 148 26.4
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11-4. An article in Technometrics by S. C. Narula and J. F.
Wellington [“Prediction, Linear Regression, and a Minimum
Sum of Relative Errors” (Vol. 19, 1977)] presents data on the
selling price and annual taxes for 24 houses. The data are
shown in the following table.

Taxes
Sale (Local, School),

Price/1000 County)/1000
25.9 4.9176
29.5 5.0208
27.9 4.5429
25.9 4.5573
29.9 5.0597
29.9 3.8910
30.9 5.8980
28.9 5.6039
35.9 5.8282
31.5 5.3003
31.0 6.2712
30.9 5.9592

Taxes
Sale (Local, School),

Price/1000 County)/1000
30.0 5.0500
36.9 8.2464
41.9 6.6969
40.5 7.7841
43.9 9.0384
37.5 5.9894
37.9 7.5422
44.5 8.7951
37.9 6.0831
38.9 8.3607
36.9 8.1400
45.8 9.1416

(a) Assuming that a simple linear regression model is
appropriate, obtain the least squares fit relating selling
price to taxes paid. What is the estimate of !2?

(b) Find the mean selling price given that the taxes paid are
x " 7.50.

(c) Calculate the fitted value of y corresponding to x "
5.8980. Find the corresponding residual.

(d) Calculate the fitted for each value of xi used to fit the
model. Then construct a graph of versus the correspon-
ding observed value yi and comment on what this plot
would look like if the relationship between y and x was a
deterministic (no random error) straight line. Does the
plot actually obtained indicate that taxes paid is an
effective regressor variable in predicting selling price?

11-5. The number of pounds of steam used per month by a
chemical plant is thought to be related to the average ambient
temperature (in# F) for that month. The past year’s usage and
temperature are shown in the following table:

ŷi
ŷi

Month Temp. Usage/1000
Jan. 21 185.79
Feb. 24 214.47
Mar. 32 288.03
Apr. 47 424.84
May 50 454.58
June 59 539.03

Month Temp. Usage/1000
July 68 621.55
Aug. 74 675.06
Sept. 62 562.03
Oct. 50 452.93
Nov. 41 369.95
Dec. 30 273.98

(a) Assuming that a simple linear regression model is appro-
priate, fit the regression model relating steam usage (y) to
the average temperature (x). What is the estimate of !2?
Graph the regression line.

(b) What is the estimate of expected steam usage when the
average temperature is 55#F?

(c) What change in mean steam usage is expected when the
monthly average temperature changes by 1#F?

(d) Suppose the monthly average temperature is 47#F. Calculate
the fitted value of y and the corresponding residual.

11-6. The following table presents the highway gasoline
mileage performance and engine displacement for Daimler-
Chrysler vehicles for model year 2005 (source: U.S. Environ-
mental Protection Agency).
(a) Fit a simple linear model relating highway miles per gal-

lon ( y) to engine displacement (x) in cubic inches using
least squares.

(b) Find an estimate of the mean highway gasoline mileage
performance for a car with 150 cubic inches engine
displacement.

(c) Obtain the fitted value of y and the corresponding residual
for a car, the Neon, with an engine displacement of 122
cubic inches.

Engine 
Displacement MPG

Carline (in3) (highway)
300C/SRT-8 215 30.8
CARAVAN 2WD 201 32.5
CROSSFIRE ROADSTER 196 35.4
DAKOTA PICKUP 2WD 226 28.1
DAKOTA PICKUP 4WD 226 24.4
DURANGO 2WD 348 24.1
GRAND CHEROKEE 2WD 226 28.5
GRAND CHEROKEE 4WD 348 24.2
LIBERTY/CHEROKEE 2WD 148 32.8
LIBERTY/CHEROKEE 4WD 226 28
NEON/SRT-4/SX 2.0 122 41.3
PACIFICA 2WD 215 30.0
PACIFICA AWD 215 28.2
PT CRUISER 148 34.1
RAM 1500 PICKUP 2WD 500 18.7
RAM 1500 PICKUP 4WD 348 20.3
SEBRING 4-DR 165 35.1
STRATUS 4-DR 148 37.9
TOWN & COUNTRY 2WD 148 33.8
VIPER CONVERTIBLE 500 25.9
WRANGLER/TJ 4WD 148 26.4
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