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Scatter Diagram

« Many problems in engineering and science involve exploring the relationships between two
or more variables.
* Regression analysis is a statistical technique that is very useful for these types of

pro blems. Table 11-1 Oxygen and Hydrocarbon Levels

100 . Observation Hydrocarbon Level Purity
Number x (%) vy (%)
98 1 0.99 90.01
- . 2 1.02 89.05
. 3 1.15 91.43
= . 4 1.29 93.74
g . * ete ° 5 1.46 96.73
5 o : . 6 1.36 94.45
. . 7 0.87 87.59
= °. . 8 1.23 91.77
* 9 1.55 99.42
8., 10 1.40 93.65
11 1.19 93.54

85
085 095 105 115 125 135 145 1.55 12 L.15 92.52
Hydrocarbon level (x) 13 0.98 90.56
14 1.01 89.54
15 1.11 89.85
16 1.20 90.39
17 1.26 93.25
18 1.32 93.41
19 1.43 94.98
20 0.95 87.33




Simple Linear Regression

Based on the scatter diagram, it is probably reasonable to assume that the mean of
the random variable Y is related to X by the following simple linear regression model:

100 .
Response Regressor or Predictor
z K:ﬂo+ﬁ<i+gi\ 1=12,-,n
Intercept Slope Random error
e ~N(0,0%)

085 09685 105 115 125 135 145 1.55
Hydrocarbon level (x)

where the slope and intercept of the line are called regression coefficients.

*The case of simple linear regression considers a single regressor or predictor x and a
dependent or response variable Y.



Mean response

Purity ()

085 0685 105 115 125 135 145 1.55
Hydrocarbon level (x)

E(Y|x) =

Bo + B1x



Simple Linear Regression

The method of least squares is used to estimate the parameters, B, and B, by
minimizing the sum of the squares of the vertical deviations in Figure 11-3.

Yy

.)‘,'=BO+B|.\','+€,'. i=1.2.....n

Observed value
Data (y)

Estimated
regression line

sum of the squares of the error

n

L= 21612 = 2(‘: — Bo — [‘31-"]')2

i=1
l Minimize |
X

Figure 11-3 Deviations of the data from the estimated regression model.
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L . Least Square Normal Equations
dl. n ) )
. = =2D (Vvi— Bo— Bixi)x; =0
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Least Square Estimates

model are

o

N
=

~—

Exi o n

i=1

where y = (1/n) 2 ;—, y; and x = (1/n) 21, x..

The least squares estimates of the intercept and slope in the simple linear regression

(11-7)

(11-8)
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Example 1: Gas purity

Find the least square estimates of the simple linear regression describing the relationship
between Purity (y) and Hydrocarbon Levels (x).
Also, calculate the predicted purity when hydrocarbon level is 1.01. Find the prediction error.

20 20
=20 D>,x;=2392 Dy =184321 x= 11960 y = 92.1605
i=1 i=1

Table 11-1 Oxygen and Hydrocarbon Levels

Observation Hydrocarbon Level Purity

5 20 5 20 Number x(%) (%)
D yi =170,044.5321 D xi =29.2892 D x;y; = 2,214.6566 | 0.99 90.01
i=1 i=1 i=1 2 1.02 89.05

3 1.15 91.43
4 1.29 93.74
5 1.46 96.73
n ) 6 1.36 94.45
7 0.87 87.59
n n 2)51‘ 8 1.23 91.77
_ —\2 _ 2 1= 9 1.55 99.42
Sex = E (x; — x)° = ot T n 10 1.40 93.65
i=1 =1 11 1.19 93.54
12 1.15 92.52
13 0.98 90.56
n n
14 1.01 89.54
n ( X,') ( y,-) 15 1.11 89.85
. i=1 i=1 16 1.20 90.39
Sxy - (y x - x Exzyz n 17 1.26 93.25
i=1 18 1.32 93.41
19 1.43 94.98
20 0.95 87.33

datal <- read.table("Example_1.txt", header=FALSE)




Fitted model

B,

Bo

Sy 10.17744
= = = 14.94748
S 0.68088

y — Bx = 92.1605 — (14.94748)1.196 = 74.28331

102
y = 74283 + 14.947x

99

S
> 96
5 93

3
Figure 11-4 Scatter 90

plot of oxygen
purity y versus
hydrocarbon level x 87 0.87
and regression model

y = 74.283 + 14.947x.

1.07 1.27 1.47 1.67

Hydrocarbon level (%)
X



Results using R

Call:

Im(formula_ = data1[, 2] ~ data1[, 1])
w eSS
Residuals:

Min 1Q Median 3Q Max
-1.83029 -0.73334 0.04497 0.69969 1.96809

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 74.283 1.593 46.62 < 2e-16 ***
data1[, 1] 14.947 1.317 11.351.23e-09 ***
Signif. codes:

0 “**** 0.001 “**’* 0.01 ** 0.05°° 0.1’ 1

L=
—f'b

-
O

>K

Residual standard error: 1.087 on 18 degrees of freedom
Multiple R-squared: 0.8774, Adjusted R-squared: 0.8706
F-statistic: 128.9 on 1 and 18 DF, p-value: 1.227e-09



Example 2: Diabetes and Obesity

* Diabetes and obesity are serious health concerns in the US.
Measuring the amount of body fat of a person is one way to
monitor body weight control. To measure body fat accurately
one needs x-ray machine.

 BMI =mass (kg) / (height(m))*2 is used as a proxy to body
fat.

* In a study of 250 men at Brigham Young U, both BMI x and
body fat y were measured. The summary statistics are:

n n
Zx, — 6322.28 Zx 162674.18
i=1 i=1

n n
Z y; = 4757.90 Z 2 _ 107679.27
i=1 =1

n

Fat Under the skin > x, yi=125471.10

(subcutaneous)

~y
Il
[y

e - g

-

Fit a linear regression model 1o



Body fat example
n = 250

n
‘2 Xi= 6322.28 | Z Xi*= 162674 1%
§ Yi= L1595 E_ 9 = 1076 79. 2
§ Y yi= (25471. 10
n kS
Sux = Z‘Liz ('c‘ = {0,257ﬁ.lg—-£%:8—-
= 2787 282

S)ﬂy" S‘: R E‘Xt<£‘ﬂ)

[2845 ). (b - 532.2,28 x €157. 9

\

250
= 8147, 99¢
A §322.28
% = 4 = s 28.
R
_ 0 £757 9o
§= 4 Bl —5 = 9. 0318

= Svw . S0

= 2= . [.84% = [
Sxx = 2787282 - 845635 = (. 345

@o = B~)Z('§, = 19.6%6 - 25.:.8?/27 l. 8¢4
=-2]. 652 A Vodln Fak (9)

92, 1.846x -
27.652

_a]- 652 7 RM1(,
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Continue: body fat vs BMI

 Use the equation of the fitted line to predict that
body fat would be observed, on average, for a
man with BMI = 30

 Suppose the observed body fat of a man with a
BMI of 25 is 25%, find the residual for that

observation.

12



For & ama. BMI = 30, wie 0w

wde(, peedicted hody fik

N\

3: (. 844x — 2]. 682
= [ U306 - 21 652

= 2778 (%)

Fbr* BMIz= 26, wst o ],
{)r{d«'c}\pe/ boM ]@J‘
A
Y= (. 846 x25 -2 652
= 18,498  (X)

sbsaned M is 28 (4

bncts 25EmeIL : resioea] Y- J@\ =
25-18.498
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Example 3: sale price and taxes

. 11-4.  An article in Technometrics by S. C. Narufa and J. F.
Wellington [“Prediction, Linear Regression, and a Minimum
Sum of Relative Errors™ (Vol. 19, 1977)] presents data on the
selling price and annual taxes for 24 houses. The data are
shown in the following table.

) &
‘y Taxes Taxes
Sale (Local, School), Sale (Local, School),

Price/1000 County)/1000  Price/1000  County)/1000

i: .+ PX + € £~ (0, ¢
|

259 49176 300 5.0500
295 5.0208 36.9 8.2464
279 4.5429 419 6.6969
259 4.5573 40.5 7.7841
299 5.0597 439 9.0384
299 3.8910 375 5.9894
309 5.8980 379 7.5422
289 5.6039 44.5 8.7951
359 5.8282 379 6.0831
315 5.3003 389 8.3607
310 6.2712 36.9 8.1400
309 5.9592 45.8 9.1416

V&V, aﬁ(e, 0 Y@fwe

Vi dle & Yopesso %
e
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(a) Assuming that a simple linear regression model 1s
appropriate, obtain the least squares fit relating selling
price to taxes paid. What is the estimate of o7

(b) Find the mean selling price given that the taxes paid are
x = 7.50.

(¢) Calculate the fitted value of y corresponding to x =
5.8980. Find the corresponding residual.

(d) Calculate the fitted y; for each value of x; used to fit the
model. Then construct a graph of y; versus the correspon-
ding observed value y, and comment on what this plot
would look like 1f the relationship between y and x was a
deterministic (no random error) straight line. Does the
plot actually obtained indicate that taxes paid 1s an
effective regressor variable in predicting selling price?

15



Tax

Price

4 5 6 7 8 9

30 35 40 45

Oq O
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Price
O
O o
O
o0 o © P
O 3
O
Q
| T I T
5] 6 7 9
Tax

data = read.table("house.txt",header=FALSE)
price = data[,1]

tax = data[,2]
plot(tax,price,xlab="Tax",ylab="Price")

abline(13.3202,3.3244)

tax
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model = Im(price~tax)

summary(model)

Call:
Im(formula = price ~ tax)

sale

Residuals:
Min 1Q Median 3Q Max
-3.8343 -2.3157 -0.3669 1.9787 6.3168

Coefficients: . [ l ! : |

Estimate Std. Error t value Pr(>|t|) ) 58 7 8 9
(Intercept) 13.3202 2.5717 5.179 3.42e-05 *** tax
tax 3.3244 0.3903 8.518 2.05e-08 ***

Signif. codes: 0 “**** 0.001 ***0.01 *°0.05°.”0.1 "1

Residual standard error: 2.961 on 22 degrees of freedom
Multiple R-squared: 0.7673, Adjusted R-squared: 0.7568
F-statistic: 72.56 on 1 and 22 DF, p-value: 2.051e-08

Regression model: y p— 3 3244x + 13 3202

price tax

Prediction x=17.5,y=3.3244%X7.5 +13.3202 = 38.2532

17



Model Diagonosis

18



Adequacy of Regression Model

Analysis of Residual Patterns is useful for checking: IJ = ("o‘f ﬂ X{+ /2,
|
* Independency assumption % % ngb Ni 5/§2) .
« Constant variance . . . - .
Plot residuals (e) against °© — - o P -
predicted response (V) . . . S .
I} ib)
& 2
Figure 11-9 Patterns for residual . . .
plots. (a) satisfactory, (b) funnel, "o e " - L
(c) double bow, (d) nonlinear. * . e . s . .
[Adapted from Montgomery, 0 - - 0 - =
Peck, and Vining (2001).] L o0 I
() i)

19



House example residual plot

 model = Im(price~tax)

: resid(model)

* plot(price, res)
* abline(0, 0)

4 -2 0 2 4 6
@

30

35

40

45
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Adequacy of Regression Model

Histogram for residuals:

« Normality assumption

Histogram of RESI1

Normal

Frequency
0 2 4 6 8
1

5 - Mean  -2,58428E-14
StDev 1.058
N 20
4
Lo
) /
e 31
Q
3
o
o
T / :
] [
0 1 1
2 1 0 1 2
RESI1
Histogram of res
| | | | | | |
-1.0 -0.5 0.0 0.5 1.0 1.5

-1.5

res
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Adequacy of Regression Model

Boxplots:

It is used to detect observations with large residuals (Outliers)

bo xplot( Yes)

0.0 1.0

-1.5

22



Adequacy of Regression Model

Coefficient of Determination (R?)
R-square statistic

R? is called the coefficient of determination and is often used to judge
the adequacy of a regression model.

0<R2<1;

« We often refer (loosely) to R? as the amount of variability in the data
explained or accounted for by the regression model.

* |t is the square of the correlation coefficient between Y and X

R =1-22
SS.,
., ) [Zn:)’ij
SSg = 557 — BiSs SSp =2 =) =2 0 -

i=1

Oxygen purity example:  R? = SS,./SS, = 152.13/173.38 = 0.877;

The model accounts for 87.7% of the variability in the data

23



Interpretation

Fitted
rEsponses

Plots of Observed Responses Versus Fitted Responses for Two Regression Models

Observed responses Observed responses
R'=0.38 R 0.874

24



Estimation of Variance (o?)

The error sum of squares is y

55 ==Y (-5,
i=1 1

1=

Observed value
Data (y)

Estimated

n regression line

S8 = Z()ﬁ _ﬁo _lélxi)z

i=1
ESSy) = (n — 2)a?.
An unbiased estimator of o2is

o S8

6t =—— (11-13)

where SSg can be easily computed using (easier formula)

2
SSe ={ SSr |- B1Sy s, :Z":(y. _5) :Z”:y? B (ZY]
i=1

i=1

i=1
n

Total sum of square fory 25



model = Im(price~tax)

summary(model)
n———

Call:
Im(formula = price ~ tax)

sale

Residuals:
Min 1Q Median 3Q Max
-3.8343 -2.3157 -0.3669 1.9787 6.3168

Coefficients: .

Estimate Std. Error t value Pr(>|t|) 4
(Intercept) 13.3202 2.5717 5.179 3.42e-05 ***
tax 3.3244 0.3903 8.518 2.05e-08 ***

Signif. codes: 0 “**** 0.001 ***0.01 *°0.05°.”0.1 "1

6 &-Residual standard error: 2.961 on 22 degrees of freedom

Multiple R-squared...0.767 Adjusted R-squared: 0.7568
=Statistic: 72.56 on 1 and 22 DF, p-value: 2.051e-08

tax

26



Confidence interval

27



Confidence Interval for Regression Coefficients

confint(model) ) .
Mean and variance of the slope estimator E(Bl) = 3, ’(Bl) _o
Use this to find standard error — Sxx

Under the assumption that the observations are normally and independently distributed,
a 100(1 — a)% confidence interval on the slope 3, in simple linearyegression is

A2 ’\2
. & G
Bi — tapnar o =B = B, + taf2,n—2

S Vs,

Mean and variance of the intercept estimator E(By) = B, and ¥V(B) = o> [;lz T ;_~J
X

(11-29)

Similarly, a 100(1 — o)% confidence interval on the intercept (3, is

A L1, x?
Bo = tas2,n—2 \/0'2[; + S—]
XX

1 —2
=By =P+ to/2,n—2 [ + _] (11-30)

COV(BO» ABl) — _0-2)—6/5)00

28



Confidence Interval for Slope

'SA
-
|
=
—
ot
.
I
Nl
[ o)
|
et
bl B
I
e
—

oGS

n
2-":’(-‘} - -‘-')2 = E XiVi — : I

Sx_v =
= i1
n . o’
Mean and variance of the slope estimator ~ E(B,) = B, ViB,) = e
XX

Under the assumption that the observations are normally and independently distributed,
a 100(1 — a)% confidence interval on the slope 3, in simple linear regression is

A2 a2
. | & A G
B1 — to2,n—2 < = B1 = B1 T tup,n—2 < (11-29)

The width of confidence interval indicates the overall quality of regression line.
29



Confidence Interval for Intercept

: n n

,, - (ZE)
— I= 1=

Sey = 2 yilx; — -")2 = 2 XiVi — 0

i1 i—1

. . . . s | 3
Mean and variance of the intercept estimator  E(Bg) = B, and ¥(By) = o’ [7 + S_uJ

Similarly, a 100(1 — a)% confidence interval on the intercept [3, is

. 1 x?
A2
Bo — taj2.n—2 \/0 [5 + S_]
XX

. 1 x?
=Bo=PBy + ta/z,n_z\/az[; + g] (11-30)

The width of confidence interval indicates the overall quality of regression line.
30



Gas purity example

EXAMPLE 11-4 Oxygen Purity Confidence Interval on the Slope

We will find a 95% confidence interval on the slope of the re- This simplifies to
gression line using the data in Example 11-1. Recall that
B, = 14.947,S . = 0.68088,and 6% = 1.18 (see Table 11-2).

12181 = B, = 17.713
Then, from Equation 11-29 we find

A 52 A 52 Practical Interpretation: This CI does not include zero, so
Bi — %.025.18 S_ =By =B1 * fhoosas S_ there is strong evidence (at o = 0.05) that the slope is not zero.
o o The CI is reasonably narrow (*2.766) because the error vari-
or ance is fairly small.
102
14.947 — 2.101 118 = B, = 14.947
’ ' 0.68088 ~ "' T | ”
1.18 =
+ 2.101 5%
0.68088 s
g 93
confint(model) Seatter 90
25% 97.5% S
(Intercept) 70-93555 77-63108 Eydr(?)]c)e)lrbop level x 87 0.87 1.07 1.27 1.47 1.67
data[, 1] 12.18107 17.71389 and regression model Hydrocarbon level (%)

v = T4.283 + 14.947x. x

31




Prediction interval

* Predicting response for new observation

 The new observation is independent of data used to
build |j |

data <- readtable("ExampIe_1 xt")
> x <- data[,1]

>y <- data[,2]
> model <- Im(y~x)
> predict(model, data.frame(x = 1), interval=c(“prediction”))

A 100(1 — o) % prediction interval on a future observation Y, at the value x, is
given by

. . 1 (% —X)
Yo — a/2,n—2\/02[1 +, 1 S ]

1 X) — X )?
SYosy*owa/z,,,_z\/aZ[l e " ) (11-33)

The value J, is computed from the regression model $, = B, + B xo.

32



Gas Purity Example

EXAMPLE 11-6 Oxygen Purity Prediction Interval

To illustrate the construction of a prediction interval, suppose
we use the data in Example 11-1 and find a 95% prediction in-
terval on the next observation of oxygen purity at x, = 1.00%.
Using Equation 11-33 and recalling from Example 11-5 that
Yo = 89.23, we find that the prediction interval is

1 (100 — 1.1960)2]
1 +—+
20 0.68088

89.23 — 2.101\/1.18

1 (100 —1.1960)
=Yy =8923+2.1014/1.18|1 + — +
20 0.68088

which simplifies to

86.83 = y, = 91.63

This is a reasonably narrow prediction interval.

Minitab will also calculate prediction intervals. Refer to
the output in Table 11-2. The 95% PI on the future observation
at x, = 1.00 is shown in the display.

By repeating the foregoing calculations at different levels
of x,, we may obtain the 95% prediction intervals shown
graphically as the lower and upper lines about the fitted re-
gression model in Fig. 11-8. Notice that this graph also shows
the 95% confidence limits on [Ly|,, calculated in Example 11-5.
It illustrates that the prediction limits are always wider than
the confidence limits.

33



Hypothesis Test

34



Hypothesis Test on Regression Parameters

Slope:
Suppose we wish to test

Hy: B = Bio
Hy: B # Bio

An appropriate test statistic would be

B — Bio

Iy = Y TR 52,

Intercept:

Suppose we wish to test

Hy: Bo = Boo
Hy: Bo # Boo

An appropriate test statistic would be

Bo — Boo

We would reject the null hypothesis if

|IO| = fa/.?ﬂ—

Confidence Intervals can also be used to test the above hypotheses.

35



Hypothesis Test on Slope

An important special case of the hypotheses on the slope is

H()I Bl = ()
Hli Bl = ()

These hypotheses relate to the significance of regression.

Failure to reject H, is equivalent to concluding that there is no linear relationship
between x and Y.

e )

36



Continue house price

Call:
Im(formula = tax ~ price)

Residuals:
Min 1Q Median 3Q Max
-1.4262 -0.3310 0.1312 0.4967 1.3135

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.5844 0.9514 -1.665 0.11
price 0.2308 0.0271 8.518 2.05e-08 ***
Signif. codes:

0 “***0.001 **’0.01 **’0.05°.’ 0.1’ 1

Residual standard error: 0.7802 on 22 degrees of freedom

Multiple R-squared: 0.7673, Adjusted R-squared: 0.7568
F-statistic: 72.56 on 1 and 22 DF, p-value: 2.051e-08

Regression model: _y = OZBOQ;- 15844

tax price

37



Deal with non-linearity

38



Regression on transformed variables

* Deal with non-linearity: Sometimes visual
inspections, or prior knowledge, tells us that
there are some non-linear factors in regression

model
 Examples:

Y = Boeﬁlxﬁ

InY

InBy+ Bix + Ine

1
Y:BO—FBl(;)‘FE

y=PBo T Bix + B

0.0 y/ e
0 2 4 6 8 10

Wind velocity, x

Figure 11-14  Plot of DC output y versus wind velocity x
for the windmill data.
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Example 4: Wind-mill power

A research engineer 1s investigating the use of a windmill to
generate electricity and has collected data on the DC output
from this windmill and the corresponding wind velocity. The

data are plotted in Figure 11-14 and listed in Table 11-5 (p.439).

Observation Wind Velocity DC Output, Observation Wind Velocity DC Output,
Number, i (mph), x; y; Number, i (mph), x; y;

1 5.00 1.582 4 2.70 0.500
2 6.00 1.822 3 10.00 2.236
3 3.40 1.057 6 9.70 2.386
7 9.55 2.294
8 3.05 0.558
9 8.15 2.166
10 6.20 1.866
3.0 11 2.90 0.653
12 6.35 1.930
o 0t 13 4.60 1.562
220 ot 14 5.80 1737
g oo 7 15 7.40 2,088
E o o0 ) 16 3.60 1.137
-1 : 17 7.85 2.179
% 18 8.80 2.112
19 7.00 1.800
07 i 4 6 8 10 20 5.45 1.501
Wind velocity, x 21 9.10 2303
Figure 11-14 Plot of DC output y versus wind velocity x 22 10.20 2310
for the windmill data. 23 4.10 1.194
24 3.95 1.144
25 245 0.123

40



Try fitting a linear model?

* Result of fitting linear regression model

$ = 0.1309 + 0.2411x

The summary statistics for this model are R* = 0.8745,
MSy; = 6% = 00557, and F, = 160.26 (the P-value is
<0.0001). Residual

0.4

0.2

 Residual plot indicates the linear

relationship does not capture all

the information in the wind-speed

variable.

y
Figure 11-15 Plot of residuals e; versus fitted
values y; for the windmill data.
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A second fry

* As wind speed increases, output (y) approach to
an upper limit (consist with physics of windmill

operation) |
y=PBo+Bi{5)t+e
X
Raw data Transformed data
3.0 3.0
> 20 > 2.0
g 3
s 3
8 1.0 2 10
0.0 -7/ 0.0
0 2 4 6 8 10 0.10 0.20 0.30 0.40 0.50
Wind velocity, x 1
Figure 11-14 Plot of DC output y versus wind velocity x YT

for the windmill data. Figure 11-16 Plot of DC output versus x’ = 1/x for the

windmill data.
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x' = 1/x.

$ = 2.9789 — 6.9345x’

The summary statistics for this model are R* = 0.9800,
MS; = 6° =0.0089, and F, = 112843 (the P value is
<0.0001).

Residual: Linear model Residual: Transformed data model
0.4
0.4
[ ] [ ) [ ]
0.2 vl 0.2 ° o o o®
e o [ ]
*® oo ° o % o
0.0 ° . 0 e ¢ ¢
e d ®
R [ ei ® [ ]
-0.2 ~0.2 % ¢
_ [ ]
0.4 04
( }
[ ]
-0.6 °
~0.6
04 08 1.2 1.6 20 24 0 1 2 3
y 3.

Figure 11-15 Plot of residuals e; versus fitted .
values y; for the windmill data. Figure 11-17 Plot of residuals versus

fitted values y; for the transformed model
for the windmill data.



« Simple linear regression (one predictor)
 Method-of-least-square to find coefficient

 Model diagnosis
— Residual diagnosis: plot, normal plot, histogram
— R-score
— Confidence interval (slope, intercept, prediction)
— Hypothesis test (significance of linear model)

* Deal with non-linearity
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More example

11-6. The following table presents the highway gasoline
mileage performance and engine displacement for Daimler-
Chrysler vehicles for model year 2005 (source: U.S. Environ-
mental Protection Agency).

(a) Fit a simple linear model relating highway miles per gal-
lon (y) to engine displacement (x) in cubic inches using
least squares.

(b) Find an estimate of the mean highway gasoline mileage
performance for a car with 150 cubic inches engine
displacement.

(¢) Obtain the fitted value of y and the corresponding residual
for a car, the Neon, with an engine displacement of 348
cubic inches.

Engine
Displacement MPG
Carline (in%) (highway)
300C/SRT-8 215 30.8
CARAVAN 2WD 201 32.5
CROSSFIRE ROADSTER 196 354
DAKOTA PICKUP 2WD 226 28.1
DAKOTA PICKUP 4WD 226 24 .4
DURANGO 2WD 348 241
GRAND CHEROKEE 2WD 226 28.5
GRAND CHEROKEE 4WD 348 24.2
LIBERTY/CHEROKEE 2WD 148 32.8



