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Aircrew Escape System

• Aircrew escape systems are powered by a solid 
propellant. Rocket motor contains a propellant.

• To reject seat properly, specification require that 
the mean burn rate must be 50cm/s. Burning too 
slow or too fast are both not safe.

• 10 samples are tested to determine
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Statistical hypothesis test

• Statistical hypothesis testing of parameters are the 
fundamental methods used at the data analysis stage 
of a comparative experiment

• Many types of decision-making problems, tests, or 
experiments in engineering world can be formulated 
as hypothesis testing problems
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Statistical hypothesis testing and confidence interval estimation of parameters are the
fundamental methods used at the data analysis stage of a comparative experiment, in which
the engineer is interested, for example, in comparing the mean of a population to a specified
value. These simple comparative experiments are frequently encountered in practice and
provide a good foundation for the more complex experimental design problems that we will
discuss in Chapters 13 and 14. In this chapter we discuss comparative experiments involving
a single population, and our focus is on testing hypotheses concerning the parameters of the
population.

We now give a formal definition of a statistical hypothesis.

A statistical hypothesis is a statement about the parameters of one or more populations.
Statistical

Hypothesis

Since we use probability distributions to represent populations, a statistical hypothesis
may also be thought of as a statement about the probability distribution of a random variable.
The hypothesis will usually involve one or more parameters of this distribution.

For example, consider the aircrew escape system described in the introduction. Suppose
that we are interested in the burning rate of the solid propellant. Now, burning rate is a random
variable that can be described by a probability distribution. Suppose that our interest focuses
on the mean burning rate (a parameter of this distribution). Specifically, we are interested in
deciding whether or not the mean burning rate is 50 centimeters per second. We may express
this formally as

(9-1)

The statement centimeters per second in Equation 9-1 is called the null
hypothesis, and the statement centimeters per second is called the alternative
hypothesis. Since the alternative hypothesis specifies values of that could be either greater
or less than 50 centimeters per second, it is called a two-sided alternative hypothesis. In some
situations, we may wish to formulate a one-sided alternative hypothesis, as in

or (9-2)

It is important to remember that hypotheses are always statements about the population or
distribution under study, not statements about the sample. The value of the population param-
eter specified in the null hypothesis (50 centimeters per second in the above example) is usu-
ally determined in one of three ways. First, it may result from past experience or knowledge
of the process, or even from previous tests or experiments. The objective of hypothesis testing,
then, is usually to determine whether the parameter value has changed. Second, this value may
be determined from some theory or model regarding the process under study. Here the objec-
tive of hypothesis testing is to verify the theory or model. A third situation arises when the
value of the population parameter results from external considerations, such as design or en-
gineering specifications, or from contractual obligations. In this situation, the usual objective
of hypothesis testing is conformance testing.

H1: ! " 50 centimeters per second  H1: ! # 50 centimeters per second

H0: ! $ 50 centimeters per second  H0: ! $ 50 centimeters per second

!
H1: ! % 50

H0: ! $ 50

 H1: ! % 50 centimeters per second
 H0: ! $ 50 centimeters per second
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Hypothesis Test

• Interested in burning rate of a solid propellant
• Burning rate is a random variable 
• Deciding whether or not the mean burning rate is 

50 cm/s

• A procedure leading to a decision about a 
particular hypothesis using data is called a test of 
a hypothesis

9-1 HYPOTHESIS TESTING 285
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Testing a hypothesis

• Testing a hypothesis involves taking a random 
sample, computing a test statistic from the 
sample data, and then use the test statistic to 
make a decision about the null hypothesis

• E.g. Take 10 samples

286 CHAPTER 9 TESTS OF HYPOTHESES FOR A SINGLE SAMPLE

A procedure leading to a decision about a particular hypothesis is called a test of a
hypothesis. Hypothesis-testing procedures rely on using the information in a random sample
from the population of interest. If this information is consistent with the hypothesis, we will not
reject the hypothesis; however, if this information is inconsistent with the hypothesis, we will
conclude that the hypothesis is false. We emphasize that the truth or falsity of a particular hy-
pothesis can never be known with certainty, unless we can examine the entire population. This
is usually impossible in most practical situations. Therefore, a hypothesis-testing procedure
should be developed with the probability of reaching a wrong conclusion in mind. In our treat-
ment of hypothesis testing, the null hypothesis will always be stated so that it specifies an exact
value of the parameter (as in the statement in Equation
9-1). Testing the hypothesis involves taking a random sample, computing a test statistic from
the sample data, and then using the test statistic to make a decision about the null hypothesis.

9-1.2 Tests of Statistical Hypotheses

To illustrate the general concepts, consider the propellant burning rate problem introduced
earlier. The null hypothesis is that the mean burning rate is 50 centimeters per second, and the
alternate is that it is not equal to 50 centimeters per second. That is, we wish to test

Suppose that a sample of specimens is tested and that the sample mean burning
rate is observed. The sample mean is an estimate of the true population mean . A value of
the sample mean that falls close to the hypothesized value of centimeters per second
does not conflict with the null hypothesis that the true mean is really 50 centimeters per
second. On the other hand, a sample mean that is considerably different from 50 centimeters
per second is evidence in support of the alternative hypothesis . Thus, the sample mean is
the test statistic in this case.

The sample mean can take on many different values. Suppose that if we
will not reject the null hypothesis , and if either or , we will
reject the null hypothesis in favor of the alternative hypothesis . This is illustrated
in Fig. 9-1. The values of that are less than 48.5 and greater than 51.5 constitute the critical
region for the test, while all values that are in the interval form a region for
which we will fail to reject the null hypothesis. By convention, this is usually called the
acceptance region. The boundaries between the critical regions and the acceptance region are
called the critical values. In our example the critical values are 48.5 and 51.5. It is customary
to state conclusions relative to the null hypothesis H0. Therefore, we reject H0 in favor of 
if the test statistic falls in the critical region, and fail to reject H0 otherwise.

H1

48.5 ! x ! 51.5
x

H1: " # 50
x $ 51.5x % 48.5H0: " & 50

48.5 ! x ! 51.5,

H1

"
" & 50x

"x
n & 10

H1: " # 50 centimeters per second
H0: " & 50 centimeters per second

H0: " & 50 centimeters per second

50 51.548.5

Reject H0

µ ≠ 50 cm/s

Fail to Reject H0

µ = 50 cm/s

Reject H0

µ ≠ 50 cm/s

x

Figure 9-1 Decision criteria for testing H0: " &
50 centimeters per second versus H1: " # 50 centime-
ters per second.

JWCL232_c09_283-350.qxd  1/14/10  3:06 PM  Page 286

Acceptance regionRejection region Rejection region



6

Statistical Hypothesis Testing

Hypothesis-testing procedures rely on using
the information in a random sample from
the population of interest.

If this information is consistent with the
hypothesis, then we will conclude that the
hypothesis is true; if this information is
inconsistent with the hypothesis, we will
conclude that the hypothesis is false.
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Statistical Hypothesis Testing

?)?,( 2 == sµN

nXXX ,,, 21 !population 

sample

Conclusion about  
null hypothesis

• For example, comparing the mean of a population to a specified value

Null Hypothesis

Alternative Hypothesis

Null Hypothesis
is rejected

Null Hypothesis
is not rejected

!": $ = $"
!&: $ ≠ $"

!": () = (")
!&: () ≠ (")
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Key Questions

• How to set-up the hypothesis test?
• How to make decision?

– How to choose detection statistic?
– How to determine threshold?

• Concepts
– Test statistic
– Decision: “Rejection” “acceptance”
– Significance level
– p-value
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(1) Is the coin fair? P(tails)=P(heads)

H0: ??? H1: ???

(2) A machine produces product (X) with mean    , variance

(2a) Is the variability under control by (")? 

H0: ??? H1: ???

(2b) Do we support the hypothesis that the machine in 
average produce an item of a size larger than a known μ0?

H0: ??? H1: ???

Class Activity 

σ 2µ
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null hypothesis

alternative hypothesis

Composite Hypotheses

Simple Hypothesis

Testing two possible 
values of the 

parameter

X: customers’ waiting 
time in a bank

Type of Hypothesis

H0 :µ = 12
H1 :µ = 24

Testing a range 
of values 10:

10:

1

0

<
=

µ
µ

H
H

Average diameter 
of screw
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Errors in Hypothesis Test

9-1 HYPOTHESIS TESTING 287

Failing to reject the null hypothesis when it is false is defined as a type II error.
Type II Error

! " P(type I error) " P(reject H0 when H0 is true) (9-3)
Probability of
Type I Error

This decision procedure can lead to either of two wrong conclusions. For example, the
true mean burning rate of the propellant could be equal to 50 centimeters per second.
However, for the randomly selected propellant specimens that are tested, we could observe a
value of the test statistic that falls into the critical region. We would then reject the null
hypothesis H0 in favor of the alternate when, in fact, H0 is really true. This type of wrong
conclusion is called a type I error.

H1

x

Rejecting the null hypothesis H0 when it is true is defined as a type I error.
Type I Error

Now suppose that the true mean burning rate is different from 50 centimeters per second, yet
the sample mean falls in the acceptance region. In this case we would fail to reject H0 when
it is false. This type of wrong conclusion is called a type II error.

x

Thus, in testing any statistical hypothesis, four different situations determine whether the final
decision is correct or in error. These situations are presented in Table 9-1.

Because our decision is based on random variables, probabilities can be associated with
the type I and type II errors in Table 9-1. The probability of making a type I error is denoted
by the Greek letter !.

Sometimes the type I error probability is called the significance level, or the !-error, or the
size of the test. In the propellant burning rate example, a type I error will occur when either

or when the true mean burning rate really is centimeters per sec-
ond. Suppose that the standard deviation of burning rate is centimeters per second
and that the burning rate has a distribution for which the conditions of the central limit theo-
rem apply, so the distribution of the sample mean is approximately normal with mean 
and standard deviation . The probability of making a type I error
(or the significance level of our test) is equal to the sum of the areas that have been shaded in
the tails of the normal distribution in Fig. 9-2. We may find this probability as

! " P1X # 48.5 when $ " 502 % P1X & 51.5 when $ " 502
'(1n " 2.5(110 " 0.79

$ " 50

' " 2.5
$ " 50x # 48.5x & 51.5

Table 9-1 Decisions in Hypothesis Testing

Decision H0 Is True H0 Is False

Fail to reject H0 no error type II error
Reject H0 type I error no error

α /2 = 0.0287 α /2 = 0.0287

48.5 51.5= 50µ X

Figure 9-2 The critical region for H0: $ " 50
versus H1: $ ) 50 and n " 10.
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The z-values that correspond to the critical values 48.5 and 51.5 are

Therefore,

This is the type I error probability. This implies that 5.74% of all random samples would lead
to rejection of the hypothesis when the true mean burning
rate is really 50 centimeters per second.

From inspection of Fig. 9-2, notice that we can reduce by widening the acceptance
region. For example, if we make the critical values 48 and 52, the value of is

We could also reduce ! by increasing the sample size. If "

0.625, and using the original critical region from Fig. 9-1, we find

Therefore,

In evaluating a hypothesis-testing procedure, it is also important to examine the proba-
bility of a type II error, which we will denote by #. That is,

! " P1Z $ %2.402 & P1Z ' 2.402 " 0.0082 & 0.0082 " 0.0164

z1 "
48.5 % 50

0.625 " %2.40  and  z2 "
51.5 % 50

0.625 " 2.40

n " 16, ()1n " 2.5)116

 " 0.0057 & 0.0057 " 0.0114

 ! " P  aZ $
48 % 50

0.79 b & P   aZ '
52 % 50

0.79 b " P 1Z $ %2.532 & P 1Z ' 2.532
!

!

H0: * " 50 centimeters per second

! " P1Z $ %1.902 & P1Z ' 1.902 " 0.0287 & 0.0287 " 0.0574

z1 "
48.5 % 50

0.79 " %1.90  and  z2 "
51.5 % 50

0.79 " 1.90

Computing the 
Type I Error

Probability 

The Impact of 
Sample Size

# " P(type II error) " P(fail to reject H0 when H0 is false) (9-4)
Probability of
Type II Error

To calculate # (sometimes called the !-error), we must have a specific alternative hypothe-
sis; that is, we must have a particular value of *. For example, suppose that it is important to
reject the null hypothesis H0: * " 50 whenever the mean burning rate * is greater than 52
centimeters per second or less than 48 centimeters per second. We could calculate the proba-
bility of a type II error # for the values * " 52 and * " 48 and use this result to tell us some-
thing about how the test procedure would perform. Specifically, how will the test procedure
work if we wish to detect, that is, reject H0, for a mean value of * " 52 or * " 48? Because
of symmetry, it is necessary only to evaluate one of the two cases—say, find the probability of
accepting the null hypothesis H0: * " 50 centimeters per second when the true mean is * "
52 centimeters per second.
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Suppose you are the prosecutor in a 
courtroom trial. The defendant is 
either guilty or not. The jury will 
either convict or not.

Not Guilty

Free-of-guilt 

Convict

Right 
decision

Wrong 
decision

Court room decision

Right 
decision

Wrong 
decision

Guilty

truth

decision
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In 1999, a study on the weight of students at GT provided an average 
weight of µ = 160 lbs. We would like to test our belief that the GT 
student weight average did not increase in 2020 (compare to 1999)

1. What is the alternative hypothesis?

A. H1: μ = 160              B. H1: μ > 160 C. H1: μ < 160

2. Test H0: µ = 160 vs. H1: μ > 160. What is P(Reject H0 | µ = 160)?

A. Type I error    B. Type II error C. Power 

3. Test H0: µ = 160 vs. H1: μ > 160. What is P(Accept H0 | µ > 160)?

A. Type I error     B. Type II error C. Power

Class Activity  2 
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Example
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H1

x
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Type I Error
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x
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Thus, in testing any statistical hypothesis, four different situations determine whether the final
decision is correct or in error. These situations are presented in Table 9-1.

Because our decision is based on random variables, probabilities can be associated with
the type I and type II errors in Table 9-1. The probability of making a type I error is denoted
by the Greek letter !.

Sometimes the type I error probability is called the significance level, or the !-error, or the
size of the test. In the propellant burning rate example, a type I error will occur when either
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ond. Suppose that the standard deviation of burning rate is centimeters per second
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The z-values that correspond to the critical values 48.5 and 51.5 are

Therefore,

This is the type I error probability. This implies that 5.74% of all random samples would lead
to rejection of the hypothesis when the true mean burning
rate is really 50 centimeters per second.

From inspection of Fig. 9-2, notice that we can reduce by widening the acceptance
region. For example, if we make the critical values 48 and 52, the value of is

We could also reduce ! by increasing the sample size. If "

0.625, and using the original critical region from Fig. 9-1, we find

Therefore,

In evaluating a hypothesis-testing procedure, it is also important to examine the proba-
bility of a type II error, which we will denote by #. That is,

! " P1Z $ %2.402 & P1Z ' 2.402 " 0.0082 & 0.0082 " 0.0164

z1 "
48.5 % 50

0.625 " %2.40  and  z2 "
51.5 % 50

0.625 " 2.40

n " 16, ()1n " 2.5)116

 " 0.0057 & 0.0057 " 0.0114

 ! " P  aZ $
48 % 50

0.79 b & P   aZ '
52 % 50

0.79 b " P 1Z $ %2.532 & P 1Z ' 2.532
!

!

H0: * " 50 centimeters per second

! " P1Z $ %1.902 & P1Z ' 1.902 " 0.0287 & 0.0287 " 0.0574

z1 "
48.5 % 50

0.79 " %1.90  and  z2 "
51.5 % 50

0.79 " 1.90

Computing the 
Type I Error

Probability 

The Impact of 
Sample Size

# " P(type II error) " P(fail to reject H0 when H0 is false) (9-4)
Probability of
Type II Error

To calculate # (sometimes called the !-error), we must have a specific alternative hypothe-
sis; that is, we must have a particular value of *. For example, suppose that it is important to
reject the null hypothesis H0: * " 50 whenever the mean burning rate * is greater than 52
centimeters per second or less than 48 centimeters per second. We could calculate the proba-
bility of a type II error # for the values * " 52 and * " 48 and use this result to tell us some-
thing about how the test procedure would perform. Specifically, how will the test procedure
work if we wish to detect, that is, reject H0, for a mean value of * " 52 or * " 48? Because
of symmetry, it is necessary only to evaluate one of the two cases—say, find the probability of
accepting the null hypothesis H0: * " 50 centimeters per second when the true mean is * "
52 centimeters per second.
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Figure 9-3 will help us calculate the probability of type II error !. The normal distribution
on the left in Fig. 9-3 is the distribution of the test statistic when the null hypothesis 
H0: " # 50 is true (this is what is meant by the expression “under H0: " # 50”), and the nor-
mal distribution on the right is the distribution of when the alternative hypothesis is true and
the value of the mean is 52 (or “under H1: " # 52”). Now a type II error will be committed if
the sample mean falls between 48.5 and 51.5 (the critical region boundaries) when " # 52.
As seen in Fig. 9-3, this is just the probability that when the true mean is 
" # 52, or the shaded area under the normal distribution centered at " # 52. Therefore,
referring to Fig. 9-3, we find that

The z-values corresponding to 48.5 and 51.5 when " # 52 are

Therefore,

Thus, if we are testing H0: " # 50 against H1: " $ 50 with n# 10, and the true value of the
mean is " # 52, the probability that we will fail to reject the false null hypothesis is 0.2643. By
symmetry, if the true value of the mean is " # 48, the value of ! will also be 0.2643.

The probability of making a type II error ! increases rapidly as the true value of 
approaches the hypothesized value. For example, see Fig. 9-4, where the true value of the
mean is " # 50.5 and the hypothesized value is H0: " # 50. The true value of " is very close
to 50, and the value for ! is

! # P 148.5 % X % 51.5 when " # 50.52
"

 # 0.2643 & 0.0000 # 0.2643
 ! # P 1&4.43 % Z % &0.632 # P 1Z % &0.632 & P 1Z % &4.432
z1 #

48.5 & 52
0.79 # &4.43  and  z2 #

51.5 & 52
0.79 # &0.63

! # P 148.5 % X % 51.5 when " # 522
48.5 % X % 51.5

X

X

X
Computing the 

Probability of 
Type II Error

Figure 9-3 The probability of type II error
when " # 52 and n # 10.
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when " # 50.5 and n # 10.
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Significance Level

Typical value for significance level: 
0.1, 0.05, 0.001

9-1 HYPOTHESIS TESTING 291

Acceptance Sample
Region Size ! " at # $ 52 " at # $ 50.5

10 0.0576 0.2643 0.8923
10 0.0114 0.5000 0.9705
16 0.0576 0.0966 0.8606
16 0.0114 0.2515 0.957848.42 % x % 51.58

48.81 % x % 51.19
48 % x % 52
48.5 % x % 51.5

The results in boxes were not calculated in the text but can easily be verified by the
reader. This display and the discussion above reveal four important points:

1. The size of the critical region, and consequently the probability of a type I error ,
can always be reduced by appropriate selection of the critical values.

2. Type I and type II errors are related. A decrease in the probability of one type of error
always results in an increase in the probability of the other, provided that the sample
size n does not change.

3. An increase in sample size reduces ", provided that is held constant.
4. When the null hypothesis is false, " increases as the true value of the parameter

approaches the value hypothesized in the null hypothesis. The value of " decreases
as the difference between the true mean and the hypothesized value increases.

Generally, the analyst controls the type I error probability ! when he or she selects the
critical values. Thus, it is usually easy for the analyst to set the type I error probability at
(or near) any desired value. Since the analyst can directly control the probability of
wrongly rejecting H0, we always think of rejection of the null hypothesis H0 as a strong
conclusion.

Because we can control the probability of making a type I error (or significance level), a
logical question is what value should be used. The type I error probability is a measure of risk,
specifically, the risk of concluding that the null hypothesis is false when it really isn’t. So, the
value of ! should be chosen to reflect the consequences (economic, social, etc.) of incorrectly
rejecting the null hypothesis. Smaller values of ! would reflect more serious consequences
and larger values of ! would be consistent with less severe consequences. This is often hard to
do, and what has evolved in much of scientific and engineering practice is to use the value
! $ 0.05 in most situations, unless there is information available that indicates that this is an
inappropriate choice. In the rocket propellant problem with , this would correspond to
critical values of 48.45 and 51.55.

n $ 10

!

!

Recall that when and , we found that ; therefore, increasing the
sample size results in a decrease in the probability of type II error.

The results from this section and a few other similar calculations are summarized in the
following table. The critical values are adjusted to maintain equal ! for n $ 10 and n $ 16.
This type of calculation is discussed later in the chapter.

" $ 0.2643# $ 52n $ 10

A widely used procedure in hypothesis testing is to use a type 1 error or significance
level of ! $ 0.05. This value has evolved through experience, and may not be appro-
priate for all situations.

JWCL232_c09_283-350.qxd  1/14/10  3:06 PM  Page 291



18

18

Power = 1 – β = P(reject H0 when H1 is true)

Example: power function for the test 

H0 :µ = 0
H1 :µ ≠ 0

μ

P(reject H0)

Statistical Power
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p-value
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p-value
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Example
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9-2. A semiconductor manufacturer collects data from a
new tool and conducts a hypothesis test with the null hypothe-
sis that a critical dimension mean width equals 100 nm. The
conclusion is to not reject the null hypothesis. Does this result
provide strong evidence that the critical dimension mean
equals 100 nm? Explain.
9-3. The standard deviation of critical dimension thickness
in semiconductor manufacturing is ! " 20 nm.
(a) State the null and alternative hypotheses used to demon-

strate that the standard deviation is reduced.
(b) Assume that the previous test does not reject the null

hypothesis. Does this result provide strong evidence that
the standard deviation has not been reduced? Explain.

9-4. The mean pull-off force of a connector depends on cure
time.
(a) State the null and alternative hypotheses used to demon-

strate that the pull-off force is below 25 newtons.
(b) Assume that the previous test does not reject the null hypoth-

esis. Does this result provide strong evidence that the pull-off
force is greater than or equal to 25 newtons? Explain.

9-5. A textile fiber manufacturer is investigating a new drap-
ery yarn, which the company claims has a mean thread elonga-
tion of 12 kilograms with a standard deviation of 0.5 kilo-
grams. The company wishes to test the hypothesis 
against using a random sample of four specimens.
(a) What is the type I error probability if the critical region is

defined as kilograms? 
(b) Find # for the case where the true mean elongation is

11.25 kilograms.
(c) Find # for the case where the true mean is 11.5 kilograms.
9-6. Repeat Exercise 9-5 using a sample size of n = 16 and
the same critical region.
9-7. In Exercise 9-5, find the boundary of the critical region
if the type I error probability is
(a) $ " 0.01 and n " 4 (c) $ " 0.01 and n " 16
(b) $ " 0.05 and n " 4 (d) $ " 0.05 and n " 16
9-8. In Exercise 9-5, calculate the probability of a type II
error if the true mean elongation is 11.5 kilograms and
(a) $ " 0.05 and n " 4
(b) $ " 0.05 and n " 16
(c) Compare the values of # calculated in the previous parts.

What conclusion can you draw?
9-9. In Exercise 9-5, calculate the P-value if the observed
statistic is
(a) = 11.25 (b) = 11.0 (c) = 11.75
9-10. The heat evolved in calories per gram of a cement
mixture is approximately normally distributed. The mean is
thought to be 100 and the standard deviation is 2. We wish to
test versus with a sample of n = 9
specimens.
(a) If the acceptance region is defined as ,

find the type I error probability $.
(b) Find # for the case where the true mean heat evolved is 103.

98.5 % x % 101.5

H1: & ' 100H0: & " 100

xxx

x ( 11.5

H1: & ( 12,
H0: & " 12

(c) Find # for the case where the true mean heat evolved is
105. This value of # is smaller than the one found in part
(b) above. Why?

9-11. Repeat Exercise 9-10 using a sample size of 
and the same acceptance region.
9-12. In Exercise 9-10, find the boundary of the critical
region if the type I error probability is
(a) $ " 0.01 and n " 9 (c) $ " 0.01 and n " 5
(b) $ " 0.05 and n " 9 (d) $ " 0.05 and n " 5
9-13. In Exercise 9-10, calculate the probability of a type II
error if the true mean heat evolved is 103 and
(a) $ " 0.05 and n " 9
(b) $ " 0.05 and n " 5
(c) Compare the values of # calculated in the previous parts.

What conclusion can you draw?
9-14. In Exercise 9-10, calculate the P-value if the observed
statistic is
(a) = 98 (b) = 101 (c) = 102
9-15. A consumer products company is formulating a new
shampoo and is interested in foam height (in millimeters).
Foam height is approximately normally distributed and has a
standard deviation of 20 millimeters. The company wishes to
test millimeters versus millime-
ters, using the results of samples.
(a) Find the type I error probability if the critical region is

.
(b) What is the probability of type II error if the true mean

foam height is 185 millimeters?
(c) Find # for the true mean of 195 millimeters.
9-16. Repeat Exercise 9-15 assuming that the sample size is
n " 16 and the boundary of the critical region is the same.
9-17. In Exercise 9-15, find the boundary of the critical
region if the type I error probability is
(a) $ " 0.01 and n " 10 (c) $ " 0.01 and n " 16
(b) $ " 0.05 and n " 10 (d) $ " 0.05 and n " 16
9-18. In Exercise 9-15, calculate the probability of a type II
error if the true mean foam height is 185 millimeters and
(a) $ " 0.05 and n " 10
(b) $ " 0.05 and n " 16
(c) Compare the values of # calculated in the previous parts.

What conclusion can you draw?
9-19. In Exercise 9-15, calculate the P-value if the observed
statistic is
(a) = 180 (b) = 190 (c) = 170
9-20. A manufacturer is interested in the output voltage of a
power supply used in a PC. Output voltage is assumed to be
normally distributed, with standard deviation 0.25 volt, and
the manufacturer wishes to test H0:& " 5 volts against 
H1: volts, using n " 8 units.
(a) The acceptance region is Find the value

of .
(b) Find the power of the test for detecting a true mean output

voltage of 5.1 volts.

$
4.85 % x % 5.15.

& ' 5

xxx

x ) 185
$

n " 10
H1: & ) 175H0: & " 175

xxx

n " 5
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9-2 TESTS ON THE MEAN OF A NORMAL DISTRIBUTION,
VARIANCE KNOWN

In this section, we consider hypothesis testing about the mean ! of a single normal population
where the variance of the population "2 is known. We will assume that a random sample X1,
X2, p , Xn has been taken from the population. Based on our previous discussion, the sample
mean is an unbiased point estimator of ! with variance .

9-2.1 Hypothesis Tests on the Mean

Suppose that we wish to test the hypotheses

(9-7)

where !0 is a specified constant. We have a random sample X1, X2, p , Xn from a normal pop-
ulation. Since has a normal distribution (i.e., the sampling distribution of is normal)XX

H1: ! # !0

H0: ! $ !0

"2%nX

9-21. Rework Exercise 9-20 when the sample size is 16 and
the boundaries of the acceptance region do not change. What
impact does the change in sample size have on the results of
parts (a) and (b)?
9-22. In Exercise 9-20, find the boundary of the critical re-
gion if the type I error probability is
(a) & $ 0.01 and n $ 8 (c) & $ 0.01 and n $ 16
(b) & $ 0.05 and n $ 8 (d) & $ 0.05 and n $ 16
9-23. In Exercise 9-20, calculate the P-value if the observed
statistic is
(a) = 5.2 (b) = 4.7 (c) = 5.1
9-24. In Exercise 9-20, calculate the probability of a type II
error if the true mean output is 5.05 volts and
(a) & $ 0.05 and n $ 10
(b) & $ 0.05 and n $ 16
(c) Compare the values of ' calculated in the previous parts.

What conclusion can you draw?
9-25. The proportion of adults living in Tempe, Arizona,
who are college graduates is estimated to be p $ 0.4. To test
this hypothesis, a random sample of 15 Tempe adults is
selected. If the number of college graduates is between 4 and 8,
the hypothesis will be accepted; otherwise, we will conclude
that .
(a) Find the type I error probability for this procedure, assum-

ing that p $ 0.4.
(b) Find the probability of committing a type II error if the

true proportion is really p $ 0.2.
9-26. The proportion of residents in Phoenix favoring the
building of toll roads to complete the freeway system is
believed to be p $ 0.3. If a random sample of 10 residents

p # 0.4

xxx

shows that 1 or fewer favor this proposal, we will conclude
that p ( 0.3.
(a) Find the probability of type I error if the true proportion is

p $ 0.3.
(b) Find the probability of committing a type II error with this

procedure if p $ 0.2.
(c) What is the power of this procedure if the true proportion

is p $ 0.2?
9-27. A random sample of 500 registered voters in Phoenix
is asked if they favor the use of oxygenated fuels year-round
to reduce air pollution. If more than 400 voters respond posi-
tively, we will conclude that more than 60% of the voters favor
the use of these fuels.
(a) Find the probability of type I error if exactly 60% of the

voters favor the use of these fuels.
(b) What is the type II error probability ' if 75% of the voters

favor this action?
Hint: use the normal approximation to the binomial.

9-28. If we plot the probability of accepting H0:! $ !0
versus various values of ! and connect the points with a
smooth curve, we obtain the operating characteristic curve
(or the OC curve) of the test procedure. These curves are used
extensively in industrial applications of hypothesis testing to
display the sensitivity and relative performance of the test.
When the true mean is really equal to !0, the probability of
accepting H0 is 1 ) &. 
(a) Construct an OC curve for Exercise 9-15, using values

of the true mean ! of 178, 181, 184, 187, 190, 193, 196,
and 199.

(b) Convert the OC curve into a plot of the power function of
the test.
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# clear space
rm(list = ls())

# initialize
n <- 50
x <- (450:550)/100
y <- rep(0, length(x))
len <- length(x)
ind <- 1:len
CR_upper <- 5.15
CR_lower <- 4.85

#CR_upper = 10
#CR_lower = 3

for (i in ind){
y[i] <- pnorm((CR_upper-x[i])/(0.25/sqrt(8)), 0, 1)-
pnorm((CR_lower-x[i])/(0.25/sqrt(8)), 0, 1)
print(1-y[i])
}

plot(x, 1-y, type="l", main="Power function", ylab = "x", 
col = "blue")
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Hypothesis Testing Procedures

8.    Report p-values
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Inference on the Mean of a Normal Population –
Known Variance

Alternative 
Hypothesis

Rejection/Critical 
Region 

(H0 is rejected)

00 : µµ =H

01 : µµ ¹H

01 : µµ >H

01 : µµ <H

n
XZ
s

µ0
0

-
=

Test Statistic

)1,0(~0 NZ

20 aZZ >

aZZ >0

aZZ -<0

Null Hypothesis Distribution under H0

Threshold:
Critical values
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Why this gives the desired significance level?

• Proof

22

Why this gives the desired significance level?

• Proof i e g Hi i MF Mo

IP reject Ho when Ho is true
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Example: Battery life
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Solution

17ISyE 2028 – F12, Hypothesis Tests-One Population

Solution



30

24

Solution

i observed statistic value 1.265

we reject Ho when µ is large Nco
Therefore p value IP test stat 1.265

I 1.265

0.10374 0.05
So indeed we don't have enough
evidence to reject Ho
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More Examples and Case Study
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1. Ice Hockey Player: Variance Parameter

0.07
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Inference on the Variance of a Normal 
Population

Alternative 
Hypothesis

Rejection/Critical 
Region 

(H0 is rejected)

2
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• Collect a sample and construct a 100(1- α)% CI

Hypothesis Testing Using Confidence Intervals -
Variance of a Normal Population
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Solution

33ISyE 2028 – F12, Hypothesis Tests-One Population

Solution

1 parameter of interest 0 anaeso
Solveusing

07 50 0.01 C I

iii S in
L

5 Reject when Xf Nz2 n I
6 Computer 2102 47 1 0.092

he 17 Toy 26.45

00 0.75 XI n l XTog 16 26.3
5 0.09 R fchisf lo 05,16 lower tail _F

7 Conclusion reject Ho
p value IP XEN 11726451 0.04833ISyE 2028 – F12, Hypothesis Tests-One Population

Solution

1 parameter of interest 0 anaeso
Solveusing

07 50 0.01 C I

iii S in
L

5 Reject when Xf Nz2 n I
6 Computer 2102 47 1 0.092

he 17 Toy 26.45

00 0.75 XI n l XTog 16 26.3
5 0.09 R fchisf lo 05,16 lower tail _F

7 Conclusion reject Ho
p value IP XEN 11726451 0.048

2
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2. Engineering Higher Education: 
Sample Proportion
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Inference on a Population Proportion

Alternative 
Hypothesis

Rejection/Critical 
Region 

(H0 is rejected)

00 : ppH =

01 : ppH ¹

01 : ppH >

01 : ppH <

n
pp
ppZ

)1(
ˆ

00

0
0

-
-

=

Test Statistic

)1,0(~0 NZ

20 aZZ >

aZZ >0

aZZ -<0

Null Hypothesis Asymptotic Distribution
under H0

Critical values



38

• If the Confidence Interval does NOT include p0, then Reject H0

• Collect a sample and construct a 100(1- α)% CI

Hypothesis Testing Using Confidence Intervals a 
Population Proportion
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Solution

37ISyE 2028 – F12, Hypothesis Tests-One Population

Solution

1 Parameter of interest p

f II
10 0 5 Po 0.5 n 484
PC O 5 data 15 117 484 0.242

4 Test statistic Zo F Po 0.242 0.5

n 484
5 Reject Ho when Zo C Za
f Compute Zoe 11.352

2 2 20.05 1.645
7 reject Ho since Zo 22
S p value IP Z Ezo IC 11.352

3 fxco 30
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3. Comparing two paints
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Inference for Differences in Means of Two 
Normal Distributions (known variances)

Alternative 
Hypothesis

Rejection/Critical 
Region 

(H0 is rejected)

0210 : D=- µµH

0211 : D¹- µµH

0211 : D>- µµH

0211 : D<- µµH
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aZZ -<0

Null Hypothesis Distribution under H0

Critical values
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2
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• If the Confidence Interval does NOT include Δ0, then Reject H0

• Collect a sample and construct a 100(1- a)% CI

Hypothesis Testing Using Confidence Intervals Mean of 
Two Normal Populations – Known Variance
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Solution

41ISyE 2028 – F12, Hypothesis Tests-One Population

Solution

g parameter of interest hi Mz

II
M M o Oo o
Mi µz 70

4 Test Stat Zo Nco 17 under Ho

EEE
g Reject when Zo Za
6 Compute to 1211122 2.5156

5,2 55 82
h 172 10

22 20.05 1.645
7 reject Ho since Zo Za
8 P Vahle IP Z zo I 2.51563 0.0059
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4: comparing catalysts
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Comparing by descriptive statistics
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Summary

• General procedure for hypothesis test
– Direct method: define rejection region
– Using confidence interval
– Compute p-value

• For several parameters of interest
– Mean: when variance is known and unknown
– Variance
– Sample proportion
– Comparing two populations
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Additional Examples
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Quiz

tensile strength is approximately normally distributed with 
! " 60 psi. A random sample of 12 specimens has a mean
tensile strength of psi.
(a) Test the hypothesis that mean strength is 3500 psi. Use

# " 0.01.
(b) What is the smallest level of significance at which you

would be willing to reject the null hypothesis?
(c) What is the $-error for the test in part (a) if the true mean

is 3470?
(d) Suppose that we wanted to reject the null hypothesis with

probability at least 0.8 if mean strength % " 3500. What
sample size should be used? 

(e) Explain how you could answer the question in part (a) with
a two-sided confidence interval on mean tensile strength.

9-45. Supercavitation is a propulsion technology for undersea
vehicles that can greatly increase their speed. It occurs above ap-
proximately 50 meters per second, when pressure drops suffi-
ciently to allow the water to dissociate into water vapor, forming
a gas bubble behind the vehicle. When the gas bubble completely
encloses the vehicle, supercavitation is said to occur. Eight tests
were conducted on a scale model of an undersea vehicle in a tow-
ing basin with the average observed speed meters per
second. Assume that speed is normally distributed with known
standard deviation ! " 4 meters per second.
(a) Test the hypothesis H0: % " 100 versus H1: % & 100 using

# " 0.05.
(b) What is the P-value for the test in part (a)?
(c) Compute the power of the test if the true mean speed is as

low as 95 meters per second.
(d) What sample size would be required to detect a true mean

speed as low as 95 meters per second if we wanted the
power of the test to be at least 0.85?

(e) Explain how the question in part (a) could be answered by
constructing a one-sided confidence bound on the mean
speed.

9-46. A bearing used in an automotive application is sup-
posed to have a nominal inside diameter of 1.5 inches. A ran-
dom sample of 25 bearings is selected and the average inside
diameter of these bearings is 1.4975 inches. Bearing diameter
is known to be normally distributed with standard deviation
! " 0.01 inch.
(a) Test the hypothesis H0: % " 1.5 versus H1: % ' 1.5 using

# " 0.01.
(b) What is the P-value for the test in part (a)?
(c) Compute the power of the test if the true mean diameter is

1.495 inches.
(d) What sample size would be required to detect a true mean

diameter as low as 1.495 inches if we wanted the power of
the test to be at least 0.9?

(e) Explain how the question in part (a) could be answered by
constructing a two-sided confidence interval on the mean
diameter.

9-47. Medical researchers have developed a new artificial
heart constructed primarily of titanium and plastic. The heart

x " 102.2

x " 3450
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(c) If the hypothesis had been H0: % " 98 versus H1: % > 98,
would you reject the null hypothesis at the 0.05 level of
significance? Can you answer this without referring to the
normal table?

(d) Use the normal table and the above data to construct a
95% lower bound on the mean.

(e) What would the P-value be if the alternative hypothesis is
?

9-40. The mean water temperature downstream from a
power plant cooling tower discharge pipe should be no more
than 100°F. Past experience has indicated that the standard
deviation of temperature is 2°F. The water temperature is
measured on nine randomly chosen days, and the average
temperature is found to be 98°F.
(a) Is there evidence that the water temperature is acceptable

at # " 0.05?
(b) What is the P-value for this test?
(c) What is the probability of accepting the null hypothesis

at # " 0.05 if the water has a true mean temperature of
104°F?

9-41. A manufacturer produces crankshafts for an automo-
bile engine. The wear of the crankshaft after 100,000 miles
(0.0001 inch) is of interest because it is likely to have an
impact on warranty claims. A random sample of n " 15 shafts
is tested and " 2.78. It is known that ! " 0.9 and that wear
is normally distributed.
(a) Test H0: % " 3 versus using # " 0.05.
(b) What is the power of this test if % " 3.25?
(c) What sample size would be required to detect a true mean

of 3.75 if we wanted the power to be at least 0.9?
9-42. A melting point test of n " 10 samples of a binder
used in manufacturing a rocket propellant resulted in

Assume that the melting point is normally dis-
tributed with . 
(a) Test H0: % " 155 versus H1: % ' 155 using # " 0.01.
(b) What is the P-value for this test?
(c) What is the $-error if the true mean is % " 150?
(d) What value of n would be required if we want $ & 0.1

when % " 150? Assume that # " 0.01.
9-43. The life in hours of a battery is known to be approxi-
mately normally distributed, with standard deviation ! " 1.25
hours. A random sample of 10 batteries has a mean life of

hours.
(a) Is there evidence to support the claim that battery life

exceeds 40 hours? Use # " 0.05.
(b) What is the P-value for the test in part (a)?
(c) What is the $-error for the test in part (a) if the true mean

life is 42 hours?
(d) What sample size would be required to ensure that $ does

not exceed 0.10 if the true mean life is 44 hours?
(e) Explain how you could answer the question in part (a) 

by calculating an appropriate confidence bound on life.
9-44. An engineer who is studying the tensile strength of a
steel alloy intended for use in golf club shafts knows that 

x " 40.5

! " 1.5( F
x " 154.2( F.

H1: % Z 3

x

H1: % ' 99

JWCL232_c09_283-350.qxd  1/21/10  8:30 PM  Page 309

310 CHAPTER 9 TESTS OF HYPOTHESES FOR A SINGLE SAMPLE

will last and operate almost indefinitely once it is implanted in
the patient’s body, but the battery pack needs to be recharged
about every four hours. A random sample of 50 battery packs
is selected and subjected to a life test. The average life of these
batteries is 4.05 hours. Assume that battery life is normally
distributed with standard deviation ! " 0.2 hour.
(a) Is there evidence to support the claim that mean battery

life exceeds 4 hours? Use # " 0.05.
(b) What is the P-value for the test in part (a)?

If the null hypothesis is true, T0 has a t distribution with n $ 1 degrees of freedom. When we
know the distribution of the test statistic when H0 is true (this is often called the reference
distribution or the null distribution), we can calculate the P-value from this distribution, or,
if we use a fixed significance level approach, we can locate the critical region to control the type
I error probability at the desired level.

To test H0: % " %0 against the two-sided alternative , the value of the test statis-
tic t0 in Equation 9-26 is calculated, and the P-value is found from the t distribution with 
degrees of freedom. Because the test is two-tailed, the P-value is the sum of the probabilities in

n $ 1
H1 :% & %0

(c) Compute the power of the test if the true mean battery life
is 4.5 hours.

(d) What sample size would be required to detect a true mean
battery life of 4.5 hours if we wanted the power of the test
to be at least 0.9?

(e) Explain how the question in part (a) could be answered by
constructing a one-sided confidence bound on the mean
life.

9-3 TESTS ON THE MEAN OF A NORMAL DISTRIBUTION,
VARIANCE UNKNOWN

9-3.1 Hypothesis Tests on the Mean

We now consider the case of hypothesis testing on the mean of a population with unknown
variance !2. The situation is analogous to Section 8-2, where we considered a confidence
interval on the mean for the same situation. As in that section, the validity of the test proce-
dure we will describe rests on the assumption that the population distribution is at least
approximately normal. The important result upon which the test procedure relies is that if
X1, X2, p , Xn is a random sample from a normal distribution with mean % and variance !2, the
random variable

has a t distribution with n $ 1 degrees of freedom. Recall that we used this result in Section
8-2 to devise the t-confidence interval for %. Now consider testing the hypotheses

We will use the test statistic:

H1: % & %0

H0: % " %0

T "
X $ %

S'1n

(9-26)T0 "
X $ %0

S'1n

Test Statistic
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A1. Cloud seeding

Assume the true standard deviation is 4. 
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Solution

H1
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Example The response time of a distributed computer system is an
important quality characteristic. The system manager wants to know
whether the mean response time to a specific type of command
exceeds 75 millisec. From past experience, he knows that the
standard deviation of response time is 8 millisec.
If the command is executed 25 times and the response time for each
trial is recorded. The sample average response time is 79.25 millisec.
Formulate an appropriate hypothesis and test the hypothesis.

A2. Network response time
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Solution

H1



53

A3. Engine controller


