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What is probabillity theory?

Probability theory is the branch of
mathematics concerned with probabillity, the
analysis of random phenomena - wikipedia

1. Random experiment

2. Sample space
Set theory
3. Event }




®» Random experiment

Any procedure that can be repeated

infinitely and has more than one possible outcomes.
®» Sample space

The collection of all possible outcomes and is denoted
by S In this course.

®»[Fvent

The collection of some possible outcomesin S and is a
subset of the sample space S.

®»Fvent A has happened

Event A is said to has happened if the outcome of the
experiment is in A.




What is probabillitye

» Relative frequency

number of times that event A has happend in n experiments
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What is probabilityz /=

Experiment

» Pro b q bl | | Ty fU NC J“ O n \  Sumple spac

N\ {Set of possible outcomes) /

Definition 1.1-1
Probability is a real-valued set function P that assigns, to each event A in the
sample space S, a number P(A), called the probability of the event A, such that
the following properties are satisfied:

(a) P(A) = 0

(b) P(S) =1:

(c) if A1, Az, As,. .. areeventsand A; N A; =, i # j. then

P(AfUAU .- UAg) = P(Ay) + P(A2) + -+ - + P(Ag)
for each positive integer k, and
P(AfUAUA3U---)=P(A1)+ P(A2) + P(A3) + - -

for an infinite, but countable, number of events.




What is probabillitye

= Properties of Probability function

P(A) =1— P(A).
P(?) = 0.
If events A and B are such that A ¢ B, then P(A) < P(B).

For each event A, P(A) < 1.
If A and B are any two events, then

P(AUB) = P(A) + P(B) — P(AN B).



"Equally likely™ and counting
technigques

® |f fhe outcomes are “equally likely”, i.e.,

1
P({el})zga 121,2,,m S — {819623---381’}’1}

then
number of outcomes in 4

P(A) =

number of outcomes in S

The problem of computing P(A) becomes the problem of
counting the number of outcomes in the set A.




"Equally likely™ and counting
technigques

» Multiplication principle

n, outcomes

n,n, outcomes

Experiment 1 Experiment 2




Conditional Probability

» The conditional probability of an event A, given that
event B has occurred, is defined by

P(ANB) cen e
P(A|B) = — B)
ovided that P(B) > 0.
1. Conditional probability is a probability. S

2. The sample space shrinks from S to B.
3. P(ANB)=P(A)P(B|A) P(ANB)=P(B)P(A|B)

25 balloons on a board, of which 10 balloons are
yellow, 8 are red, and 7 are green. Probability of that
the first two balloons hit are yellowe




Independent events

» Fvents A and B are independent if and only if P(ANB) =
P(A)P(B). Otherwise, A and B are called dependent events.

» |f A and B are independent events, then the following pairs
f events are also independent:

(a) Aand B’; (b) A’ and B; (c) A’ and B’.
» Fvents A, B, and C are mutually independent if and only if

(a) A, B,and C are pairwise independent; that is,
P(ANB)= P(A)P(B), P(ANC)=P(A)P(C),

and

P(BN C) = P(B)P(C). g 24 fowasnt

(b) P(ANBNC)= P(A)P(B)P(C).




Bayes Theorem

» Assume that

1. Sisasample space and B, B,, ..., B, are mutually
exclusive and exhaustive w.r.t. the sample space S

2. The prior probabilities of B, i=1,....m, are positive

en m Prior probability
P(A) =)  P(BiNA) Posterior probability
a) For any event A i Likelihood

m

=) P(Bi)P(A|B))
i=1

b) If P(A)>0 P(Br)P(A | By)

m

Y P(B)P(A|B))

i=1

P(Bi|A) =




Univariate Random Variable

» omf and pdf
Given a discrete or confinuous RV X:S — X(S) € R, or simply
X defined on D c R, we define accordingly a pmf or pdf to
assign the probability for the RV:
. pmf for discrete RV: f(x):D - |0,1]

f(x)=20,x€ED; Y epf(X) =1,P(x €EA) =),eaf(x),ACD
2. pdf for continuous RV: f(x):D — [0, )

f(x) =20,x € D; fo(x)dx =1;P(x € [a,b]) = f:f(x)dx
3. cdfforRV: F(x)=P(X<x),x€D

for continuous RV, FM (x) = f(x),x € D




Univariate Random Variable

» Mathematical expectation [average value of u(X)]
(
E u(x)f(x), discrete RV

Elu(X)] =4{ xeD
J u(x)f(x)dx, continuous RV
/D

®» Properfies of mathematical expectation
1. If cisaconstant, E|[c] =c¢
2. If cis a constant and u(X) is a function of X, E[cu(X)] = cE|u(X)]

3. lIfcy, c, are constants and g, (X), g, (X) are functions of X,
Elc19:1(X) + c29_2(X)] = c1E[g1(X)]+c2E[g2(X)]




Characteristics of RV

» \Mean [average value of X]
E1X]

®» Variance [measure of the dispersion or spread out of X]
Var[X] = E(X — E[X])?

JVar(X) - standard deviation

» rth order Moments
E[X"]
» Mgfluniquely characterizes the distribution of the RV]
M(t) = E(et®), |t| < h, if there is h > 0 such that E(et*) exists.
M) =1, MY (0) = E[X], MP(0) = E[X?],MT)(0) = E[X]



Bivariate Random Variable

®» The outcome of the random experiment is a tuple of several
things of interests.

» Joint pmf and joint pdf

Given a discrete or contfinuous RV X defined on D, we define
accordingly a pmf or pdf to assign the probability for the RV:

. pmf for discrete RV: f(x,y):D - [0,1]
f(xry) = 0, (x»Y) € D;Z(x,y)EDf(x) =1,
P(ry) €A = Y fly),AcD

(x,y)EA

2. pdf for confinuous RV: f(x,y):D — [0, )
f(x,y) =0,(x,y) € D; ffD f(x,y)dxdy = 1;

P((x,y) €A) = U f(x,y)dxdy,Ac D
A



Bivariate Random Variable

» Marginal pmf and marginal pdf

Given two discrete or continuous RVs X, Y defined on D and thelir
joint pmt or joint pdf f(x,y), we define accordingly the marginal
pmf or marginal pdf to assign the probability for the RV X:

Dy = {all possible values of X in D}, Dy = {all possible values of Y in D}
l.

marginal pmf for discrete RV: fx(x):Dy — |0,1]

fx(x) = ZyEDy fxy)
with the understanding f(x,y) = 0, (x,y) &€ D
2. marginal pdf for contfinuous RV: fx(x): Dy — [0, o)

fX(x) a fDYf(x'y)dy
with the understanding f(x,y) = 0,(x,y) € D



Bivariate Random Variable
» Mathematical Expectation

.
Z u(lx,y)f(x,y), discrete RV
EfuX,Y)] ={ @eP v} i
f f ulx,y)f(x,y)dxdy, continuous RV
/D

Covariance and Correlation Coefficient

Cov(X,Y) = E[(X — E[x])(Y — E[Y])]
Cov(X,Y)
JVar(X),/Var(y)’
. Cov(X,Y)>0,p>0,(X—E|[x]) and (Y — E[Y]) tend to have the

samesign; p=1=X—-E[x]=c(Y —E[Y]) withc >0

. Cov(X,Y)<0,p<0,(X—E|[x]) and (Y — E[Y]) tend tO have the
oppositesign; p=—-1=X—E[x] =c(Y —E[Y]) Withc <0

pX,Y) = lpl <1




Bivariate Random Variable
» |[ndependent Random Variables

X and Y are said to be independent if and only if

fy) = fx@)fy(y)

A necessary condifion for X and Y to be independent

/ D = Dy X Dy

Independence E—) Uncorrelation

1. The converse is not frue in general.

2. The converse is however frue for multivariate
normal (Gaussian) distribution.




Bivariate Random Variable

» Conditional pmf and Conditional pdf

Given two discrete or confinuous RVs X, Y defined on D and their
joint pmf or joint pdf f(x,y), and marginal pmf or marginal pdf
fx(x)to assign the probability for the RV Y given that X = x:

Alylx) = 222, f(x) > 0

_f(xy)
g(xly) = ) Jr(y) >0

» Conditional mathematical expectation

-
2 u(y)h(y|x), discrete RV

Elu(M|X=x]={ Y

j u(y)h(y|x)dx, continuous RV
D

\" MY



Normal (Gaussian) distribution

» Univariate Normal distribution
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Normal (Gaussian) distribution

» Bivariate Normal distribution

1. Marginal pdf and conditional pdf are all normal.
2. Independence is equivalent to uncorrelation!




The End




