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1. Probability Theory

2. Univariate Random Variable

3. Bivariate Random Variable

  

  4. Normal distribution



Probability theory is the branch of 

mathematics concerned with probability, the 

analysis of random phenomena - wikipedia

1. Random experiment

2. Sample space

3. Event
Set theory

What is probability theory?



Random experiment

Any procedure that can be repeated                 

infinitely and has more than one possible outcomes.

Sample space

The collection of all possible outcomes and is denoted 

by S in this course.

Event

The collection of some possible outcomes in S and is a 

subset of the sample space S. 

Event A has happened

Event A is said to has happened if the outcome of the 

experiment is in A.  

S



Relative frequency

What is probability?

lim
𝑛→∞

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑡ℎ𝑎𝑡 𝑒𝑣𝑒𝑛𝑡 𝐴 ℎ𝑎𝑠 ℎ𝑎𝑝𝑝𝑒𝑛𝑑 𝑖𝑛 𝑛 𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑠

𝑛



Probability function

What is probability?



What is probability?

Properties of Probability function

S



“Equally likely” and counting 

techniques

 If the outcomes are “equally likely”, i.e.,

then  

𝑃 𝐴 =
number of outcomes in 𝐴

number of outcomes in 𝑆

The problem of computing P(A) becomes the problem of 

counting the number of outcomes in the set A.



“Equally likely” and counting 

techniques

Multiplication principle

Experiment 1

Experiment 2

Experiment 1 Experiment 2

𝑛1 outcomes

𝑛2 outcomes

𝑛1𝑛2 outcomes



Conditional Probability

 The conditional probability of an event A, given that 
event B has occurred, is defined by

provided that P(B) > 0.

1. Conditional probability is a probability.

2. The sample space shrinks from S to B.

3.

S

25 balloons on a board, of which 10 balloons are 

yellow, 8 are red, and 7 are green. Probability of that 

the first two balloons hit are yellow?



Independent events

 Events A and B are independent if and only if P(A∩B) = 

P(A)P(B). Otherwise, A and B are called dependent events.

 If A and B are independent events, then the following pairs 

of events are also independent:

(a) A and B’; (b) A’ and B; (c) A’ and B’.

 Events A, B, and C are mutually independent if and only if



Bayes Theorem

 Assume that 

1. S is a sample space and B1, B2, …, Bm are mutually     

exclusive and exhaustive w.r.t. the sample space S

2. The prior probabilities of Bi, i=1,…,m, are positive

Then

a) For any event A

b) If P(A)>0

Prior probability

Posterior probability

Likelihood 



Univariate Random Variable

 pmf and pdf 

Given a discrete or continuous RV 𝑋: 𝑆 → 𝑋 𝑆 ⊂ 𝑅, or simply 

𝑋 defined on 𝐷 ⊂ 𝑅, we define accordingly a pmf or pdf to 

assign the probability for the RV:

1. pmf for discrete RV:        𝑓 𝑥 : 𝐷 → 0, 1

𝑓 𝑥 ≥ 0, 𝑥 ∈ 𝐷; 𝑥∈D𝑓 𝑥 = 1; 𝑃 𝑥 ∈ 𝐴 =  𝑥∈𝐴 𝑓 𝑥 , 𝐴 ⊂ 𝐷

2. pdf for continuous RV:   𝑓 𝑥 : 𝐷 → [0,∞)

𝑓 𝑥 ≥ 0, 𝑥 ∈ 𝐷;  𝐷 𝑓 𝑥 𝑑𝑥 = 1; 𝑃 𝑥 ∈ [𝑎, 𝑏] =  𝑎
𝑏
𝑓 𝑥 𝑑𝑥

3. cdf for RV:         𝐹 𝑥 = 𝑃 𝑋 ≤ 𝑥 , 𝑥 ∈ 𝐷

for continuous RV, 𝐹 1 (𝑥) = 𝑓 𝑥 , 𝑥 ∈ 𝐷



Univariate Random Variable

Mathematical expectation [average value of 𝑢(𝑋)]

𝐸 𝑢 𝑋 =

 

𝑥∈D

𝑢(𝑥)𝑓(𝑥) , 𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 𝑅𝑉

 
𝐷

𝑢 𝑥 𝑓 𝑥 𝑑𝑥 , 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑅𝑉

 Properties of mathematical expectation

1. If 𝑐 is a constant, 𝐸 𝑐 = 𝑐

2. If 𝑐 is a constant and 𝑢 𝑋 is a function of 𝑋, 𝐸 𝑐𝑢(𝑋) = 𝑐𝐸 𝑢 𝑋

3. If𝑐1, 𝑐2 are constants and 𝑔1 𝑋 , 𝑔2(𝑋) are functions of 𝑋, 

𝐸 𝑐1𝑔1 𝑋 + 𝑐2𝑔_2(𝑋) = 𝑐1𝐸[𝑔1(𝑋)]+𝑐2𝐸[𝑔2(𝑋)]



Characteristics of RV

Mean [average value of 𝑋]

𝐸[𝑋]

 Variance [measure of the dispersion or spread out of 𝑋]

𝑉𝑎𝑟 𝑋 = 𝐸 𝑋 − 𝐸 𝑋 2

𝑉𝑎𝑟(𝑋) - standard deviation

 𝑟th order Moments 

𝐸[𝑋𝑟]

mgf[uniquely characterizes the distribution of the RV]

𝑀 𝑡 = 𝐸 𝑒𝑡𝑋 , 𝑡 < ℎ , if there is ℎ > 0 such that 𝐸 𝑒𝑡𝑋 exists. 

𝑀 0 = 1,𝑀 1 0 = 𝐸 𝑋 , 𝑀 2 0 = 𝐸 𝑋2 , 𝑀 𝑟 0 = 𝐸 𝑋𝑟



Bivariate Random Variable

 The outcome of the random experiment is a tuple of several 

things of interests.

 Joint pmf and joint pdf

Given a discrete or continuous RV 𝑋 defined on 𝐷, we define 

accordingly a pmf or pdf to assign the probability for the RV:

1. pmf for discrete RV:        𝑓 𝑥, 𝑦 : 𝐷 → 0, 1

𝑓 𝑥, 𝑦 ≥ 0, 𝑥, 𝑦 ∈ 𝐷; 𝑥,𝑦 ∈𝐷 𝑓 𝑥 = 1,

𝑃 (𝑥, 𝑦) ∈ 𝐴 =  

(𝑥,𝑦)∈𝐴

𝑓 𝑥, 𝑦 , 𝐴 ⊂ 𝐷

2. pdf for continuous RV:   𝑓 𝑥, 𝑦 : 𝐷 → [0,∞)

𝑓 𝑥, 𝑦 ≥ 0, (𝑥, 𝑦) ∈ 𝐷;  𝐷
𝑓 𝑥, 𝑦 𝑑𝑥𝑑𝑦 = 1;

𝑃 (𝑥, 𝑦) ∈ 𝐴 = 
𝐴

𝑓 𝑥, 𝑦 𝑑𝑥𝑑𝑦 , 𝐴 ⊂ 𝐷



Bivariate Random Variable

Marginal pmf and marginal pdf

Given two discrete or continuous RVs 𝑋, 𝑌 defined on 𝐷 and their 

joint pmf or joint pdf 𝑓 𝑥, 𝑦 , we define accordingly the marginal 

pmf or marginal pdf to assign the probability for the RV 𝑋:

1. marginal pmf for discrete RV:        𝑓𝑋 𝑥 : 𝐷𝑋 → 0, 1

𝑓𝑋 𝑥 =  𝑦∈D𝑌
𝑓(𝑥, 𝑦)

with the understanding 𝑓 𝑥, 𝑦 = 0, 𝑥, 𝑦 ∉ 𝐷

2. marginal pdf for continuous RV:   𝑓𝑋 𝑥 : 𝐷𝑋 → [0,∞)

𝑓𝑋 𝑥 =  𝐷𝑌
𝑓 𝑥, 𝑦 𝑑𝑦

with the understanding 𝑓 𝑥, 𝑦 = 0, 𝑥, 𝑦 ∉ 𝐷

𝐷𝑋 = 𝑎𝑙𝑙 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑋 𝑖𝑛 𝐷 , 𝐷𝑌 = {𝑎𝑙𝑙 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑌 𝑖𝑛 𝐷}



Bivariate Random Variable
Mathematical Expectation

Covariance and Correlation Coefficient

𝐶𝑜𝑣 𝑋, 𝑌 = 𝐸 𝑋 − 𝐸 𝑥 𝑌 − 𝐸 𝑌

𝜌 𝑋, 𝑌 =
𝐶𝑜𝑣(𝑋,𝑌)

Var(𝑋) Var(𝑌)
, 𝜌 ≤ 1

1. 𝐶𝑜𝑣 𝑋, 𝑌 > 0, 𝜌 > 0, 𝑋 − 𝐸 𝑥 𝑎𝑛𝑑 𝑌 − 𝐸 𝑌 tend to have the 

same sign; 𝜌 = 1 ⟹ 𝑋 − 𝐸 𝑥 = 𝑐(𝑌 − 𝐸 𝑌 ) with 𝑐 > 0

2. 𝐶𝑜𝑣 𝑋, 𝑌 < 0, 𝜌 < 0, 𝑋 − 𝐸 𝑥 𝑎𝑛𝑑 𝑌 − 𝐸 𝑌 tend to have the 

opposite sign; 𝜌 = −1 ⟹ 𝑋 − 𝐸 𝑥 = 𝑐(𝑌 − 𝐸 𝑌 ) with 𝑐 < 0

𝐸 𝑢 𝑋, 𝑌 =

 

(𝑥,𝑦)∈D

𝑢(𝑥, 𝑦)𝑓(𝑥, 𝑦) , 𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 𝑅𝑉

 
𝐷

𝑢 𝑥, 𝑦 𝑓 𝑥, 𝑦 𝑑𝑥𝑑𝑦 , 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑅𝑉



Bivariate Random Variable
 Independent Random Variables

X and Y are said to be independent if and only if

𝑓(𝑥, 𝑦) = 𝑓𝑋 𝑥 𝑓𝑌(𝑦)

A necessary condition for X and Y to be independent 

𝐷 = 𝐷𝑋 × 𝐷𝑌

Independence                               Uncorrelation

1. The converse is not true in general.

2. The converse is however true for multivariate 

normal (Gaussian) distribution.



Bivariate Random Variable

Conditional pmf and Conditional pdf

Given two discrete or continuous RVs 𝑋, 𝑌 defined on 𝐷 and their 

joint pmf or joint pdf 𝑓 𝑥, 𝑦 , and marginal pmf or marginal pdf 

𝑓𝑋 𝑥 to assign the probability for the RV 𝑌 given that 𝑋 = 𝑥:

Conditional mathematical expectation

ℎ 𝑦 𝑥 =
𝑓(𝑥,𝑦)

𝑓𝑋(𝑥)
, 𝑓𝑋(𝑥) > 0

𝑔 𝑥 𝑦 =
𝑓(𝑥, 𝑦)

𝑓𝑌(𝑦)
, 𝑓𝑌(𝑦) > 0

𝐸 𝑢 𝑌 |𝑋 = 𝑥 =

 

𝑦∈D𝑌

𝑢 𝑦 ℎ(𝑦|𝑥) , 𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 𝑅𝑉

 
𝐷𝑌

𝑢 𝑦 ℎ 𝑦|𝑥 𝑑𝑥 , 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑅𝑉



𝐸 𝑋 = 𝜇, 𝑉𝑎𝑟 𝑋 = 𝜎2, 𝑀(𝑡) = exp(𝜇𝑡 +
1

2
𝜎2𝑡2)

𝑋 ∼ Ɲ(𝜇, 𝜎2) if 

Normal (Gaussian) distribution

 Univariate Normal distribution
f(

x

)

𝑋 − 𝜇

𝜎
∼ Ɲ 0,1 ⟹

𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 = 𝑃
𝑎−𝜇

𝜎
≤

𝑋−𝜇

𝜎
≤

𝑏−𝜇

𝜎
= Φ

𝑏−𝜇

𝜎
−Φ(

𝑎−𝜇

𝜎
)



Normal (Gaussian) distribution

 Bivariate Normal distribution

1. Marginal pdf and conditional pdf are all normal.

2. Independence is equivalent to uncorrelation!



The End


