Chapter $4 \quad$ Bivariate Distributions（二元分布）

Section 4．1 Bivariate Distributions with the discrete type

＞Motivation

very often，the outcome of a random experiment is a tuple of several things of interests：
－Observe female college students to obtain information such as height \boldsymbol{x} ， and weight y ．
－Observe high school students to obtain information such as rank \boldsymbol{x} ，and score of college entrance examination y ．
$>$ In order to define joint probability mass function（joint pmf）：
＊Complete way ：
（1）identify the Sample Space S ；
（2）Define a $R V \quad Z=\left[\begin{array}{l}X \\ Y\end{array}\right]: S \rightarrow Z(S)$ ；
（3）Define a pmf for $Z, f(z): Z(S) \rightarrow[0,1]$ ．

＊Simplified way ：

（1）Ignore the Sample Space S ；
（2）Specify $Z(S)$ directly and denote it by D ；
（3）Define the $p m f$ for $Z, f(z): D \rightarrow[0,1]$ ；

Definition 4.1-1 [joint probability mass function (joint pmf)

Let X and Y be $2 R V \mathrm{~s}$. The probability that $X=x$ and $Y=y$ is denoted by $f(x, y)=P(X=x, Y=y)$.
The function $f(x, y)$: $\mathrm{D} \rightarrow[0,1]$ is called the joint probability mass function (joint pmf) of $X i f$:

$$
\text { (1) } 0 \leq f(x, y) \leq 1 ;
$$

(2) $\sum_{(x, y) \in D} f(x, y)=1$;
(3) $P[(X, Y) \in A] \triangleq P(\{(x, y) \in A\})=\sum_{(x, y) \in A} f(x, y), \quad A \subseteq D$.

Example 1 [Page 134]

Roll a pair of fair dice. The sample Space contains 36 outcomes. And let X denote the smaller outcome and Y the larger outcome on the die.
For instance, if the outcome is (3,2), then $X=2, Y=3$.
Obviously, $\mathrm{P}(\{X=2, Y=3\})=1 / 36+1 / 36=2 / 36$.
$P(\{X=2, Y=2\})=1 / 36$.
Furthermore, the joint pmf of X and Y is: $f(x, y)= \begin{cases}1 / 36, & 1 \leq x=y \leq 6 \\ 2 / 36, & 1 \leq x<y \leq 6\end{cases}$

Definition 4.1-2 [Marginal pmf

Let X and Y have the joint probability mass function $f(x, y): \mathrm{D} \rightarrow$ $[0,1]$. Sometimes we are interested in the pmf of X or Y alone, which is called the marginal probability mass function of X or Y and defined by

$$
\begin{array}{ll}
f_{X}(x)=\sum_{y \in D_{Y}} f(x, y)=P(X=x), & x \in D_{X}=\{\text { all possible values of } X \text { in } D\} . \\
f_{Y}(y)=\sum_{x \in D_{X}} f(x, y)=P(Y=y), & y \in D_{Y}=\{\text { all possible values of } Y \text { in } D\} .
\end{array}
$$

Definition 4.1-3 [independent Random Variables

The random variables X and Y are independent if and only if, for every $x \in D_{X}$ and $y \in D_{Y}$,

$$
P(\underline{X}=\underline{x}, \underline{Y} \equiv \underline{y})=P(\underline{X}=\underline{x}) P(\underline{Y}=\underline{y})
$$

or equivalently, $A \cap B$
Event A Event B

$$
f(x, y)=f_{X}(x) f_{Y}(y)
$$

otherwise, X and Y are said to be dependent.

Example 2 [Page 135]

Let the joint pmf of X and Y be defined by

$$
f(x, y)=\frac{x+y}{21}, \quad x=1,2,3, \quad y=1,2 .
$$

Check if $R V X$ and Y are independent.
Solution:

$$
\begin{aligned}
& f_{X}(x)=\sum_{y \in D_{Y}} f(x, y)=\sum_{y=1}^{2} \frac{x+y}{21}=\frac{2 x+3}{21}, \quad x=1,2,3 \\
& f_{Y}(y)=\sum_{x \in D_{X}} f(x, y)=\sum_{x=1}^{3} \frac{x+y}{21}=\frac{3 y+6}{21}, \quad y=1,2 \\
& f(x, y)=\frac{x+y}{21} \neq \frac{2 x+3}{21} \cdot \frac{3 y+6}{21}=f_{X}(x) f_{Y}(y) \Rightarrow X \text { and } Y \text { are dependent. }
\end{aligned}
$$

What's the interpretation of $f_{X}(x)$ and $f_{Y}(x)$ and independence?
Consider the conditional pmf :
$f(y \mid x)=P(Y=y \mid X=x)=\frac{f(x, y)}{f_{X}(x)} ; f(x \mid y)=P(X=x \mid Y=y)=\frac{f(x, y)}{f_{Y}(x)}$

$>$ Expectation and Value

Let X_{1} and X_{2} be discrete $R V$ with their joint pmf $f\left(x_{1}, x_{2}\right): \mathrm{D} \rightarrow[0,1]$. Consider a function $u\left(x_{1}, x_{2}\right)$ of x_{1} and x_{2}. Then:

Expectations of functions of bivariate RVs are computed just as with univariate $R V s$.
(a) The mathematical expectation of $u\left(X_{1}, X_{2}\right)$, if exists, is given by

$$
E\left[u\left(X_{1}, X_{2}\right)\right]=\sum_{\left(x_{1}, x_{2}\right) \in D} u\left(x_{1}, x_{2}\right) f\left(x_{1}, x_{2}\right) .
$$

(b) If $u_{i}\left(X_{1}, X_{2}\right)=X_{i}$ for $i=1,2$, then $\quad E(X)=\sum_{(x, y) \in \bar{S}} x f(x, y)=\sum_{x \in \bar{S}_{X}} x f_{X}(x)$.

$$
E\left[u_{i}\left(X_{1}, X_{2}\right)\right]=E\left(X_{i}\right)=u_{i}
$$

is called the mean of X_{i} for $i=1,2$.
(c) If $u_{i}\left(X_{1}, X_{2}\right)=\left(X_{i}-u_{i}\right)^{2}$ for $i=1,2$, then

$$
E\left[u_{i}\left(X_{1}, X_{2}\right)\right]=E\left[\left(X_{i}-u_{i}\right)^{2}\right]=\sigma_{i}^{2}=\operatorname{Var}\left(X_{i}\right)
$$

is called the variance of X_{i} for $i=1,2$.

Example 1 [Page 134]—revisited

Recall that X and Y are discrete $R V s$ with joint $p m f$ $f(X, Y): \mathrm{D} \rightarrow[0,1]$ with $D_{X}=D_{Y}=\{1,2,3,4,5,6\}$

$$
f(x, y)= \begin{cases}2 / 36, & 1 \leq x<y \leq 6 \\ 1 / 36, & 1 \leq x=y \leq 6\end{cases}
$$

Compute $E(X+Y)$:

Solution:

$$
\begin{gathered}
E(X+Y)=\sum_{(x, y) \in D}(x+y) f(x, y)=\sum_{1 \leq x y \leq 6}(x+y) \cdot \frac{1}{36}+\sum_{1 \leq x x y \leq 6}(x+y) \frac{2}{36} \\
=\sum_{x=1}^{6} 2 x \cdot \frac{1}{36}+\sum_{x=1}^{6} \sum_{y=x+1}^{6}(x+y) \cdot \frac{2}{36}=\frac{252}{36} .
\end{gathered}
$$

Work it by yourself!

Chapter $4 \quad$ Bivariate Distributions（二元分布）
Section 4.2
The correlation coefficient
Let X_{1} and X_{2} be discrete $R V$ with their joint $p m f f\left(x_{1}, x_{2}\right): \mathrm{D} \rightarrow[0,1]$ ． recall that for $u(X, Y)$ ，its expectation $E[u(X, Y)]=\sum_{(x, y) \in D} u(x, y) f(x, y)$ ．

Definition 4．2－1［Covariance of \mathbf{X} and \mathbf{Y}
Take $u(X, Y)=[X-E(X)][Y-E(Y)]$
＞Motivation：To study the relation between X and Y ．

$$
E[(X-E(X))(Y-E(Y))]=\operatorname{Cov}(X, Y)
$$

which is called the covariance of X and Y ．
－ $\operatorname{Cov}(X, Y)=E(X Y)-E(X) E(Y) \longrightarrow$ Verify it by yourself！
When $\operatorname{Cov}(X, Y)=0$ ，we say X and Y are uncorrelated．
－Interpretation：Roughly speaking，a positive or negative covariance indicates that the values of $X-E(X)$ and $Y-E(Y)$ obtained in a single experiment ＇tend＇to have the same or the opposite sign．

Example 1: Demonstration of positively correlated and negatively correlated RVs Assume that X and Y are uniformly distributed over the ellipses.

positively correlated

negatively correlated

Independence of X and Y could imply the uncorrelation of X and Y.
Consider the case that X and Y are independent:

$$
\begin{aligned}
E(X Y) & =\sum_{(x, y) \in D} x y f(x, y)=\sum_{x \in D_{X}} \sum_{y \in D_{Y}} x y f_{X}(x) f_{Y}(y) \\
& =\sum_{x \in D_{X}} x f_{X}(x)\left[\sum_{y \in D_{Y}} y f_{Y}(y)\right]=E(X) E(Y) .
\end{aligned}
$$

Therefore, $\operatorname{cov}(X, Y)=E(X Y)-E(X) E(Y)=0$.

$$
\begin{aligned}
& f(x, y)=f_{X}(x) f_{Y}(y) \\
& \Rightarrow D=D_{X} D_{Y}
\end{aligned}
$$

Independent of $2 \mathrm{RVs} \Rightarrow$ uncorrelation of 2 RVs .
However, the converse is not true, that is to say, there exists X and Y which are uncorrelated but not independent.

Example 2 (uncorrelation doesn't imply independence)
Let X and Y be RVs that take values $(1,0),(0,1),(-1,0),(0,-1)$ and with probability $\frac{1}{4}$, as shown in the figure below.

Solution: \quad To find marginal pmf of X and $Y, D_{X}=D_{Y}=\{-1,0,-1\}$.
$f_{X}(x)=\left\{\begin{array}{ll}1 / 4, & x=1 \\ 1 / 2, & x=0 \\ 1 / 4, & x=-1\end{array}, \quad f_{Y}(y)= \begin{cases}1 / 4, & y=1 \\ 1 / 2, & y=0 \\ 1 / 4, & y=-1\end{cases}\right.$
$\operatorname{Cov}(X, Y)=E(X Y)-E(X) E(Y)=0-0 \cdot 0=0$.
$f_{X}(0) f_{Y}(1)=\frac{1}{2} \cdot \frac{1}{4}=\frac{1}{8} \neq f(0,1)=\frac{1}{4} \Rightarrow X$ and Y are not independent !

Definition 4.2-2 [correlation coefficients

The correlation coefficients of X and Y that have nonzero variance is defined as

$$
\rho(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X)} \sqrt{\operatorname{Var}(Y)}} .
$$

- It is a normalized version of $\operatorname{Cov}(X, Y)$ and in fact $-1 \leq \rho \leq 1$
- Interpretation: $\rho>0($ or $\rho<0)$ indicate the values of $X-$ $E(X)$ and $Y-E(Y)$ 'tend' to have the same(or opposite, respectively) sign.
- $\rho>0($ or $\rho<0)$ have the same interpretation as $\operatorname{Cov}(X, Y)>$ 0 (or $\operatorname{Cov}(X, Y)<0)$
- The size of $|\rho|$ provides a normalized measure of the extent to which this is true.
- $\rho=1$ or $\rho=-1$ if and only if there exists a positive (or negative, respectively) constant c such that

$$
Y-E(Y)=c[X-E(X)]
$$

Example 3

Consider n independent tosses of a coin with probability of a head equal to p. Let X and Y be the number if heads and of tails, respectively. Calculate the correlation coefficient of \boldsymbol{X} and \boldsymbol{Y}.

Solution:

$$
\begin{aligned}
& X+Y=n \Rightarrow E(X)+E(Y)=n \Rightarrow X-E(X)=-[Y-E(Y)] \\
& \operatorname{Cov}(X, Y)=E[(X-E(X))(Y-E(Y))]=-E\left[(Y-E(Y))^{2}\right]=-\operatorname{Var}(Y) \\
& \operatorname{Var}(X)=E\left[(X-E(X))^{2}\right]=E\left[(Y-E(Y))^{2}\right]=\operatorname{Var}(Y) \\
& \Rightarrow \rho(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X)} \sqrt{\operatorname{Var}(Y)}}=\frac{-\operatorname{Var}(Y)}{\sqrt{\operatorname{Var}(Y)} \sqrt{\operatorname{Var}(Y)}}=-1 .
\end{aligned}
$$

