Chapter 3 Continuous distribution（连续分布）
Section 3.1
$R V$ of the continuous type

Recall that a $R V \quad X: \mathrm{S} \rightarrow X(\mathrm{~S}) \subseteq \mathrm{R}$ is called a discrete $R V$ if $X(\mathrm{~S})$ is finite or countably infinite．
But $R V$ s with a continuous range of possible values are given common．（E．g．Velocity of a vehicle traveling along the high way．）

Definition 3．1－1［Continuous RV ζ pdf］
A RV $X: \mathrm{S} \rightarrow X(\mathrm{~S}) \subseteq \mathrm{R}$ is said to be continuous if there exists a function $\mathrm{f}(x): X(\mathrm{~S}) \rightarrow[0,+\infty)$ such that
（a）$f(x) \geq 0, x \in X(\mathrm{~S})$
（b）$\quad \int_{X(S)} f(x) d x=1$
（c）If $(a, b) \subseteq X(S), P(a \leq X \leq b)=\int_{a}^{b} f(x) d x$ ．
And $f(x)$ is called the probability density function（pdf）of X ．

Remark:

- We often extend the domain of $f(x)$ from $\mathrm{X}(\mathrm{S})$ to R and let $f(x)=0$ for $x \notin X(S)$.From now on, we consider pdf $f(x): \mathrm{R} \rightarrow[0,+\infty) . \mathrm{X}(\mathrm{S})$ is called the support of $f(x)$.
- Then the 3 conditions become:
$\Rightarrow f(x) \geq 0$ for $x \in R$
$>\int_{-\infty}^{+\infty} f(x) d x=1$
$>P(a \leq X \leq b)=\int_{a}^{b} f(x) d x$.
- For any single value $a, P(X=a)=\int_{a}^{a} f(x) d x=0$. Therefore, including or excluding the endpoints of an interval has no effect on its probability:

$$
\begin{aligned}
& P(a \leq X \leq b)=P(a<X \leq b)=P(a \leq X<b)= \\
& P(a<X<b) .
\end{aligned}
$$

$=P(a \leq X \leq b)$

- Interpretation of pdf
- For very small $\delta>0$,
$P([x, x+\delta])=\int_{x}^{x+\delta} f(x) d x \approx f(x) \delta$.

The $p d f f(x)$ in the picture can be seen as the probability mass function (pmf) per unit length near x.

Remark:
 $$
\frac{d[F(x)]}{d x}=f(x) .
$$

Definition 3.1-2 [Cumulative distribution function (cdf)]

The cumulative distribution function or $c d f$ of a continuous $\mathrm{RV} X$, denoted by $F(x)$, is given by

$$
F(x)=P(X \leq x)=\int_{-\infty}^{x} f(t) d t
$$

$F(x)$ accumulates (or, more simply, cumulates) all of the probability less than or equal to x.

Example 1 [Uniform distribution]:

Let the random variable X denote the outcome when a point is selected randomly from $[a, b]$ with $-\infty<a<b<\infty$.

$P(X \leq x)=\frac{x-a}{b-a}$ implies the probability of selecting a point from the interval $[a, x]$ is proportional to the length of the interval $[a, x]$.

Example 2 (Page 96):

Let Y be a continuous random variable with $p d f g(y)=2 y, 0<y<1$. Then the $c d f$ of Y is:

$$
\begin{aligned}
& P\left(\frac{1}{2}<Y \leq \frac{3}{4}\right)=F\left(\frac{3}{4}\right)-F\left(\frac{1}{2}\right)=\frac{9}{16}-\frac{1}{4}=\frac{5}{16} \\
& P\left(\frac{1}{4} \leq Y<2\right)=F(2)-F\left(\frac{1}{4}\right)=1-\frac{1}{16}=\frac{15}{16}
\end{aligned}
$$

> Mathematical expectation

Definition [Expectation]

Assume X is a continuous RV with range space $X(\mathrm{~S})$ and $f(x)$ is its pmf. If $\int_{X(S)} g(x) f(x) d x$ exists, then it's called the expectation or the expected value of $g(X)$ and is denoted by $E[g(X)]$. That is,

$$
E[g(X)]=\int_{X(S)} g(x) f(x) d x
$$

Remark:

- Mathematical expectation is a linear operator. In other words, If c_{1} and c_{2} are constants, $g_{1}(x)$ and $g_{2}(x)$ are functions,

$$
E\left[c_{1} g_{1}(x)+c_{2} g_{2}(x)\right]=c_{1} E\left[g_{1}(x)\right]+c_{2} E\left[g_{2}(x)\right]
$$

- Letting $f(x)=0$ for $x \notin \mathrm{X}(\mathrm{S})$, then we find the expectation for function $\mathrm{g}(\mathrm{x})$ can be expressed as:

$$
E[g(X)]=\int_{-\infty}^{+\infty} g(x) f(x) d x
$$

For a continuous RV X with $\operatorname{pdf} f(x)$:
$>$ Mean of X :

$$
\mu=E(X)=\int_{-\infty}^{+\infty} x f(x) d x
$$

$>$ Variance of X :

$$
\operatorname{Var}(X)=\int_{-\infty}^{+\infty}(x-\mu)^{2} f(x) d x=E\left[(X-\mu)^{2}\right]
$$

$>$ Standard deviation of X :

$$
\sigma=\sqrt{\operatorname{Var}(X)}
$$

$>$ Moment generating function: if it exists, then

$$
M(t)=E\left(e^{t X}\right)=\int_{-\infty}^{\infty} e^{t x} f(x) d x, \quad-h<t<h \text { for some } h>0 .
$$

It completely determines the distribution of X and all moments exist and are finite:

$$
M^{\prime}(0)=E(X), M^{\prime \prime}(0)=E\left(X^{2}\right)
$$

$>$ Moment of X :

$$
E\left[X^{r}\right]=\int_{-\infty}^{+\infty} x^{r} f(x) d x
$$

Example 3 (Page 98):

Let X have the pdf

$$
f(x)=\left\{\begin{array}{ll}
\frac{1}{100}, & 0<x<100 \\
0, & \text { otherwise } .
\end{array} \longrightarrow X \sim U(0,100)\right.
$$

Compute $E(X)$ and $\operatorname{Var}(X)$.

$$
\begin{aligned}
E(X) & =\int_{0}^{+\infty} x f(x) d x \\
& =\int_{0}^{100} x \cdot \frac{1}{100} d x=\frac{1}{100}\left[\frac{x^{2}}{2}\right]_{0}^{100}=50 \\
\operatorname{Var}(X) & =E\left([X-E(X)]^{2}\right)=\int_{0}^{100}(x-50)^{2} \cdot \frac{1}{100} d x=\frac{2500}{3}
\end{aligned}
$$

Actually, for $X \sim U(a, b)$

$$
E(X)=\frac{a+b}{2}, \quad \operatorname{Var}(X)=\frac{(b-a)^{2}}{12}, \quad M(t)= \begin{cases}\frac{e^{t b}-e^{t a}}{t(b-a)}, & t \neq 0 \\ 1, & t=0\end{cases}
$$

Example 4 (Page 99):

Let X be a continuous $R V$ and have the pdf

$$
f(x)= \begin{cases}x e^{-x}, & 0<x<\infty \\ 0, & \text { otherwise }\end{cases}
$$

Compute $E(X)$ and $\operatorname{Var}(X)$.

Solution:

$$
\begin{aligned}
M(t) & =E\left(e^{t X}\right)=\int_{-\infty}^{+\infty} e^{t x} f(x) d x=\int_{0}^{\infty} x e^{-x} e^{t x} d x \\
& =\lim _{b \rightarrow \infty} \int_{0}^{b} x e^{-(1-t) x} d x=\lim _{b \rightarrow \infty}\left[-\frac{x e^{-(1-t) x}}{1-t}-\frac{e^{-(1-t) x}}{(1-t)^{2}}\right]_{0}^{b} \\
& =\lim _{b \rightarrow \infty}\left[-\frac{b e^{-(1-t) b}}{1-t}-\frac{e^{-(1-t) b}}{(1-t)^{2}}\right]+\frac{1}{(1-t)^{2}} \\
& =\frac{1}{(1-t)^{2}} . \quad \leftarrow \text { when } t<1 \Leftrightarrow 1-t>0 .
\end{aligned}
$$

From the above examples,
We observe that $f(x)$ is not restricted to be " $f(x) \leq 1$ ". And actually, $f(x)$ needn't to be continuous. For example, $f(x)= \begin{cases}\frac{1}{2}, & x \in(0,1) \cup(2,3) \\ 0, & \text { otherwise. }\end{cases}$
$M^{\prime}(t)=2(1-t)^{-3} \Rightarrow M^{\prime}(0)=2$.
$M^{\prime \prime}(t)=6(1-t)^{-4} \Rightarrow M^{\prime \prime}(0)=6$.
$E(X)=M^{\prime}(0)=2$.
$\operatorname{Var}(X)=E\left(X^{2}\right)-[E(X)]^{2}=M^{\prime \prime}(0)-\left[M^{\prime}(0)\right]^{2}=2$.

Definition 3.1-3 [(100p)th percentile]

It is a number π_{p} such that the area under $\boldsymbol{f}(\boldsymbol{x})$ to the left of $\boldsymbol{\pi}_{\boldsymbol{p}}$ is p. That is,

$$
p=\int_{-\infty}^{\pi_{p}} f(x) d x=F\left(\pi_{p}\right)
$$

The $50^{\text {th }}$ percentile is called the median. The $25^{\text {th }}$ and $75^{\text {th }}$ percentiles are called the first and third quantiles, respectively. The median is called the $2^{\text {nd }}$ quantile.

Example 5:

Let X be a continuous $R V$ and have the pdf

$$
f(x)=\frac{3 x^{2}}{4^{3}} e^{-(x / 4)^{3}} \quad 0<x<+\infty
$$

Compute $30^{\text {th }}$ and $90^{\text {th }}$ percentile. Solution:

$$
\begin{aligned}
& 0.3=\int_{0}^{\pi_{0.3}} f(x) d x \\
& =\int_{0}^{\pi_{0.3}}\left(3 x^{2} / 4^{3}\right) e^{-(x / 4)^{3}} d x \\
& =\int_{0}^{\pi_{0.3}} e^{-(x / 4)^{3}} d(x / 4)^{3} \\
& =\left[-e^{-u}\right]_{0}^{\left(\pi_{0.3} / 4\right)^{3}} \\
& = \\
& \Rightarrow \pi_{0.3}=-4(\ln 0.7)^{-\left(\pi_{0.3} / 4\right)^{3}}=0.3
\end{aligned}
$$

Similarly, $\pi_{0.9}=-4(\ln 0.1)^{1 / 3}$.

Chapter 3
 Continuous distribution（连续分布）

Section 3.2 exponential，gamma，Chi－ Square Distributions
$>$ Poisson distribution．
It can be used to describe the number of occurrences of the same event in a given continuous interval with $\operatorname{pmf} f(x)=$ $\frac{\lambda^{x} e^{-\lambda}}{x!}, x=0,1, \ldots$

$$
E(X)=\lambda, \quad \operatorname{Var}(X)=\lambda
$$

Now consider the $A P P$ with mean number of occurrences
λ in a unit interval：\longrightarrow frequency
－For an interval with length T ，the number of occurrence，say X ， has $E(X)=\lambda T$
－And thus its pmf is $f(x)=\frac{(\lambda T)^{x} e^{-\lambda T}}{x!}, x=0,1, \ldots$
－$P(X=0)=e^{-\lambda T}=P$（no occurrence in the interval with length T）

c.n.t

Let W denote the waiting time until the first occurrence during the $A P P$.
$>$ pdf of W

Idea:

(1) Derive $c d f$ of W : $F(w)$.
(2) $f(w)=\frac{d[F(w)]}{d w}$
$F(w)=P(W \leq w) \quad$ Assume that the waiting time is nonnegative. Then $F(w)=0$ for $w<0$.
For $w \geq 0, F(w)=P(W \leq w)=1-P(W>w)$.
where $P(W>w)=P($ no occurrences in $[0, w])=e^{-\lambda w}$.
Therefore, $F(w)=1-e^{-\lambda w}$ for $w \geq 0$
$\Rightarrow f(w)=F^{\prime}(w)=\lambda e^{-\lambda w}, w \geq 0$.
The mean number
What is λ ?
of occurrences per unit interval is λ

We often let $\lambda=1 / \theta$ and say that the RV has an exponential distribution :

Definition 3.2-1 [Exponential distribution]

A $R V X$ has an exponential distribution if its pdf is defined by

$$
f(x)=\frac{1}{\theta} e^{-\frac{x}{\theta}}, \quad x \geq 0, \theta>0
$$

Accordingly, the waiting time W until the first occurrence in a Poisson process has an exponential distribution with $\theta=1 / \lambda$.

> mgf, mean and variance

$$
\begin{aligned}
& M(t)=E\left(e^{t x}\right)=\int_{0}^{\infty} e^{t x} \cdot \frac{1}{\theta} e^{-\frac{x}{\theta}} d x=\left[\frac{1}{\theta} \frac{1}{t-1 / \theta} e^{(t-1 / \theta) x}\right]_{0}^{\infty}=\frac{1}{1-t \theta}, \quad t<\frac{1}{\theta} . \\
& M^{\prime}(t)=\frac{\theta}{(1-\theta t)^{2}}, \quad M^{\prime \prime}(t)=\frac{2 \theta^{2}}{(1-\theta t)^{3}} \Rightarrow M^{\prime}(0)=\theta, \quad M^{\prime \prime}(0)=E\left(X^{2}\right)=2 \theta^{2} . \\
& \Rightarrow E(X)=\theta \quad \operatorname{Var}(X)=E\left(X^{2}\right)-[E(X)]^{2}=\theta^{2} .
\end{aligned}
$$

Example 1 (Page 105):

Customers arrive in a certain shop according to APP at a mean rate of 20 per hour. What's the probability that the shopkeeper will have to wait more than 5 minutes for the arrival of the first customer?

Solution:

Let X denote the waiting time in minutes until the first customer arrives, and note that $\lambda=1 / 3$ is the mean number of arrivals per minute. Thus,

$$
\theta=1 / \lambda=3 \text { and } f(x)=\frac{1}{3} e^{-\frac{1}{3} x}, \quad x \geq 0 .
$$

Hence $P(X>5)=\int_{5}^{\infty} \frac{1}{3} e^{-\frac{1}{3} x} d x=e^{-\frac{5}{3}}$.

Consider APP with mean λ in a unit interval, Let W denote the waiting time until the α th occurrence.
$>$ pdf of W

Idea:

(1) Derive $c d f$ of $W: F(w)$. (2) $f(w)=\frac{d[F(w)]}{d w}$

For $w \geq 0, F(w)=P(W \leq w)=1-P(W>w)$.
where $P(W>w)=P($ number of occurrences in $[0, w]$ smaller than $\alpha)$

$$
=\sum_{k=0}^{\alpha-1} \frac{(\lambda w)^{k} e^{-\lambda w}}{k!} \rightarrow \begin{aligned}
& \text { since the number of } \\
& \text { occurrences in the interval } \\
& {[0, w] \text { has a Poisson }} \\
& \text { distribution with } \\
& \text { mean } \lambda w .
\end{aligned}
$$

Therefore, $F(w)=1-\sum_{k=0}^{\alpha-1} \frac{(\lambda w)^{k} e^{-\lambda w}}{k!}$ for $w \geq 0$
$>$ pdf of W (c.n.t.)
Since W is a continuous $\operatorname{RV}, \frac{d[F(w)]}{d w}$, if exists, is equal to the pdf of W.
When $w>0$, we have

$$
\begin{aligned}
F^{\prime}(w) & =-\left[\frac{(\lambda w)^{0} e^{-\lambda w}}{0!}\right]^{\prime}-\left[\sum_{k=1}^{\alpha-1} \frac{(\lambda w)^{k} e^{-\lambda w}}{k!}\right]^{\prime}=\lambda e^{-\lambda w}-\sum_{k=1}^{\alpha-1}\left[\frac{k(\lambda w)^{k-1} \lambda}{k!} e^{-\lambda w}-\frac{(\lambda w)^{k} \lambda}{k!} e^{-\lambda w}\right] \\
& =\lambda e^{-\lambda w}-e^{-\lambda w} \sum_{k=1}^{\alpha-1}\left[\frac{k(\lambda w)^{k-1} \lambda}{k!}-\frac{(\lambda w)^{k} \lambda}{k!}\right]=\lambda e^{-\lambda w}-e^{-\lambda w} \sum_{k=1}^{\alpha-1}\left[\frac{(\lambda w)^{k-1} \lambda}{(k-1)!}-\frac{(\lambda w)^{k} \lambda}{k!}\right] \\
& =\lambda e^{-\lambda w}-e^{-\lambda w}\left[\sum_{k=1}^{\alpha-1} \frac{(\lambda w)^{k-1} \lambda}{(k-1)!}-\sum_{k=1}^{\alpha-1} \frac{(\lambda w)^{k} \lambda}{k!}\right]=\lambda e^{-\lambda w}-e^{-\lambda w}\left[\lambda-\frac{(\lambda w)^{\alpha-1} \lambda}{(\alpha-1)!}\right] \\
& =\frac{\lambda(\lambda w)^{\alpha-1}}{(\alpha-1)!} e^{-\lambda w} .
\end{aligned}
$$

If $w<0$, then $F(w)=0$ and $F^{\prime}(w)=0$.
A pdf of this form is said to be of the gamma type, and W is said to have a gamma distribution.

Definition 3.2-2 [Gamma function]

$$
\begin{gathered}
\Gamma(t)=\int_{0}^{+\infty} y^{t-1} e^{-y} d y, \quad t>0 \\
\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}, \quad \Gamma(1)=\Gamma(2)=1 \\
\text { And for } n \geq 2, \quad \Gamma(n)=(n-1) \Gamma(n-1)
\end{gathered}
$$

The last statement is proved by induction on n . It's easy to see that, $\Gamma(1)=1$. For $n \geq 2$, we will use integration by parts.
$\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$ is due to the definite integration $\int_{0}^{+\infty} e^{-x^{2}} d x=\frac{\sqrt{\pi}}{2}$, but we don't need to know how to derive it now.
Integration by parts

$$
\int f(x) g^{\prime}(x) d x=f(x) g(x)-\int f^{\prime}(x) g(x) d x
$$

Write $\Gamma(n)=\int_{0}^{\infty} f(x) g^{\prime}(x) d x$, where, $f(x)=x^{n-1}$ and $g^{\prime}(x)=e^{-x}$. Thus,

$$
\Gamma(n)=[f(x) g(x)]_{x=0}^{\infty}+\int_{x=0}^{\infty}(n-1) x^{n-2} e^{-x} d x=(n-1) \Gamma(n-2),
$$

as claimed.

Definition 3.2-3 [Gamma distribution]

A $R V X$ has a Gamma distribution if its pdf is defined by

$$
f(x)=\frac{1}{\Gamma(\alpha) \theta^{\alpha}} x^{\alpha-1} e^{-\frac{x}{\theta}}, \quad x \geq 0
$$

Accordingly, W, the waiting time until the α th occurrence in the APP, has a Gamma distribution with parameters α and $\theta=\frac{1}{\lambda}$.
$>$ Gamma pdf $\mathrm{f}(\mathrm{x})$ is a well-defined pdf

- Note that $f(x) \geq 0$
- And $\int_{-\infty}^{+\infty} f(x) d x=\int_{0}^{\infty} \frac{x^{\alpha-1} e^{-x / \theta}}{\Gamma(\alpha) \theta^{\alpha}} d x$,
which, by change of variables with $y=x / \theta$, we have

$$
\int_{0}^{\infty} \frac{(\theta y)^{\alpha-1} e^{-y}}{\Gamma(\alpha) \theta^{\alpha}} \theta d y=\frac{1}{\Gamma(\alpha)} \int_{0}^{\infty} y^{\alpha-1} e^{-y} d y=\frac{\Gamma(\alpha)}{\Gamma(\alpha)}=1
$$

$>$ Mean and Variance

The $m g f$ of a Gamma distribution $\operatorname{RV} X$ is

$$
\begin{align*}
M(t)=E\left(e^{t X}\right) & =\frac{1}{\Gamma(\alpha) \theta^{\alpha}} \int_{0}^{\infty} e^{t x} x^{\alpha-1} e^{-x / \theta} d x \\
& =\frac{1}{\Gamma(\alpha) \theta^{\alpha}} \int_{0}^{\infty} x^{\alpha-1} e^{-\left(\frac{1}{\theta}-t\right) x} d x \\
& =\frac{1}{\Gamma(\alpha) \theta^{\alpha}} \int_{0}^{\infty} x^{\alpha-1} e^{-x /\left(\frac{\theta}{1-\theta t}\right)} d x .
\end{align*}
$$

Now we construct another gamma pdf!
$g(x)=\frac{1}{\Gamma(a) b^{a}} x^{a-1} e^{-x / b}$ is a pdf, we have that
$\int_{0}^{\infty} \frac{1}{\Gamma(a) b^{a}} x^{a-1} e^{-x / b}=1$
$\Rightarrow \int_{0}^{\infty} x^{a-1} e^{-x / b}=\Gamma(a) b^{a}$
Applying equation (Υ) to (Θ), with $b=\frac{\theta}{1-\theta t}$ and $a=\alpha$, we have:
$M(t)=\frac{1}{\Gamma(\alpha) \theta^{\alpha}} \Gamma(\alpha)\left(\frac{\theta}{1-\theta t}\right)^{\alpha}=\left(\frac{1}{1-\theta t}\right)^{\alpha} \quad$ if $t<\frac{1}{\theta}$.
$>$ Mean and Variance (c.n.t.)

$$
\begin{aligned}
& M^{\prime}(t)=\alpha\left(\frac{1}{1-\theta t}\right)^{\alpha-1}\left[-\frac{-\theta}{(1-\theta t)^{2}}\right]=\frac{\alpha \theta}{(1-\theta t)^{\alpha+1}} . \\
& M^{\prime \prime}(t)=\frac{\alpha(\alpha+1) \theta^{2}}{(1-\theta t)^{\alpha+2}} . \\
& \Rightarrow M^{\prime}(0)=\alpha \theta . \quad M^{\prime \prime}(0)=\alpha(\alpha+1) \theta^{2} \\
& \Rightarrow E(X)=\alpha \theta . \quad \quad \operatorname{Var}(X)=\alpha(\alpha+1) \theta^{2}-(\alpha \theta)^{2}=\alpha \theta^{2}
\end{aligned}
$$

A special case is that $\alpha=1$, Gamma distribution reduces to exponential distribution. α can be non-integer!

Definition 3.2-4 [Beta distribution]

Let $X 1$ and $X 2$ have independent gamma distributions with parameters α, θ and β, θ, respectively.
A $R V X$ has a Beta distribution if its pdf is defined by

$$
g(x)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} x^{\alpha-1}(1-x)^{\beta-1}, \quad 0<x<1
$$

