Continuous distribution (1%%E4340)
Section 3.1 RV of the continuous type

Recall that a RV X: S=X(S) € Ris called a discrete RV if X(S)
is finite or countably infinite.
But RVs with a continuous range of possible values are

given common. (E.g. Velocity of a vehicle traveling along the high way.)

Definition 3.1-1
ARV X:S—X(S) € R 1s said to be continuous 1f there exists a
function f(x): X(S) —[0,+c0) such that

(@A)  f(x)=0, xEX(S)

(b) fX(S)f(x)dx =1

(c) If(ab) SX(S), Pla<X<b) =] f(x)dx.
And f(x) is called the probability density function (pdf) of X.



Remark:

* We often extend the domain of f(x) from X(S) to R and
let f(x)=0 for x& X(S).From now on, we consider pdf
f(x): R — [0,+00) .X(S) 1s called the support of f(x).

* Then the 3 conditions become:

> f(x)=0 for xER

> 17 fGodx =1
> Pla<X<bh)=[ f(x)dx.

* For any single value a, P(X = a) = f;f(x)dx = 0.
Therefore, including or excluding the endpoints of an
interval has no effect on 1ts probability:
Pla<X<b)=Pa<X<b)=PlagsX<b)=

P(a < X< b) (] The area

‘ = P(a< X <b)
7,

a b X




* Interpretation of pdf The pdf f(x) in the
picture can be
seen as the

xX+0 eqe
P([ X, X+ 5]) — j f(x)dx = f(x)F. probability mass
i function (pmf) per
unit length near x.

 For very small 6 >0,

o)
f(x)

Remark:
dlF (x)

Vol N = f(x).

Definition 3.1-2
The cumulative distribution function or cdf of a continuous RV X,
denoted by F(x), is given by

F(x)=P(X <x) = ["_f()dt

F(x) accumulates (or, more simply, cumulates) all of the
probability less than or equal to x.



Example 1

Let the random variable X denote the outcome when a point is
selected randomly from [a, b] with —o0 < a < b < .

§ 0, x<a.
Define 1 <y <h
the pdfof f(x)=1b-a’ ) F(x)={—2% a<x<bh
X- 0, otherwise. b-a
' 1, x>b

P(X <x)= g implies the probability of selecting a

point from the interval [a,x] i1s proportional to the length of

the interval [a, x].

4 (x) [F(x) Uniform distribution:
O when a pmfis

constant over the
support.

I
I R — ’ denoted by
O7%=01 5-02 X a=01 =02 * X~U(a, b)

10— - =




Example 2 (Page 96):

Let Y be a continuous random variable with pdf g(v) =2y, 0 <y < 1.
Then the cdf of Y 1s:

(0, <0
F) =PI <y)=] gdi=1y", 0<y<l
g \1’ yzl
24--mmmmess ()
|/ I
I :
computations of probabilities: 1 v
1 3 3 1 5
PLcr<dy=r)-ry=2_-1_2
( ) ( ) ( ) 1 Te
I 15

1
P(;<Y<2)=F(2)- P D=l =



» Mathematical expectation

Definition

Assume X 1s a continuous RV with range space X(S) and f(x) is its

pmf. If | - &(x)/(x)dx exists, then it’s called the expectation or

the expected value of g(X) and is denoted by E[g(X)]. That 1s,
Blg(X)]= 800/ (x)dx

Remark:
* Mathematical expectation 1s a linear operator. In other words,

If ¢ and c, are constants, g,(x) and g,(x) are functions,
E[Clgl (x)+c,g, (x)] = CIE[gl (x)] + CzE[gz (x)]

 Letting f{x)=0 for x¢ X(S), then we find the expectation for
function g(x) can be expressed as:

E[g(X)]=] g(x)f(x)dx



For a continuous RV X with pdf f(x) :
» Mean of X:

+ 00
u=EX) = f xf(x)dx
» Variance of X: i

Var(X) = f (x — w?*f(x)dx = E[(X — n)?]

» Standard deviation of X:
o= \/ Var(X)
» Moment generating function: if it exists, then
M(t) = E(et¥) = ffoooetxf(x)dx, —h <t < h for some h > 0.
It completely determines the distribution of X and all moments exist
and are finite:

M'(0)=E(X),M"(0)=E(X?)
» Moment of X:
E[X"]= (" f(x)dx



Example 3 (Page 98):
Let X have the pdf

1 0<x<100
f(x)=4100" ‘{m=) X~U(0,100)

0, otherwise.

Compute E(X) and Var(X).
E(X)= L:OO xf (x)dx

100 1 1 x2 100
= .[ X- —dx = — — — 50.
0 100 100 2

0

2500

Var(X) = E([X E(X)] ) j (x —50)> —dx— :

Actually, for X~U(a, b)

etb _ eta

12
1,

E(X)= “;b, Var(x) =" —a)’ , M(t) = {t(ba)’

t=0



Example 4 (Page 99): From the above
Let X be a continuous RV and have the pdf i examples,

xe*, O<x<o. | Weobserve
()= that f(x) 1s not

restricted to be

0, otherwise.

Compute E(X) and Var(X).

. | ‘Cf (x) S 1,7.
Solution: y 3 And actually,
M(t)=E(e™) = LO e” f(x)dx = J'O xe “e"dx f(x) needn’t to

S A :
=lim| xe dx = lim

b—w0 J0 b—0

. .
-7 ,~0-nx 1’} be continuous.
-t (-1 | For example,

_ nn{- be T e } : {1 xe(0,)U(23)
e 1=t (=07 | (1-0) f)=42"" """ e
o

(1=t
M'(t)=2(1-1)" = M'(0) = 2.
M"t)=6(1-1t)" = M"(0)=6.
E(X)=M'(0)=2. Var(X) = E(X*)~[E(X)] = M"(0)~[M'(0)] =2.

0, otherwise.

«—when t<l<1-¢>0.



Definition 3.1-3
It is a number 7, such that the area under f (x) to the left of
T, 18 p. That 1s,

p = f pf(x)dx = F(np)

The 50™ percentile is called the median. The 25% and 75%
percentiles are called the first and third quantiles,
respectively. The median is called the 2"¢ quantile.

t s
J(x) F(x)
I | l r———"""""""="========<
' - - -
| 075"~ = =~ (
% 0.5~~~ -
\‘ 025 F----~ ‘o
| l A I . N
- \\%ﬂ' : : — . ‘/‘[0.:5 Tos o5 X

p



Example 5:
Let X be a continuous R} and have the pdf

2
f(x):34i3€_(x/4)3 0 < x <+

Compute 30" and 90t percentile.
Solution :

0.3= jo £(x)dx

=™ (3x2 /4 )e_(x/ Y

- J0 . e_ X/4 (x/4) Fix)
1.0 1
_u {703/ 4y 0.8+
- |:_e :|O 06+
=1— e_(7fo.3/4)3 =03 041
= 7,5, =—4(n0.7)". °21

Similarly, 7,, =—4(In0.1)"". BEEYE



Continuous distribution (GZ&%E4340)

Section 3.2  exponential, gamma, Chi-
Square Distributions

» Poisson distribution.

It can be used to describe the number of occurrences of the
same event in a given continuous interval with pmf f(x) =

,x=0,1,.. E(X)=21, Var(X) = A.

Now consider the APP with mean number of occurrences

For an interval with length T, the number of occurrence, say X,
has E(X) = AT

And thus its pmfis f(x) = —x=01,..

P(X =0)=e* = P(no occurrence in the interval with length
T)

()LT)xe —AT




c.n.t

Let W denote the waiting time until the first occurrence during the APP.

Idea:
(D Derive cdf of W: F(w).
» pdf of W
P 2 w)= F(W)

F(w)=P(W <w) Assume that the waiting tlme 1S nonnegative. Then
F(w)=0 for w<0.

Forw>0, F(w)=P(W <w)=1-P(W >w).
where P(W > w) = P(no occurrences in [0,w]) =e
Therefore, F(w)=1—¢e*" for w>0

= f(w)=F'(w)=1e ™", w>0. The mean number
What is 1?7 — — of occurrences per
unit interval 1s £

We often let 4 = 1/6 and say that the RV has an
exponential distribution :

—Aw




Definition 3.2-1
A RV X has an exponential distribution 1f 1ts pdf 1s defined by
1 _x
fG)=-e?, x>0,6>0.

Accordingly, the waiting time | /()
W until the first occurrence in
a Poisson process has an
exponential distribution with

0=1/). o e

S

» mgf, mean and variance
M(t)zE(etX)zjwetx-le_gdxz l;e(t_l/e)x =;, t<l.
o6 0t-1/6 , 1-1t0 0

9 " 292 ' " 2 2
- M- = M'(0)=0,  M"(0)=E(X>)=26"

M@ C(1-61y

SIEX)=0P~_ Var(X)=EXY)-[EX)] =6
mean waiting time




Example 1 (Page 105):

Customers arrive 1n a certain shop according to APP at a mean
rate of 20 per hour. What’s the probability that the shopkeeper
will have to wait more than 5 minutes for the arrival of the
first customer?

Solution:
Let X denote the waiting time in minutes until the first

customer arrives, and note that 4 = 1/3 is the mean number of

arrivals per minute. Thus,
1

9=1//1=3andf(x)=§e_§x x = 0.

’
5

w1 -1 _>
Hence P(X >5) = [, %e 3 dx = e s.



Consider APP with mean 4 1n a unit interval,
Let W denote the waiting time until the ath occurrence.

Idea:
Deri df of W F(w).
+ ot w Pt

Forw>0, F(w)=P(W <w)=1-P(W >w).

where P(W > w) = P(number of occurrences in [0, w| smaller than &)

k -4 .
N (Aw)Te ™ since the number of
= E k! \ occurrences in the interval
k=0

[0,w] has a Poisson
distribution with

mean Aw.

k -4
ew

a-l1
Therefore, F/(w) =1- Z MW;' forw>0
k=0 .




» pdf of W (c.n.t.)
d[F(w)]

dw

Since W 1s a continuous RV, , 1f exists, 1s equal

to the pdf of 7.
When w > 0, we have

Fi(w) = _{(/lw)oe M} { (/Iw)ke ZW} g _“Zi{k(ﬂw)“/i S (Aw)* A e-M}

= k! k!
IR S k(ﬂ,w)" AW A _e_ﬂwg W) A (Aw) A
k! (k—1)! k!
i _ i {i (/1w)k ‘2 (/Iw)’%} _ leﬂw_eb{ . (Aw)“‘ll}
— (k=D! I (a—D)!
2w
(a—1)!

Ifw< 0, then F(w)=0 and F'(w)=0.
A pdf of this form 1s said to be of the gamma type, and W 1s
said to have a gamma distribution.



Definition 3.2-2

+00
r) = f yt~le Vdy, t > 0.
0

r (1) - J7, T()=Tr@)=1,
And form>=2, T(n)=m—1)I'(n—-1).

The last statement is proved by induction on n. It’s easy to see that, I'(1) = 1.
For n = 2, we will use integration by parts.

1 . . .
r (E) = +/m is due to the definite integration | 0+Oo e dx = g, but we don’t
need to know how to derive it now.

Integration by parts
[ f()g' )dx = f(0)g(x) - [ [ (x)g(x)dx

Write T'(1) = jow £(x)g'(x)dx, where, f(x)=x"" and g'(x) =e™*. Thus,

I'(n)= [f(x)g(x)]j:0 + Lto (n-1x"?e*dx=(n-DI(n-2),

as claimed.



Definition 3.2-3
A RV X has a Gamma distribution if its pdf is defined by

o E
f(x)_—r()ea e 9, x = 0.

Accordingly, W, the waiting time until the ath occurrence in the APP, has a

e : 1
Gamma distribution with parameters & and 8 = "

» Gamma pdf f(x) is a well-defined pdf
« Note that f(x) >0
+And [ f(x)dx = |

o x% le—x/é’

I'(ax)0”
which, by change of variables with y = x/8, we have

ro O e j Ve dy _T(e)
0 T(@)0” 0 T(a) " T(a)

5

=1.




»Mean and Variance
The mgf of a Gamma distribution RV X 1s

M(t) — E(etX) — 1 Iwetxxa—le—x/ﬁdx

['(a)@” 70
= ! I ) x“‘le_(;_t)xdx
I'(a)@” 70
-l
__ J x“ e / o g (©)
['(a)@” 70

Now we construct another gamma pdf!

L ot is a pdf, we have that
I'(a)b”

Jm 1 x et =1
0 T'(a)b”

g(x)=

= j: xe™ =T (a)b" (Y)

Applying equation (Y) to (®), with b = and a = a, we have:

1-6¢

MO =— Ty =Ly i t<

" T(a)b” -0  1-61



»Mean and Variance (c.n.t.)

ol —0 . ab
j>M ()= a(ﬁ) { (1—01) }(1—90““'

M (t) = a(a+ 1)«922 |
(1-61)""
= M'(0) = 6. M"(0)=a(a+1)6”
= E(X) =ab. Var(X) = a(a +1)0° —(ab)’ = ab’

A special case 1s that « = 1, Gamma distribution reduces
to exponential distribution. @ can be non-integer!

Definition 3.2-4
Let X1 and X2 have independent gamma distributions

with parameters a, 6 and S, 0, respectively.
A RV X has a Beta distribution if its pdf is defined by

_ T@+B) a-1,14 _ \G-1
g(x)—r(a)r(ﬁ)x (1—-x)"", 0<x<1.




