
Section 3.1            RV of the continuous type 
Chapter 3 Continuous distribution（连续分布）

Recall that a RV X: S→X(S) ⊆ R is called a discrete RV if X(S) 
is finite or countably infinite. 
But RVs with a continuous range of possible values are 
given common. (E.g. Velocity of a vehicle traveling along the high way.)

Definition 3.1-1 [Continuous RV  ζ pdf]
A RV  X : S→X(S) ⊆ R is said to be continuous if there exists a 
function f(x): X(S) →[0,+∞) such that

(a) f(x)≥0, x∈X(S)
(b) ∫ (𝑆)𝑓 𝑥 𝑑𝑥 = 1

(c) If (𝑎, 𝑏) ⊆ 𝑋(𝑆),  𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 = ∫ 𝑓(𝑥) 𝑑𝑥.
And 𝑓 𝑥 is called the probability density function (pdf) of X.



Remark:
• We often extend the domain of f(x) from X(S) to R and 

let f(x)=0 for x∉ X(S).From now on, we consider pdf 
f(x): R → [0,+∞) .X(S) is called the support of f(x).

• Then the 3 conditions become:
¾ f(x)≥0 for  x∈R
¾ ∫− 𝑓 𝑥 𝑑𝑥 = 1
¾ 𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 = ∫ 𝑓(𝑥) 𝑑𝑥.
• For any single value a, 𝑃 𝑋 = 𝑎 = ∫ 𝑓 𝑥 𝑑𝑥 = 0. 

Therefore, including or excluding the endpoints of an 
interval has no effect on its probability:
𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 = 𝑃 𝑎 < 𝑋 ≤ 𝑏 = 𝑃 𝑎 ≤ 𝑋 < 𝑏 =
𝑃(𝑎 < 𝑋 < 𝑏). The area 

= ( )P a X bd d



Definition 3.1-2 [ Cumulative distribution function (cdf)]
The cumulative distribution function or cdf of a continuous RV X, 
denoted by F(x), is given by

𝐹 𝑥 = 𝑃 𝑋 ≤ 𝑥 = ∫− 𝑓(𝑡) 𝑑𝑡

Remark:
𝐹( ) = 𝑓(𝑥).

F(x) accumulates (or, more simply, cumulates) all of the 
probability less than or equal to x.
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• Interpretation of pdf The pdf f(x) in the 
picture can be 
seen as the 
probability mass 
function (pmf) per 
unit length near x.



Example 1 [ Uniform distribution ]:

Let the random variable X denote the outcome when a point is 
selected randomly from [a, b] with −∞ < a < b < ∞.

Define 
the pdf of 
X:
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𝑃 𝑋 ≤ 𝑥 = −
−

implies the probability of selecting a 
point from the interval [a,x] is proportional to the length of 
the interval [a, x].

Uniform distribution:
when a pmf is 
constant over the 
support.

denoted by
𝑋~𝑈(𝑎, 𝑏)O



Example 2 (Page 96):

Let Y be a continuous random variable with pdf g(y) = 2y, 0 < y < 1. 
Then the cdf of Y is:
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¾ Mathematical expectation

Definition [ Expectation ]

Assume X is a continuous RV with range space X(S) and f(x) is its 

pmf. If                          exists, then it’s called the expectation or 

the expected value of g(X) and is denoted by E[g(X)]. That is,
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Remark:
• Mathematical expectation is a linear operator. In other words,

• Letting f(x)=0 for x∉ X S , then we find the expectation for 
function g(x) can be expressed as:
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For a continuous RV 𝑋 with pdf 𝑓(𝑥) :
¾Mean of 𝑋:

𝜇 = 𝐸 𝑋 =
−

𝑥𝑓(𝑥) 𝑑𝑥

¾Variance of 𝑋:

𝑉𝑎𝑟 𝑋 =
−

(𝑥 − 𝜇)2𝑓 𝑥 𝑑𝑥 = 𝐸 (𝑋 − 𝜇)2

¾Standard deviation of 𝑋:
𝜎 = 𝑉𝑎𝑟 𝑋

¾Moment generating function:   if it exists, then
𝑀 𝑡 = 𝐸 𝑒 = ∫− 𝑒 𝑓 𝑥 𝑑𝑥, −ℎ < 𝑡 < ℎ for some ℎ > 0.

It completely determines the distribution of 𝑋 and all moments exist 
and are finite:

¾ Moment of X:
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Example 3 (Page 98):
Let X have the pdf
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Compute 𝐸(𝑋) and 𝑉𝑎𝑟(𝑋).

Actually, for 𝑋~𝑈 𝑎, 𝑏
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Example 4 (Page 99):
Let X be a continuous RV and have the pdf
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From the above 
examples,
We observe 
that 𝑓(𝑥) is not 
restricted to be 
“𝑓(𝑥) ≤ 1”. 
And actually, 
𝑓 𝑥 needn’t to 
be continuous. 
For example,
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Definition 3.1-3[(100p)th percentile ]
It is a number 𝜋 such that the area under f (x) to the left of 
𝝅𝒑 is p. That is,

𝑝 =
−

𝑓 𝑥 𝑑𝑥 = 𝐹 𝜋

The 50th percentile is called the median. The 25th and 75th

percentiles are called the first and third quantiles, 
respectively. The median is called the 2nd quantile.



Example 5:
Let X be a continuous RV and have the pdf
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Section 3.2      exponential, gamma, Chi-
Square Distributions

Chapter 3 Continuous distribution（连续分布）

¾Poisson distribution.
It can be used to describe the number of occurrences of the 
same event in a given continuous interval with pmf 𝑓 𝑥 =

!
, 𝑥 = 0,1,… 𝐸 𝑋 = 𝜆, 𝑉𝑎𝑟 𝑋 = 𝜆.

Now consider the APP with mean number of occurrences 
𝜆 in a unit interval:

• For an interval with length T, the number of occurrence, say X , 
has 𝐸 𝑋 = 𝜆𝑇

• And thus its pmf is 𝑓 𝑥 = ( )
!

, 𝑥 = 0,1,…
• 𝑃 𝑋 = 0 = 𝑒− = 𝑃(no occurrence in the interval with length 

T)

frequency



Let W denote the waiting time until the first occurrence during the APP.

¾pdf of W

Idea:
①Derive cdf of W: F(w).
② f(w)= 𝐹( )
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What is 𝜆?

The mean number 
of occurrences per 
unit interval is λ

We often let λ =  1 𝜃 and say that the RV has an 
exponential distribution :

c.n.t



Definition 3.2-1 [ Exponential distribution ]
A RV X has an exponential distribution if its pdf is defined by

𝑓 𝑥 =
1
𝜃
𝑒− , 𝑥 ≥ 0, 𝜃 > 0.

Accordingly, the waiting time 
W until the first occurrence in 
a Poisson process has an 
exponential distribution with 
θ = 1/λ.

¾mgf, mean and variance
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Example 1 (Page 105):

Customers arrive in a certain shop according to APP at a mean 
rate of 20 per hour. What’s the probability that the shopkeeper 
will have to wait more than 5 minutes for the arrival of the 
first customer?

Solution:
Let X denote the waiting time in minutes until the first 
customer arrives, and note that λ = 1/3 is the mean number of 
arrivals per minute. Thus,

𝜃 =  1 𝜆 = 3 and 𝑓 𝑥 = 1
3
𝑒− , 𝑥 ≥ 0.

Hence 𝑃 𝑋 > 5 = ∫5
1
3
𝑒− 𝑑𝑥 = 𝑒− .



Consider APP with mean λ in a unit interval, 
Let W denote the waiting time until the αth occurrence.

¾pdf of W

Idea:
①Derive cdf of W: F(w).
② f(w)= 𝐹( )
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since the number of 
occurrences in the interval 
[0,w] has a Poisson 
distribution with
mean λw.



Since W is a continuous RV, 𝐹( ) , if exists, is equal
to the pdf of W. 
When w > 0, we have

¾pdf of W (c.n.t.)
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A pdf of this form is said to be of the gamma type, and W is 
said to have a gamma distribution.



Definition 3.2-2 [ Gamma function ]

𝛤 𝑡 =
0

𝑦 −1𝑒− 𝑑𝑦 , 𝑡 > 0.

Γ
1
2

= 𝜋, Γ 1 = Γ 2 = 1,

And for 𝑛 ≥ 2, Γ 𝑛 = 𝑛 − 1 Γ 𝑛 − 1 .

The last statement is proved by induction on n. It’s easy to see that , Γ 1 = 1 .
For 𝑛 ≥ 2, we will use integration by parts.
Γ 1

2
= 𝜋 is due to the definite integration ∫0 𝑒− 𝑑𝑥 =

2
, but we don’t 

need to know how to derive it now.
Integration by parts
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Definition 3.2-3 [ Gamma distribution ]
A RV X has a Gamma distribution if its pdf is defined by

𝑓 𝑥 = 1
Γ( )

𝑥 −1𝑒− , 𝑥 ≥ 0.

Accordingly, W, the waiting time until the 𝛼th occurrence in the APP, has a 
Gamma distribution with parameters 𝜶 and 𝜽 = 𝟏

𝝀
.

¾ Gamma pdf f(x) is a well-defined pdf
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¾Mean and Variance
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¾Mean and Variance (c.n.t.)

A special case is that 𝛼 = 1, Gamma distribution reduces 
to exponential distribution. 𝛼 can be non-integer!

Definition 3.2-4 [ Beta distribution ]
Let X1 and X2 have independent gamma distributions
with parameters α, θ and β, θ, respectively.
A RV X has a Beta distribution if its pdf is defined by

𝑔 𝑥 = Γ
Γ Γ

𝑥 −1(1 − 𝑥) −1, 0 < 𝑥 < 1.


