
Section 2.4            Binomial distribution

Chapter 2.1 Discrete Distribution（离散分布）

Starting from this section, some typical random experiments and 
corresponding distribution will be introduced.

¾ Bernoulli experiment
The outcome can be classified in one of two mutually 

exclusive and exhaustive ways--say either success or failure. 
(e.g. female or male;  life or death)
¾Bernoulli trials

When a Bernoulli experiment is performed several 
independent times and the probability of success—say, p—
remains the same from trial to trial. In other words, we let p
donate the probability of success on each trial. And we define 
푞 ≜ 1 − 𝑝 to donate the probability of failure.

trial—试验



Example 1: 
You are a fan of lottery. For a lottery, the probability of 
winning is . If you buy the lottery for 10 successive days, 

that corresponds to 10 Bernoulli trials with p= . 

successive—连续的

¾Bernoulli distribution
Let X be a RV associated with a Bernoulli trial with the 

probability of success p. 
RV: X: S→X(S)⊆R,       S={success, failure}.     And define:

X(success)=1, X(failure)=0, X(S)={0, 1}
The pmf of X could be written as:

f(x): X(S) = {0,1} →[0,1],              f(x)=𝑝 (1 − 𝑝) .
Then we say X has a Bernoulli distribution whose characteristic:
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Assuming 
independence



¾ In a sequence of n Bernoulli trials, we shall let 𝑋 denote the 
Bernoulli random variable associated with the ith trial. An 
observed sequence of n Bernoulli trials will then be an n-tuple 
of zeros and ones, and we often call this collection a random 
sample of size n from a Bernoulli distribution

Example 2 (Page 74)
Out of millions of instant lottery tickets, suppose that 20% 
are winners. If 5 tickets are purchased, then (0, 0, 0, 1, 0) is a 
random sample. Assuming independence between 
purchasing different tickets, the probability of this sample is

𝑝 = (0.2)(0.8) .
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¾Binomial distribution
We are interested in the number of successes in n Bernoulli 

trials, the order of the occurrence is not concerned.
A binomial experiment satisfies the following properties:

1. A Bernoulli (success–failure) experiment is performed n 
times.

2. The trials are independent.
3. The probability of success on each trial is a constant p; the 

probability of failure is q=1-p.
4. The random variable X equals the number of successes in 

the n trials.
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Example 2 (revisited)
If X is the number of winning tickets among n=5 that are 
produced, then the probability of purchasing 2 winning 
tickets is

2 35
(2) ( 2) (0.2) (0.8) , (5,0.2)
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Why pmf well-
defined?
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¾ cdf of Binomial distribution
Assume X have a Binomial distribution b(n,p), the cdf of X is
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Example 3 
Chickens are raised for laying eggs. Let p = 0.5 be the 
probability that the newly hatched chick is a female. Assuming 
independence, let X be the number of female chicks out of 10 
newly hatched chicks selected at random.
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By the way, when n=1, the Binomial distribution  reduces 
to Bernoulli distribution.
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¾mgf of Binomial distribution
Assume X have a Binomial distribution b(n,p), the mgf of X is



Section 2.5            Negative Binomial distribution

We are interested in the situation that we observe a sequence 
of independent Bernoulli trials until exactly r successes 
occur, where r is a fixed positive integer.
We define a RV X to denote the trial number on which the 
rth success is observed:
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Example 1 (Page 83)
Biology students are checking eye color of fruit flies.
For individual fly, P(white)= ⁄1 4,  P(red)= ⁄3 4.  
Assume the observations are independent Bernoulli trials:  

3 3

4

3

At least 4 flies.    ( 4) ( 3) (1 1 4) (3 4)
At most 4 flies.    ( 4) 1 (1 1 4)
4 flies.                 ( 4) (1 4)(3 4)
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¾Mean and Variance
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Section 2.6            Poisson Distribution
There are experiments that result in counting the number of 
times particular events occur at given times or with given 
physical objects.

E.g.
• The number of flaws in a 100 feet long 

wire
• The number of customers that arrive at a 

ticket window between 9p.m. to 10p.m.

Counting such events can be looked upon as observations
of a random variable associated with an approximate 
Poisson process(APP), provided that the conditions in the 
following definition are satisfied.



Definition 2.6-1 [ App]
Let the number of occurrences of some event in a given continuous 
interval be counted. Then we have an APP with parameter λ > 0 if

(a) The numbers of occurrences in nonoverlapping 
subintervals are independent.

(b) The probability of exactly one occurrence in a 
sufficiently short subinterval of length h is approximately λh.

(c) The probability of two or more occurrences in a 
sufficiently short subinterval is essentially 0.

Consider a  random experiment desired by App. Let X denote the 
number of occurrences in an interval of length 1. We aim to find an 
approximation for P(X=x) where x is a nonnegative integer.
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nonoverlapping 
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② If n is sufficiently large(n≫ 푥), P(X=x) can be 
approximated by the probability that exactly x of these 
n subintervals each has one occurrence.

③
I. By condition (b), the probability of one 

occurrence in anyone subinterval of length ⁄1 𝑛
is approximately ⁄휆 𝑛.

II. By condition (c), the probability of 2 or more 
occurrences in any one subinterval is essentially 
0. That is, For each subinterval there is either 
no occurrence or one occurrence. [The  
probability of occurrence is .

III. By condition (a), we have a sequence of n 
Bernoulli trials with probability p
approximately equal to .

I. II. The occurrence and nonoccurrence in each interval could 
be treated as Bernoulli trials.
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④Therefore, P(X=x) can be approximated by the binomial 
probability:

⑤ If let n→ ∞, then 
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Definition 2.6-2 [Poisson distribution]
It can be verified that

is a well-defined pmf.  If a RV X has f(x) as its pmf, then X is said 
to have a Passion distribution.

¾Mean and Variance
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What is the 
interpretation 
of λ ? 

λ is the average 
number or variance 
of occurrences in 
the interval.



Example 1 (Page 91)
In a large city, telephone calls to 110 come on the average of 
2 every 3 minutes. If one models with App, what is the 
probability of five or more calls arriving in a 9-minute period?
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