Chapter 2.1
Section 2.1

Discrete Distribution（离散分布）
Random variable of the discrete type

Outcomes of experiment

Numerical
e．g．Rolling a 6 －sided die
Not numerical
e．g．Flipping a coin
For the latter case，we can define a function X to associate the outcomes with numerical values．

Example1：Rolling a die：$\quad \mathrm{S}=\{1,2,3,4,5,6\}$

$$
X(\mathrm{i})=\mathrm{i}, \mathrm{i}=1,2,3,4,5,6 .
$$

Flipping a coin： $\mathrm{S}=\{\mathrm{H}, \mathrm{T}\}$

$$
\underset{\operatorname{def}}{X(\mathrm{H})=0,} \quad \underset{\operatorname{def}}{X(\mathrm{~T})=0.5}
$$

Definition 2．1－1［ Random Variable（RV）］

Given a random experiment with Sample Space S ，a function X ：
$\mathrm{S} \rightarrow \mathrm{B} \subseteq \mathrm{R}$ that assign one and only one real number $X(s)=x$ to each $\mathrm{s} \in \mathrm{S}$ is called random variable．
In other words，A random variable is a function from a sample space S into the real numbers．

Definition［ discrete random variable］\rightarrow 离散型随机变量

The range of X is the set $\mathrm{B}=\{x \mid X(s)=x, \mathrm{~s} \in \mathrm{~S}\}$ ．A RV is called discrete if its range B is finite or countable．
$X: S \rightarrow B \subseteq \mathbb{R}$

Given a experiment with Sample space

$$
S=\left\{s_{1}, \ldots, s_{n}\right\}
$$

with a probability function P on S and we define a random variable X with range $\mathrm{B}=\left\{x_{1}, \ldots, x_{m}\right\}$. we can define a probability function P on B in the following way:

$$
\begin{aligned}
& P\left(X=x_{i}\right) \triangleq P\left(\left\{X=x_{i}\right\}\right)=P_{r}\left(\left\{s_{j} \mid X\left(s_{j}\right)=x_{i}, s_{j} \in S\right\}\right) \\
& P\left(x_{i} \in A\right) \triangleq P\left(\left\{x_{i} \in A\right\}\right)=P_{r}\left(\left\{s_{j} \mid X\left(s_{j}\right) \in A, s_{j} \in S\right\}\right)
\end{aligned}
$$

Note that $A \subset B$
A note on notation:
Random variables will always be denoted with uppercase letters And the numerical values of RV will be denoted by the corresponding lowercase letters

$$
\text { e.g. } \quad X \rightarrow R V \quad \text { e.g. } \quad x \rightarrow \text { numerical value of } R V .
$$

Thus, the random variable X can take the value x

Definition 2.1-2 [probability mass function (pmf)]

Suppose that $X: \mathrm{S} \rightarrow \mathrm{B} \subseteq \mathrm{R}$ is a discrete random variable. Then a function $\mathrm{f}(x): \mathrm{B} \rightarrow[0,1]$ is called pmf, if
(a) $\quad f(x)>0, \mathrm{x} \in \mathrm{B}$
(b) $\quad \sum_{x \in B} f(x)=1$
(c) $\quad P(x \in \mathrm{~A})=\sum_{x \in A} f(x)$ where $\mathrm{A} \subset \mathrm{B}$

- We often extend the definition domain of $f(x)$ from B to R and let $f(x)=0$ for $x \notin \mathrm{~B}$.
- B is the range of X and is also called the support of $f(x)$.
- From now on, we consider $\mathrm{pmf} f(x): \mathrm{R} \rightarrow[0,1]$.

Definition [Cumulative distribution function (cdf)]

The cumulative distribution function or $c d f$ of a random variable X, denoted by $F(x)$, is defined by

$$
\begin{aligned}
F(x)=P(X \leq x) \triangleq & P(\{s \mid X(s) \leq x, \quad s \in S\}) \\
x \in(-\infty,+\infty), & \text { cdf is often called } \\
& \text { the distribution function of } X
\end{aligned}
$$

Definition [uniform distribution]

When a pmf is constant over the support.
Example 2: Rolling a die:
$\mathrm{S}=\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}\}$

- define a $R V \quad X(s)=x$ for $\forall s \in S$
$\rightarrow B=\{1,2,3,4,5,6\}$
- pmf $f(x)= \begin{cases}1 / 6, & \text { if } x \in B \\ 0, & \text { if } x \notin B\end{cases}$
- cdf $F(x)=P(X \leq x)=\left\{\begin{array}{l}0, \quad \text { if } x<1 \\ k / 6, \text { if } k \leq x<k+1, k=1,2,3,4,5 \\ 1, \quad \text { if } x \geq 6 .\end{array}\right.$

Definition [line graph]

A line graph of the $\operatorname{pmf} f(x)$ of the random variable X is a graph having a vertical line segment drawn from $(x, 0)$ to $[x, f(x)]$ at each $x \in \mathrm{~B}$.
Example2 [Revisited]:

Definition [probability histogram]

If X assume only integer values, a probability histogram of $\operatorname{pmf} f(x)$ is a graphical representation that has a rectangle of height $f(x)$ and a base of length 1, centered at x for each $x \in S$.

Section 2.2
We will learn many probability distributions, it's important to introduce concepts in summarizing their key characteristics.

> Motivation example. (Page 57)
A man proposes a game: let the other player throw a die and the player receives payment as follows:

$$
\begin{array}{ll}
A=\{1,2,3\} & \rightarrow 1 \text { dollar } \\
B=\{4,5\} & \rightarrow 2 \text { dollars } \\
C=\{6\} & \rightarrow 3 \text { dollars }
\end{array}
$$

$$
X: S=A \cup B \bigcup C \rightarrow X(S)=\{1,2,3\}
$$

Now let X be a RV to represent the payment, the pmf of X is:

$$
\begin{gathered}
f(x)=\frac{4-x}{6}, x=1,2,3 \\
f: X(S) \rightarrow[0,1]
\end{gathered}
$$

The man charge the player 2 dollars for each play. Can the man make profit if the game is repeated endlessly?

$$
\begin{aligned}
& \text { Solution: Payment of }\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \text { occur }\left[\begin{array}{c}
3 / 6 \\
2 / 6 \\
1 / 6
\end{array}\right] \text { of the times. } \\
& \text { The average payment is } 1 \times 3 / 6+2 \times 2 / 6+3 \times 1 / 6=5 / 3 . \triangleq E(X) \\
& \text { So the man can earn } 2-5 / 3=1 / 3 \text { per play on_average. }
\end{aligned}
$$

More generally, we are interested in long run average value of a function of X, say $\mathrm{g}(X)$

Definition [Expectation]

Assume X is a discrete RV with range space $X(\mathrm{~S})$ and $f(x)$ is its pmf. If $\sum_{x \in X(S)} g(x) f(x)$ exists, then it's called the expectation or the expected value of $\mathrm{g}(X)$ and is denoted by $\mathrm{E}[\mathrm{g}(X)]$. That is,

$$
E[g(X)]=\sum_{x \in X(S)} g(x) f(x)
$$

Example 1 (Page 59):

Let X be a RV with $X(S)=\{-1,0,1\}$ and its pmf is $f(x)=\frac{1}{3}$
for $\forall x \in X(S)$. What's $E\left(x^{2}\right)$?
Solution: $E\left(x^{2}\right)=\sum_{x \in X(S)} x^{2} f(x)=(-1)^{2} \times 1 / 3+0^{2} \times 1 / 3+1^{2} \times 1 / 3=2 / 3$.
$>$ Properties of mathematical expectation:

Theorem 2.2-1 [Page 60]

Consider a $R V \quad X: S \rightarrow X(S)$, and its pmf $f: X(S) \rightarrow[0,1]$.
When the mathematical expectation exists, it satisfies the following properties:
(a) If c is a constant, $E(c)=c$
(b) If c is a constant, and $g(x)$ is a function,

$$
E[c g(x)]=c E[g(x)] .
$$

(c) If c_{1} and c_{2} are constants, $g_{1}(x)$ and $g_{2}(x)$ are functions,

$$
E\left[c_{1} g_{1}(x)+c_{2} g_{2}(x)\right]=c_{1} E\left[g_{1}(x)\right]+c_{2} E\left[g_{2}(x)\right]
$$

Mathematical expectation is a linear operator.

Example 2 （Page 61）：

Let $g(x)=(x-b)^{2}$ where b is a constant to be chosen． and suppose $E\left[(X-b)^{2}\right]$ exists．Find the value of b for which

$$
E\left[(X-b)^{2}\right] \text { is minimal }
$$

Solution：

$$
\begin{aligned}
& E\left[(X-b)^{2}\right]=E\left[X^{2}-2 b X+b^{2}\right] \\
&=E\left(X^{2}\right)-2 b E(X)+b^{2} \triangleq h(b) \\
& \frac{\partial h(b)}{\partial b}=-2 E(X)+2 b ; \quad \frac{\partial^{2} h(b)}{\partial b^{2}}=2>0 .
\end{aligned}
$$

So when $\frac{\partial h(b)}{\partial b}=0, E\left[(X-b)^{2}\right]$ is minimal．
$\Rightarrow b=E(X)$ ．
Mean is the MMSE（误差平方和
均值最小）estimator．

Section 2.3

 Special mathematical exception$>$ Mean of RV: The expectation of X is also called the mean of X.

$$
E(X)=\sum_{x \in X(S)} x f(x)^{X(S)=\left\{u_{1}, \ldots, u_{k}\right\}}=\sum_{i=1}^{k} u_{i} f\left(u_{i}\right)
$$

Mechanic Interpretation:

$u_{i} \rightarrow$ The distance of ith point from the origin.
$f\left(u_{i}\right) \rightarrow$ The weight of the ith point.
$u_{i} f\left(u_{i}\right) \rightarrow A$ moment having a moment arm of length u_{i}
$E(X) \rightarrow$ The first moment about the system; the centroid.
Why $E(X)$ is the centroid?
If we choose $E(X)$ as the new origin, then we compute the first moment agaon:

$$
E[X-E(X)]=E(X)-E(X) \quad \leftarrow \text { because } E(X) \text { is constant }
$$

$$
=0 \text {. }
$$

Hence The first moment about the $E(X)$ is zero. $\Rightarrow E(X)$ is centroid.

$>$ Variance of RV:

$$
\begin{aligned}
\operatorname{Var}(X)=E\left[(X-E(X))^{2}\right]=\sum_{x \in X(S)}(x-E(X))^{2} f(x) & =E\left[X^{2}-2 X E(X)+E^{2}(X)\right] \\
& =E\left(X^{2}\right)-2 E(X E(X))+E^{2}(X) \\
& =E\left(X^{2}\right)-2 E(X) \cdot E(X)+E^{2}(X) \\
& =E\left(X^{2}\right)-[E(X)]^{2}
\end{aligned}
$$

The positive square root of the variance is called the standard deviation (δ)

Example 1 (Page 66):

Let X equal to the number of spots after a 6-sided die is rolled.
A reasonable probability model is:

$$
f(x)=P(X=i)=1 / 6, \quad i=1,2,3,4,5,6 .
$$

Mean of $X: E(X)=1 / 6 \times(1+2+3+4+5+6)=7 / 2$.
Variance of $X: \operatorname{Var}(X)=E(X-E(X))^{2}=E\left(X^{2}\right)-[E(X)]^{2}=\frac{91}{6}-\frac{49}{4}=\frac{35}{12}$.

Example 2 [Interpretational standard deviation] (Page 66):

X has pmf $f(x)=1 / 3$ for $x=-1,0,1$

$$
E(X)=0 ; \quad \operatorname{Var}(X)=2 / 3 ; \quad \delta_{X}=\sqrt{2 / 3}
$$

Y has pmd $f(y)=1 / 3$ for $y=-2,0,2$

$$
E(Y)=0 ; \quad \operatorname{Var}(Y)=8 / 3 ; \quad \delta_{Y}=2 \sqrt{2 / 3} .
$$

Standard deviation is a measure of the dispersion or spread of the points belonging to the range space of RV.
$>$ Properties of variance:
Let X be a RV

$$
\operatorname{Var}(c)=0 ; \quad \operatorname{Var}(c X)=c^{2} \operatorname{Var}(X)
$$

$>$ rth moment of the distribution

- Let r be a positive integer. If $E\left(X^{r}\right)=\sum_{x \in X(S)} x^{r} f(x)$ exists (finite), then
it is called the rth moment of the distribution about the origin.
- In addition, $E\left[(X-b)^{r}\right]=\sum_{x \in X(S)}(x-b)^{r} f(x)$
is called the rth moment of the distribution about b.
- $E\left[(X)_{r}\right] \triangleq E[X(X-1)(X-2) \cdots(X-r+1)] \rightarrow$ rth factorial moment
\square Mean
- Variance
- Standard deviation

Characteristics of
distribution of probability
\square moments
We now define a function that will help us generate the moments of a distribution:

Definition [Moment generating function (mgf)]

Let X be a discrete RV with range space $X(\mathrm{~S})$. If there exists $\mathrm{h}>0$
such that $E\left(e^{t X}\right)=\sum_{x \in X(S)} e^{t x} f(x) \quad$ exists and is finite for $-h<t<h$
Then the function defined by $M(t)=E\left(e^{t X}\right)$ is called the moment-generating function of X
$>$ Properties of mgf:
I. $\quad M(0)=1$
II. If two RVs have the same mgf, they must have the same distribution of probability.

Example 3:

If X has the $m g f$

$$
M(t)=e^{t}\left(\frac{3}{6}\right)+e^{2 t}\left(\frac{2}{6}\right)+e^{3 t}\left(\frac{1}{6}\right), \quad-\infty<t<+\infty
$$

then the support of the pmf $f(x)$ of X is $X(S)=\{1,2,3\}$ and the associated pmf $f(x)=\frac{4-x}{6}, x=1,2,3$.
$M^{\prime}(t)=\sum_{x \in X(S)} x e^{t x} f(x)$
$M^{\prime \prime}(t)=\sum_{x \in X(S)} x^{2} e^{t x} f(x)$
$M^{(r)}(t)=\sum_{x \in X(S)} x^{r} e^{t x} f(x)$
Putting $t=0$ we find $M^{\prime}(0)=E(X) ; M^{\prime \prime}(0)=E\left(X^{2}\right) ; M^{(r)}(0)=E\left(X^{r}\right)$
Observation: The moments can be computed by differentiating $M(t)$!

Example 4 [Page 71]:

Suppose X has the geometric distribution, that is, the pmf of X is

$$
f(x)=q^{x-1} p \quad x=1,2,3, \ldots, n, \ldots \quad p=1-q .
$$

Then the mgf of X is

$$
\begin{aligned}
M(t) & =E\left(e^{t X}\right)=\sum_{x=1}^{\infty} e^{t x} \cdot q^{x-1} \cdot p=\frac{p}{q} \sum_{x=1}^{\infty}\left(q e^{t}\right)^{x} \\
& =\frac{p}{q}\left[\left(q e^{t}\right)+\left(q e^{t}\right)^{2}+\cdots\right] \\
& =\frac{p}{q} \frac{q e^{t}}{1-q e^{t}}=\frac{p e^{t}}{1-q e^{t}} \quad \quad \text { provided } q e^{t}<1 \Leftrightarrow t<\ln q .
\end{aligned}
$$

Let $\mathrm{h}=-\mathrm{lnq}$ that is positive. To find the mean and variance of X ,

$$
\begin{array}{ll}
M^{\prime}(t)=\frac{p e^{t}}{1-q e^{t}}-\frac{\left(p e^{t}\right)\left(-q e^{t}\right)}{\left(1-q e^{t}\right)^{2}}=\frac{p e^{t}}{\left(1-q e^{t}\right)^{2}} \square & M^{\prime}(0)=E(X)=\frac{p}{(1-q)^{2}}=\frac{1}{p} \\
M^{\prime \prime}(t)=\frac{p e^{t}\left(1+q e^{t}\right)}{\left(1-q e^{t}\right)^{3}} & M^{\prime \prime}(0)=E\left(X^{2}\right)=\frac{1+q}{p^{2}} \\
\operatorname{Var}(X)=E\left(X^{2}\right)-[E(X)]^{2}=\frac{1+q}{p^{2}}-\frac{1}{p^{2}}=\frac{q}{p^{2}}
\end{array}
$$

