Chapter 5

Section 5.7 Approximations for discrete distributions

» Motivation: CLT applies to discrete distributions as well. In this
section, we 1llustrate how the normal distribution can be used to

approximate probabilities for discrete distributions.

* Histogram for discrete distribution

Consider a discrete distribution with pmff(x): S —[0,1] with S ={0,1,...}.

Then the histogram for the discrete distribution 1s 4(x) = f(k), x € (

Then P(X = k) is the area of
the rectangle with a height of
P(X = k) and a base of
length 1 centered at k.
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» Half with correction for continuity.

*  When using CLT and normal distribution to approximate probabilities for
discrete distributions, we have

P(X =k)= P(k—l<X<k+—)
pmffx) L —— 2 \
[hard to derive] Approximated by the normal

distribution according to CLT
[easier to derive]

> Binomial distribution

Let X,,X,,..., X, bearandom sample of size n from Bernoulli distribution b(1, p),

whose mean is p and variance p(1— p). Then ¥ = ZX .~ b(n, p) with mean y =np

i=1

and variance o = np(1— p).

By CLT, w=1"#__1° ”p

o Jmp(-p) \/p(l p)/ n
For sufficiently large n, Y is approxnnately N(np,np(1— p)),

1s N(0,1) as n — oo.

and probabilities for b(n, p) can be approxiamted by N(np,np(1— p)).



Approximately

The graph The graph of The graph of | %7
for pmf Histogram Normal 015t
distribution 1o,
» Binomial distribution (c.n.t.) AR .
0 2 4 6 8 10~
P(Y:k):P(k—%< Y<k+%)
n! / \
S (k)= pra-p"* Y ~ N(np,np(1— p)) for large n

kl(n —k)'
k—1/2— np_ Y—np k+1/2 np

1
Plk——<Y <k+ —) P( )
2 Jp=p) ~Jup(—p)  Jp(-p) ®(-) is the cdf
_ (k+1/2—np]_q)(k—l/2—np] for N(0,1)
np(1-p) np(1-p) )

Assume Y ~ 5(10,0.5). QO :compute P(3<Y <6).



» Quiz
Assume Y ~ 5(10,0.5). QO :compute P(3<Y <6).
Solution :

By definition, PG <Y < 6) = ZS:P(Y —k) = 25: £k

10
@By CLT, Y=Y X,, X,,...,X,, are i.i.d. from b(1,0.5).
i=1

Y approximately follows N(np,np(1—p)) = N(5,2.5)
5 5
P(3§Y<6):ZP(Y:k):ZP(k—%<Y<k+%):P(2.5<Y<5.5)
k=3 k=3
25-5 Y-5 55-5

= P(

)=®(0.316) - D(-1.581) =0.6240—-0.0570 = 0.5670



Chapter 5 Distributions of Functions of random variables

Section 5.8 Chebyshev’s Inequality and convergence in probability

» Motivation
Given the mean and variance of a distribution, it’s possible to have

a rough estimate of probability of certain events [Some more
evidence for why Sample mean X is a good estimate of mean]

Theorem 5.8-1 | |

If the RV X has a mean u and variance o, then, for every k > 1,
P(| X - y|2 ko) < %

Proof .
Consider the discrete RV case. Let f(x): S - [0,1] be the pmf of X.

Then o = E[ (X - 1) |= 3 (x= )" f(x) = 2 (x= )" f () + 3 (x= )’ f ()

xes xeAd xeS—-4

where 4 = {x € §||X—y| > ka}.
Since Z (x— )’ f(x) =0, we derive

xeS—A4

o’ 2 (x—p)’ f(x)2k’c?> f(x)=k’c’P(X € A).

xeAd xeAd



Corollary
If ¢ = ko, then P(|X—,u| > &)< 0—2
g

» Graphical interpretation +2

‘ 1
f(x) ko) < =) f(x)

P(X —pul =

!
i !
i [
/ i i
[ / [
I > [
i

u—ko ,u ;Hka X

This links to the interpretation of o*, a measure of dispersion of X.

Example 1 [Page 222] o .
Note that the distribution of X is
Let X be a RV with mean 25 and varance 16.  5rpjtrary!

Compute the loweer bound for P(17 < X <33) and upper bound for P(|.X —25|>12).



Example 1 [Page 222] (c.n.t.)
Let X be a RV with mean 25 and varance 16.

Compute the loweer bound for P(17 < X < 33) and upper bound for P(|.X —25|>12).
Solution :

Lower bound for P(17 < X <33):
P(17< X <33)=P(X — 4| <20) :1—P(|X—,u|22c7)21—%.

Upper bound for P(|X —25|>12) = P(|X — u|230) < é

o0

A sequence of RVs {7} is said to connverge in probability to a

constant u, if for V&>0, lim P(|Yn — ,u| > &) =0.

Theorem 5.8-2 | |

Let X be the sample mean of a random sample X, X,,...,X, froma

distribution with mean g and finite variance o, X converges in probability to u.

1 n
— > X -
LS X

i=1

>&£)=0.

In other words, lim P(

n—o0




Proof of theorem 5.8-2
Proof. Note that E(X) = u, Var(X) = 15
By corollary 5.8-1, for V& > 0, we have
P(‘X ,u‘>g S% (lazj
Taking limits both sides yield:

0< hmP(\}—y\ > £) < hmi2 (%&j:o: limP(‘)_(—,u‘ > £) =0.

n—o0 n—o0 g n—»o0
or equivalently,

1imp(\}—y\<g)=1.

n—0



Chapter 5 Distributions of Functions of random variables
Section 5.9 Limiting Moment Generating Functions

» Binomial distribution can be apprOX|mated by the Poisson
distribution when n is large and p is fairly small.

\ Consistent

The mgf of b(n, p) is M (t)=(1— p+ pe')". with
Let np = A, we have experiment
M(t) = (l—£+£e’)”
non
t _ n
_ {H Ae 1)}
n
: : b.,
Since lim(1+—)" =e”, we have
n—»00 n
lim M (7) = 2D 'mgffor Poisson
e (t)=e | __— distribution

~ Examplel [P227]
Let Y ~ b(50,1/25). Q:Compute P(Y <1).



Examplel (c.n.t.)
Let Y ~ b(50,1/25). Q:Compute P(Y <1).

Solution :
DBy definition, P(Y <1)=P(Y =0)+ P(Y =1) = (2—4j50 + so(ij(ﬁjz =0.4

4 S 25 25 )\2s)
2By approximation with Poisson distribution with A =np =2,
2%e7 2'e”

_|_
0! 1!

=3e? =0.406.

P(Y <l)=

Theorem 5.9-1 | ]
Let {M . (t)}(::1 be a sequence of mgfs for ¢ in an open 1nterval around 0. If

lim M (¢) = M (¢), then the limit of the corresponding distributions must be the

distribution corresponding to M (¢).

That is, convergence, for |t| < h, of mgfs to am mgf implies
convergence of cdfs (thus implies the convergence of the
distribution.)



e The proof of theorem 5.9-1 relies on the theory of Laplace transforms,
which 1s omitted due to the beyond of the scope of this course.
e Then we show the proof of CLT by using theorem 5.9-1:

Theorem 5.6-1 (Central Limit Theorem))
If X is the sample mean of a random sample X, X,,..., X, of

size n from a distribution with finite mean x and finite positive variance o,

then the limit of the distribution of

X,u\/_
oNn o

. — 1 L
equaivalently, X ~ N(u,—oc?) whenn —0.< ) X, ~ N(nu,nc”) when n — oo.
n

i=1

(X u) ~ N(0,1) as n —» o

Proof .
E(e’W)—E{exp{ d ( .—nuﬂ}
Jno
[ [t Xx,- X, -
= E<exp —H .-+ €Xp 2 ,u} Independence
LV ] Vn o

= E<exp

\

- —

_ ( X —
! .Xl H }E<exp|: ; N H

Jn o




Proof of theorem 5.6-1 (c.n.t.)
X, — U

X -
Let m(t):E{exp(t ’ ﬂ]}, t|<h, be the common mgf for Z, = ,i=1,...
o o

Thus E(e™) = {m (%ﬂ :
n
Since Z, ~ N(0,1), m(0) =1, m'(0) =0, m"(0) =1.

By using Taylor expansion, there exists ¢ € [0, t] such that

m(t) =m(0)+m'(0)t + % m'"(c)t” =1+ %m”(c)t2
=1+lf2 +lt2 [m"(c)—1]
2 2 '

E(em)z{m(ﬁﬂ :{1+%§+%§[m”(c)—l]} : t|<\/;]’l. CE[O,

Since m"(¢) is continuous at =0 and ¢ — 0 as n — oo, we have
limm"(c)-1=1-1=0.

n—>0

]



Proof of theorem 5.6-1 (c.n.t.)

Since lim(1+ é)” =¢e”, we have

n—>o0 n

n—>0 n—>o0 n 2 n

2 n
:lim{1+lt—} _le’?.
2
\ mgf of

~ N(0,1). MO,1)

2 2 n
lim E(¢™) = lim {1 %t— ML T —1]}

By theorem 5.9-1, W =




