Chapter 5 Distributions of Functions of random variables

Section 5.7 Approximations for discrete distributions

$>$ Motivation: CLT applies to discrete distributions as well. In this section, we illustrate how the normal distribution can be used to approximate probabilities for discrete distributions.

- Histogram for discrete distribution

Consider a discrete distribution with $\operatorname{pmf} f(x): \bar{S} \rightarrow[0,1]$ with $\bar{S}=\{0,1, \ldots\}$.
Then the histogram for the discrete distribution is $h(x)=f(k), x \in\left(k-\frac{1}{2}, k+\frac{1}{2}\right)$.

$$
k=0,1, \ldots, n .
$$

Then $P(X=k)$ is the area of the rectangle with a height of $P(X=k)$ and a base of length 1 centered at k .

$>$ Half with correction for continuity.

- When using CLT and normal distribution to approximate probabilities for discrete distributions, we have

$$
\operatorname{pmf} f(x) \quad P(X=k)=P\left(k-\frac{1}{2}<X<k+\frac{1}{2}\right)
$$

[hard to derive]
Approximated by the normal distribution according to CLT [easier to derive] . - . - . - .
$\bar{\nabla}$ Binomial distribution
Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample of size n from Bernoulli distribution $b(1, p)$, whose mean is p and variance $p(1-p)$. Then $Y=\sum_{i=1}^{n} X_{i} \sim b(n, p)$ with mean $\mu=n p$ and variance $\sigma^{2}=n p(1-p)$.

$$
\text { By CLT, } W=\frac{Y-\mu}{\sigma}=\frac{Y-n p}{\sqrt{n p(1-p)}}=\frac{\bar{X}-p}{\sqrt{p(1-p) / n}} \text { is } N(0,1) \text { as } n \rightarrow \infty \text {. }
$$

For sufficiently large n, Y is approximately $N(n p, n p(1-p))$, and probabilities for $b(n, p)$ can be approxiamted by $N(n p, n p(1-p))$.

The graph for pmf	The graph of Histogram
	Approximately Ho graph of Normal distribution

$>$ Binomial distribution (c.n.t.)

$$
\begin{aligned}
& \begin{aligned}
& P(Y=k)=P\left(k-\frac{1}{2}<Y<k+\frac{1}{2}\right) \\
&(1-p)^{n-k} \quad \sim N(n p, n p(1-p)) \text { for large } n
\end{aligned} \\
& P\left(k-\frac{1}{2}<Y<k+\frac{1}{2}\right)=P\left(\frac{k-1 / 2-n p}{\sqrt{n p(1-p)}}<\frac{Y-n p}{\sqrt{n p(1-p)}}<\frac{k+1 / 2-n p}{\sqrt{n p(1-p)}}\right) \\
& =\Phi\left(\frac{k+1 / 2-n p}{\sqrt{n p(1-p)}}\right)-\Phi\left(\frac{k-1 / 2-n p}{\sqrt{n p(1-p)}}\right) \text {. } \\
& \Phi(\cdot) \text { is the cdf } \\
& \text { for } N(0,1)
\end{aligned}
$$

> Quiz
Assume $Y \sim b(10,0.5)$.
Q : compute $P(3 \leq Y<6)$.

$>$ Quiz

Assume $Y \sim b(10,0.5) . \quad Q:$ compute $P(3 \leq Y<6)$.
Solution:
(1)By definition, $P(3 \leq Y<6)=\sum_{k=3}^{5} P(Y=k)=\sum_{k=3}^{5} f(k)$
(2)By CLT, $Y=\sum_{i=1}^{10} X_{i}, X_{1}, \ldots, X_{10}$ are i.i.d. from $b(1,0.5)$.
Y approximately follows $N(n p, n p(1-p))=N(5,2.5)$

$$
\begin{aligned}
P(3 \leq Y & <6)=\sum_{k=3}^{5} P(Y=k)=\sum_{k=3}^{5} P\left(k-\frac{1}{2}<Y<k+\frac{1}{2}\right)=P(2.5<Y<5.5) \\
& =P\left(\frac{2.5-5}{\sqrt{2.5}}<\frac{Y-5}{\sqrt{2.5}}<\frac{5.5-5}{\sqrt{2.5}}\right)=\Phi(0.316)-\Phi(-1.581)=0.6240-0.0570=0.5670
\end{aligned}
$$

Chapter 5 Distributions of Functions of random variables

Section 5.8 Chebyshev's Inequality and convergence in probability

> Motivation
Given the mean and variance of a distribution, it's possible to have a rough estimate of probability of certain events [Some more evidence for why Sample mean \bar{X} is a good estimate of mean]

Theorem 5.8-1 [Chebyshev's Inequality]

If the $\mathrm{RV} X$ has a mean μ and variance σ^{2}, then, for every $k \geq 1$,

$$
P(|X-\mu| \geq k \sigma) \leq \frac{1}{k^{2}}
$$

Proof.

Consider the discrete $R V$ case. Let $f(x): \bar{S} \rightarrow[0,1]$ be the $p m f$ of X.
Then $\sigma^{2}=E\left[(X-\mu)^{2}\right]=\sum_{x \in \bar{S}}(x-\mu)^{2} f(x)=\sum_{x \in A}(x-\mu)^{2} f(x)+\sum_{x \in \bar{S}-A}(x-\mu)^{2} f(x)$ where $A=\{x \in \bar{S}| | X-\mu \mid \geq k \sigma\}$.
Since $\sum_{x \in \bar{S}-A}(x-\mu)^{2} f(x) \geq 0$, we derive

$$
\sigma^{2} \geq \sum_{x \in A}(x-\mu)^{2} f(x) \geq k^{2} \sigma^{2} \sum_{x \in A} f(x)=k^{2} \sigma^{2} P(X \in A) .
$$

Corollary [Page 222]

$$
\text { If } \varepsilon=k \sigma, \text { then } P(|X-\mu| \geq \varepsilon) \leq \frac{\sigma^{2}}{\varepsilon^{2}}
$$

$>$ Graphical interpretation

This links to the interpretation of σ^{2}, a measure of dispersion of X. Éxample 1 "[Page $2 \overline{22}$]
Let X be a $R V$ with mean 25 and varance 16 .

Note that the distribution of X is arbitrary!

Compute the loweer bound for $P(17<X<33)$ and upper bound for $P(|X-25| \geq 12)$.

Example 1 [Page 222] (c.n.t.)

Let X be a $R V$ with mean 25 and varance 16 .
Compute the loweer bound for $P(17<X<33)$ and upper bound for $P(|X-25| \geq 12)$. Solution:
Lower bound for $P(17<X<33)$:

$$
P(17<X<33)=P(|X-\mu|<2 \sigma)=1-P(|X-\mu| \geq 2 \sigma) \geq 1-\frac{1}{4}
$$

Upper bound for $P(|X-25| \geq 12)=P(|X-\mu| \geq 3 \sigma) \leq \frac{1}{9}$.

Definition 5.8-1 [Convergence in Probability]

A sequence of RVs $\left\{Y_{n}\right\}_{n=1}^{\infty}$ is said to connverge in probability to a constant μ, if for $\forall \varepsilon>0, \lim _{n \rightarrow \infty} P\left(\left|Y_{n}-\mu\right| \geq \varepsilon\right)=0$.

Theorem 5.8-2 [Law of Large Number]

Let \bar{X} be the sample mean of a random sample $\mathrm{X}_{1}, X_{2}, \ldots, X_{n}$ from a distribution with mean μ and finite variance σ^{2}, \bar{X} converges in probability to μ. In other words, $\lim _{n \rightarrow \infty} P\left(\left|\frac{1}{n} \sum_{i=1}^{n} X_{i}-\mu\right| \geq \varepsilon\right)=0$.

Proof of theorem 5.8-2

Proof. Note that $E(\bar{X})=\mu, \operatorname{Var}(\bar{X})=\frac{1}{n} \sigma^{2}$.
By corollary 5.8-1, for $\forall \varepsilon>0$, we have

$$
P(|\bar{X}-\mu| \geq \varepsilon) \leq \frac{1}{\varepsilon^{2}} \cdot\left(\frac{1}{n} \sigma^{2}\right)
$$

Taking limits both sides yield:

$$
0 \leq \lim _{n \rightarrow \infty} P(|\bar{X}-\mu| \geq \varepsilon) \leq \lim _{n \rightarrow \infty} \frac{1}{\varepsilon^{2}} \cdot\left(\frac{1}{n} \sigma^{2}\right)=0 \Rightarrow \lim _{n \rightarrow \infty} P(|\bar{X}-\mu| \geq \varepsilon)=0
$$

or equivalently,

$$
\lim _{n \rightarrow \infty} P(|\bar{X}-\mu|<\varepsilon)=1
$$

Chapter 5 Distributions of Functions of random variables

Section 5.9 Limiting Moment Generating Functions

> Binomial distribution can be approximated by the Poisson distribution when n is large and pis fairly small.

The $m g f$ of $b(n, p)$ is $M(t)=\left(1-p+p e^{t}\right)^{n}$.
Consistent

Let $n p=\lambda$, we have
with
experiment

$$
\begin{aligned}
M(t)= & \left(1-\frac{\lambda}{n}+\frac{\lambda}{n} e^{t}\right)^{n} \\
& =\left[1+\frac{\lambda\left(e^{t}-1\right)}{n}\right]^{n}
\end{aligned}
$$

Since $\lim _{n \rightarrow \infty}\left(1+\frac{b}{n}\right)^{n}=e^{b}$, we have

Examplé $[\overline{P 2} 27]$
Let $Y \sim b(50,1 / 25) . \quad Q$: Compute $P(Y \leq 1)$.

Example1 (c.n.t.)
Let $Y \sim b(50,1 / 25) . \quad Q$: Compute $P(Y \leq 1)$.
Solution:
(1)By definition, $P(Y \leq 1)=P(Y=0)+P(Y=1)=\left(\frac{24}{25}\right)^{50}+50\left(\frac{1}{25}\right)\left(\frac{24}{25}\right)^{2}=0.4$.
(2) By approximation with Poisson distribution with $\lambda=n p=2$,

$$
P(Y \leq 1) \approx \frac{2^{0} e^{-2}}{0!}+\frac{2^{1} e^{-2}}{1!}=3 e^{-2}=0.406
$$

Theorem 5.9-1 [convergence of mgfs]

Let $\left\{M_{n}(t)\right\}_{n=1}^{\infty}$ be a sequence of $m g f s$ for t in an open interval around 0 . If $\lim _{n \rightarrow \infty} M_{n}(t)=M(t)$, then the limit of the corresponding distributions must be the distribution corresponding to $M(t)$.
That is, convergence, for $|t|<h$, of mgfs to am mgf implies convergence of cdfs (thus implies the convergence of the distribution.)

- The proof of theorem 5.9-1 relies on the theory of Laplace transforms, which is omitted due to the beyond of the scope of this course.
- Then we show the proof of CLT by using theorem 5.9-1:

Theorem 5.6-1 (Central Limit Theorem))

If \bar{X} is the sample mean of a random sample $X_{1}, X_{2}, \ldots, X_{n}$ of size n from a distribution with finite mean μ and finite positive variance σ^{2}, then the limit of the distribution of

$$
\frac{\bar{X}-\mu}{\sigma / \sqrt{n}}=\frac{\sqrt{n}}{\sigma}(\bar{X}-\mu) \sim N(0,1) \quad \text { as } n \rightarrow \infty
$$

equaivalently, $\bar{X} \sim N\left(\mu, \frac{1}{n} \sigma^{2}\right)$ when $n \rightarrow \infty$. $\Leftrightarrow \sum_{i=1}^{n} X_{i} \sim N\left(n \mu, n \sigma^{2}\right)$ when $n \rightarrow \infty$. Proof.

$$
\begin{aligned}
E\left(e^{t W}\right) & =E\left\{\exp \left[\frac{t}{\sqrt{n} \sigma}\left(\sum_{i=1}^{n} X_{i}-n \mu\right)\right]\right\} \\
& =E\left\{\exp \left[\frac{t}{\sqrt{n}} \cdot \frac{X_{1}-\mu}{\sigma}\right] \cdots \exp \left[\frac{t}{\sqrt{n}} \cdot \frac{X_{n}-\mu}{\sigma}\right]\right\} \\
& =E\left\{\exp \left[\frac{t}{\sqrt{n}} \cdot \frac{X_{1}-\mu}{\sigma}\right]\right\} \cdots E\left\{\exp \left[\frac{t}{\sqrt{n}} \cdot \frac{X_{n}-\mu}{\sigma}\right]\right\}
\end{aligned}
$$

Proof of theorem 5.6-1 (c.n.t.)

Let $m(t)=E\left\{\exp \left(t \frac{X_{i}-\mu}{\sigma}\right)\right\},|t|<h$, be the common mgf for $Z_{i}=\frac{X_{i}-\mu}{\sigma}, i=1, \ldots, n$.
Thus $E\left(e^{t w}\right)=\left[m\left(\frac{t}{\sqrt{n}}\right)\right]^{n}$.
Since $Z_{i} \sim N(0,1), m(0)=1, m^{\prime}(0)=0, m^{\prime \prime}(0)=1$.
By using Taylor expansion, there exists $c \in[0, t]$ such that

$$
\begin{aligned}
m(t)= & m(0)+m^{\prime}(0) t+\frac{1}{2} m^{\prime \prime}(c) t^{2}=1+\frac{1}{2} m^{\prime \prime}(c) t^{2} \\
& =1+\frac{1}{2} t^{2}+\frac{1}{2} t^{2}\left[m^{\prime \prime}(c)-1\right]
\end{aligned}
$$

$E\left(e^{t w}\right)=\left[m\left(\frac{t}{\sqrt{n}}\right)\right]^{n}=\left\{1+\frac{1}{2} \frac{t^{2}}{n}+\frac{1}{2} \frac{t^{2}}{n}\left[m^{\prime \prime}(c)-1\right]\right\}^{n},|t|<\sqrt{n} h . \quad c \in\left[0, \frac{t}{\sqrt{n}}\right]$
Since $m^{\prime \prime}(t)$ is continuous at $t=0$ and $c \rightarrow 0$ as $n \rightarrow \infty$, we have

$$
\lim _{n \rightarrow \infty} m^{\prime \prime}(c)-1=1-1=0
$$

Proof of theorem 5.6-1 (c.n.t.)

Since $\lim _{n \rightarrow \infty}\left(1+\frac{b}{n}\right)^{n}=e^{b}$, we have

$$
\begin{aligned}
\lim _{n \rightarrow \infty} E\left(e^{t w}\right)= & \lim _{n \rightarrow \infty}\left\{1+\frac{1}{2} \frac{t^{2}}{n}+\frac{1}{2} \frac{t^{2}}{n}\left[m^{\prime \prime}(c)-1\right]\right\}^{n} \\
& =\lim _{n \rightarrow \infty}\left\{1+\frac{1}{2} \frac{t^{2}}{n}\right\}^{n}=e^{t^{2} / 2} .
\end{aligned}
$$

By theorem 5.9-1, $W=\frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \sim N(0,1)$.

