
Chapter 5 Distributions of Functions of random variables
Section 5.7 Approximations for discrete distributions
¾Motivation: CLT applies to discrete distributions as well. In this 

section, we illustrate how the normal distribution can be used to 
approximate probabilities for discrete distributions.

• Histogram for discrete distribution
> @Consider a discrete distribution with pmf ( ) : 0,1  with {0,1, }.

1 1Then the histogram for the discrete distribution is ( ) ( ),  , .
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Then 𝑃(𝑋 = 𝑘) is the area of 
the rectangle with a height of 
𝑃(𝑋 = 𝑘) and a base of 
length 1 centered at k.



¾Half with correction for continuity.
• When using CLT and normal distribution to approximate probabilities for 

discrete distributions, we have 

1 1( ) ( )
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pmf f(x) 

[hard to derive] Approximated by the normal 
distribution according to CLT
[easier to derive]

¾Binomial distribution
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Let , , ,  be a random sample of size n from Bernoulli distribution (1, ),  

whose mean is  and variance (1 ). Then ~ ( , ) with mean  

and variance (1 ).
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By ,   is (0,1) as .
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For   ,   is approximately ( , (1 )),
and probabilities for ( , ) can be approxiamted by ( , (1 )).
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¾Binomial distribution (c.n.t.)
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Φ(⋅) is the cdf
for 𝑁(0,1)

¾Quiz
Assume ~ (10,0.5). : compute (3 6).Y b Q P Yd �

The graph 
for pmf
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By definition, (3 6) ( ) ( )

By ,  ,  , ,  are i.i.d. from (1,0.5).

 approximately follows ( , (1 )) (5,2.5)
1 1(3 6) ( ) ( ) (2.5
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¾Quiz

Assume ~ (10,0.5). : compute (3 6).Y b Q P Yd �



Chapter 5 Distributions of Functions of random variables
Section 5.8 Chebyshev’s Inequality and convergence in probability

Theorem 5.8-1 [Chebyshev’s Inequality]
2If the RV  has a mean  and variance , then, for every 1,X kP V t
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Consider the discrete  case. Let ( ) : 0,1  be the  of .

Then ( ) ( ) ( ) ( ) ( ) ( ) ( )

where .

Since ( ) ( ) 0,  we derive
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¾ Motivation
Given the mean and variance of a distribution, it’s possible to have 
a rough estimate of probability of certain events [Some more 
evidence for why Sample mean 𝑋 is a good estimate of mean]



Corollary [Page 222]
2

2If ,  then ( ) ,k P X VH V P H
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¾Graphical interpretation
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𝑃(|𝑋 − 𝜇| ≥ 𝜀) ≤
𝜎
𝜀𝑃(|𝑋 − 𝜇| ≥ 𝑘𝜎) ≤

1
𝑘

2This links to the interpretation of ,  a measure of dispersion of .XV
Example 1 [Page 222]
Let  be a  with mean 25 and varance 16.
Compute the loweer bound for (17 33) and upper bound for ( 25 12).

X RV
P X P X� � � t

Note that the distribution of X is 
arbitrary!



Example 1 [Page 222] (c.n.t.)
Let  be a  with mean 25 and varance 16.
Compute the loweer bound for (17 33) and upper bound for ( 25 12).

X RV
P X P X� � � t

:
Lower bound for (17 33) :

1(17 33) ( 2 ) 1 ( 2 ) 1 .
4

1Upper bound for ( 25 12) ( 3 ) .
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Definition 5.8-1[Convergence in Probability]
^ ` 1

A sequence of RVs  is said to connverge in probability to a 

constant , if for >0, lim ( ) 0.
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Theorem 5.8-2 [Law of Large Number]
1 2
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Let  be the sample mean of a random sample X , , ,  from a 

distribution with mean  and finite variance ,  to .
1In other words, lim ( ) 0.

n

n

in i

X X X

X

P X
n

P V P

P H
of

 

� t  ¦

 converges in probability 



Proof of theorem 5.8-2
2

2
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1. Note that ( ) ,  ( ) .

By corollary 5.8-1, for 0,  we have 
1 1( )

Taking limits both sides yield:
1 10 lim ( ) lim 0 lim ( ) 0.
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Chapter 5 Distributions of Functions of random variables
Section 5.9 Limiting Moment Generating Functions

¾ Binomial distribution can be approximated by the Poisson 
distribution when n is large and p is fairly small.

Consistent 
with 
experiment

( 1)

The  of ( , ) is ( ) (1 ) .
Let ,  we have 
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 mgf for Poisson 
distribution

Example1 [P227]
Let ~ (50,1 25). : Compute ( 1).Y b Q P Y d



Example1 (c.n.t.)
Let ~ (50,1 25). : Compute ( 1).Y b Q P Y d

50 2

0 2 1 2
2

:

24 1 24By definition, ( 1) ( 0) ( 1) 50 0.4.
25 25 25

By approximation with Poisson distribution with 2,
2 2( 1) 3 0.406.
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Theorem 5.9-1 [convergence of mgfs]

That is, convergence, for 𝑡 < ℎ, of mgfs to am mgf implies 
convergence of cdfs (thus implies the convergence of the 
distribution.)

^ ` 1
Let ( )  be a sequence of  for  in an open interval around 0. If 

lim ( ) ( ),  then the limit of the corresponding distributions must be the 

distribution corresponding to ( ).
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• The proof of theorem 5.9-1 relies on the theory of Laplace transforms, 
which is omitted due to the beyond of the scope of this course.

• Then we show the proof of CLT by using theorem 5.9-1:

Theorem 5.6-1 (Central Limit Theorem))
1 2

2

If  is the sample mean of a random sample , , ,  of

size n from a distribution with finite mean  and finite positive variance ,
then the limit of the distribution of

( ) (0,1) as 
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Proof of theorem 5.6-1 (c.n.t.)

> @

Let ( ) exp ,  ,  be the common mgf for ,  1, , .

Thus ( ) .

Since ~ (0,1),  (0) 1,  (0) 0,  (0) 1.
By using Taylor expansion, there exists 0,  such
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Since lim(1 ) ,  we have

1 1lim ( ) lim 1 ( ) 1
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1lim 1 .
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By theorem 5.9-1, ~ (0,1).
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Proof of theorem 5.6-1 (c.n.t.)

mgf of 
N(0,1)


