Chapter 5 Distributions of Functions of random variables

Section 5.1 Functions of one random variable
Question : Let X be a RV of either discrete or continuous type. Consider a function
of X, say, Y = u(X). Then Y is also be a RV and has its pmf or pdf.

How to compute the pmf or pdf ?
» Discrete case:
Let X be a discrete RV with pmff(x): S —[0,1],and ¥ =u(X) be a one-to-one

transformation with inverse X = v(Y). Then the pmf of Y i1s

g(Y)=P(Y = y) = P(u(x) = y) = P(x = v(y)) for y € u(S)

Examplel (Page 177)
Let X has a Possion distribution with A =4, so it has the pmf

f(x)= , x=0,1,2,...

If Y=V X, what's the pmf g(y) of Y ?



Examplel (c.n.t.)
SOZMtiOI”lIYZM(X)ZﬁDXZV(Y)_YZ

g(y)=P(Y = y) = P(X = y*) = f(y)—4yy, V=01

» Continuous case:
Let X be a continuous-type RV with pdf f'(x):[c,,c, | —[0,+x)
«Casel:Y =u(X) is a continuous increasing function of X with inverse function
=v(Y). To calculate the pdf of ¥, say, g(y),

(DDetermine the range of Y : Since Y = u(X) is continuousand increasing,
Letd, =u(c)) and d, =u(c,). Thend, <Y <d,

@G(y) = P(Y < y) = Plu(X) < y] = P[X <v(»)]= [ " f()dx

; L
G & g(y=G()-=

d[v(»] dy d[v(»)] o [VO)]V'(»)
f[ (y )] [V(y)] f[ (v )]‘ [V;J’)] d<y<d,

v(y)
dG(y) d[v(»)] U / (x)dx} d[v(»)]




«Case2:Y =u(X) is a continuous decreasing function of X with inverse function
=v(Y). To calculate the pdf of Y, say, g(»),

(DDetermine the range of ¥ : Since Y =u(.X) is continuousand increasing,
N Letd, =u(c,) and d, =u(c,). Thend, <Y <d,
@G(y)=PY <y)= P[u(X) < y] = P[X > v(y)] = l—P[X < v(y)]

=1- LV(y) f(x)dx

! v(»)

’ > f(x)dx

c, c, o dG(y) d [V(y) [ -[ }d [V(Y)] :

g =G'(y)= o @ O] dy - O] )
d d
-] ["(y)] = v >]‘ LDy <y <
o . . . . ~ d[v(y)]
ummary : In both increasing or decreasing cases, g(y) = f [v( y)] |

Example2 (Page 174)

Let X has the pdf f(x) =3(1-x"), 0<x<1. Consider ¥ =(1-X)’
Calculate the pdf of Y, g(y).



Y =u(X)=(1-X)" — continuous decreasing function.
Inverse function: X =v(Y)=1-Y"".
(DDetermine the range of Y : Since 0 < x <1, we have 0< y <1.

d[v(y)] dv»] _ 1
dy dy 3 d

where

@g(»)=fv(»)]

=3[1-(- "] |2y, O<y<l. Y~U(0,).

Theorem 5.1-1 [Pagel75. random number generator]

Let Y ~U(0, 1). F(x) have the properties of a cdf of continuous
type with F(a) =0, F(b) = 1, and suppose that F(x) is strictly
increasing such that F(x):(a, b)—[0,1] where a and b could be —o©o
and oo respectively. Then X = F~1(Y) is a continuous-type RV
with cdf F(x).

Proof . Idea:We need to show P(X <x) = F(x).
P(X<x)=P(F'(Y)<x)=P(Y<F(x)) as {y\F—l(y) < x} =yly < F)l.

O<y<«l

Note that Y ~U(0,1), P(Y <y) = on ldz = y. Therefore,
P(X<x)=PY <F(x)=F(x) < Complete the proof.



Remark : Random number generator from arbitary distribution
(@ gnerator a random number from U (0,1) @Take x = F ' ().

Theorem 5.1-2

Let X have the cdf F(x) of the continuous type that 1s strictly
increasing on the support a <x < b. Then the random variable Y,
defined by Y = F(X), has a distribution that 1s U(0, 1).

Proof . Since F(a) =0 and F(b) =1, and F'(x) is strictly increasing,

Y = F(X) with range S, = (0,1).

Consider the cdf of Y: P(Y < y)= P(F(x) < y), y€(0,1)

Since F'(x) 1s strictly increasing,

{F(X) <y} is equivalent to {X < F~'(y)}; thus,

P(Y<y) = P[F(X)<y]=P(X <F(y))

Since P(X <x) = F(x), we have

P(Y<y)= F[F'(»)]=y, 0<y <,

which is the cdf of a U(0, 1) random variable.



» What if the Y=u(X) is not one-to-one

Example3

1
z(1+x*)
Let Y =X*. Find the pdfof . S, =[0,+o).

Let the cdf of Y be G(y). Then G(y)=P(Y <y), ye[0,+x).

:P(XzSy):P(—\/;SXS\/;):J‘_(%f(x)dx

Jy 1 NEE
- J_ﬁ d

Assume X is a continuous RV with pdf /(x) =

X € (—00, +0).

s+ Tz
co 2 11

(DFind the cdf G(y) = P(Y < y)
@Get the pdf g(y) = G'(»)



Chapter 5

Distributions of Functions of random variables

Section 5.2 Several Random Variables (Multivariate RVs)

» Random experiment : Any procedure that can be repeated infinitely times
and has more than one possible outcomes

» Performing a random experiment one time, the outcome may contain:

* One thing of interest  univariate RV: X, f(x), joint pmf or pdf

* A tuple of two things of interest bivariate RV: (X,Y),f(x,y), pmf or pdf

* A tuple of several things of interest Multivariate RV: (Xq, X5, ... ... , X7)

The corresponding joint pmf f'(x,, x,,...,x,) with domain S

Discrete type

Continuous type

@F (x,,%y,...,x,) >0 OF (x,,%y,...,x,) >0
@ Y fGuxnx)=1 @[ (% x, ) dx, =1

(x,%,...,%, )ES

QP((x,%,,....x,) e A= > f(x,%,...,x,)

(X1,X5 5.5, )EA

@P((x %5 rx,) € A) = [+ [ [ (%0, )y, - d,



A random experiment consists of performing a random experiment
several times independently. For this case, the joint pmf or pdf is easier
to be obtained.

Example 1
Roll a fair die twice let X, denote the point of the first roll
and X, denote the point of the second roll.

: 1
For X, =x,, its pmf f,(x,) = P(X, = X)) =% x,=12,...,6

: 1
For X, =x,, its pmf f,(x,) = P(X, =x,) = x,=12,...,6

Assuming the two experiments (X, and X)) ar independent. Then for X, = x,, X, = x,,
the joint pmf of X, and X, is f(x,,x,) = P(X, =x, X, =x,) = f,(x) f5(x,).

Repeat an experiment twice and independently leads to two
independent RVs from the same distribution



Then RVs X, X,,..., X, are said to be mutually independent if
J(x,%0,..0,x,) = f,(x)f,(x,)-- f, (x,), where f(x,,x,,...,x,) 1s the
joint pmf or pdf of x, x,,...,x,, and f,(x,) forn=1,2,...,n 1s the

marginal pmf or pdf of X,. In this case suppose the pmf or pdfis /(x,), i=1,...,n
—> The joint pdf or pmf is given by

_ Q%) = () £ (x,)

Repeat an experiment n times and independently leads to #
independent and identically distributed RVs X4, X5, ... ... , X

Example 2 [Page 190] “independent
Let X, X,, X, be a random samle of size 3 from a distribution and identically
distributed” is

with pdf f(x)=e™, xe€(0,+0) often be
The joint pdf g(x,,%,,%,) = f(x)f (x,) f (%) = e e e ™. written as L1.d.
Question : PO<x <1, 2<x,<4,3<x,<7) x,€(0,+0), i=1,2,3
Solution : PO<x <1, 2<x,<4, 3<x,<7)

=PO0<x, <)P2<x,<4)PB<x,<7)= J: e "dx, Jj e “dx, J: e “dx,



Forn RVs, X, X,,..., X, where the joint pmf or pdf is represented by

f(x,x,,...,x,), (x,%,,...,x,)€S. For afunction u(x,, x,,...,x,),

its mathematical expectation 1s given by

Z _u(xl,xz,...,xn)f(xl,xzau.,xn) Discrete RVs
E[u(xlg.xz,...,xn)]: (x1,%p 5., %, )€S
I"'Igu(xlaxza---axn)f(xpxza---,xn)dxl .--dx ~Continuous RVs

In case where the n RVs X, X,,..., X are independent, f (x,,x,,...,x,) = fy (X)) fy (x,)

Mathematical Expectation 1s a linear operator

The next theorem proves that the expected value of the product of functions of
n independent random variables 1s the product of their expected values.

Assume X, X,,..., X, areindependent RVsand Y =u, (X, )u,(X,) --u (X))
If E[u,(X,)] i=12,...,n exist. Then

E(Y)= E[“l(Xl)uz(Xz)'“un(Xn)] :E[ul(Xl)][uz(Xz)]'"[un(Xn)]



Proof of theorem 5.2-1

Proof. In the discrete case(the continuous case is left as an exercise)

E[ul(Xl)uZ(X2)un(Xn)] = Z _”1(x1)”2(x2)'”un(xn)f(xpxza“-axn)

(X],X5 5.5, )ES

—ZZ Zu (o )u,y (x,) - -u, (x, )le(x) fX (x,)
= Zu(xl)f(xl)zu('xz)f(xz) ZM(X )f(x,)
:E[MI(XI)][MZ(XZ)][un(Xn)]

We now prove an important theorem about the mean and
the variance of a linear combination of random variables.

Theorem 5.2-2

Assume X, X,,..., X are independent RVs with respective mean u,,u,, - u

n

n
. 2 2 .
and variances oy ,...,o,.Consider ¥ = ZaiX . where a,,...,a, are real constants.

Then E(Y) = Zal u, Var(Y) = Zafaz
i=l1



Proof of theorem 5.2-2

Proof . By the theorem
n n n we discussed
E(Y):E(ZaiXi):ZaiE(Xi):Zaiui before
Var(Y):E{[Y EY)] } Za,X, Zaz”z = Za (X, —u, )} }
n o n Whenl—
:E{;;aa()( —u, (X, —u;) (X—u)(X . )] 52
= 2 al.zal.z. When i # ]
Example 3 ELOY, (X, =) |=0

When X, X,,..., X, are independent and identically distributed RV

: . ) . ample mean
with mean u and variance o°. Consider| X = Z— X.— >
i=1 1

E()_():iluzu. Var(X) Z( j :G—z.

i=1 n i=1




Any function of the sample X, X,,..., X, that don't have any unknown parameters

1s called a statistic.

Here X is a statistic and also an estimator of mean y7

Another important statistic is the sample variance
| —
§P=—> (X,-X)’
n—1i

and later we find that S* is an estimator of o.



Chapter 5 Distributions of Functions of random variables

Section 5.4 Moment generating function technique

» Mgf, if exists, uniquely determines the distribution of the RV.
Therefore, the distribution of a RV can be equivalently found via its mgf.

Example 1
Let X, and X, be independent RV with uniform distribution on {1,2,3,4}.
Let Y = X, + X,. What's the distributin of ¥, 1.e., pmfof ¥ ?

Solution :

f(x):l, x=1,23,4=M,(t)=E(") :if(x)etx :%ietx.

M, (t) = E(e’Y [e’(X1+X2 ] E(e™)E(e™?) by theorem 5.3-1 on page 191.
4 4
=1 x=1
REpTN 2 3z_|__ 4t+_ 5t+ie6t+£e7t+ie&.

16 16 16 16 16 16 16
= The pmf of Y, g(y)=P(Y = y) = the coefficient of ", y=2,3,...,8.



Theorem 5.4-1
ItX,X,,...,X, are independent RVs with respective mgfs M, (¢)

where — /A <t < h. for positive number £, i =1,2,...,n. Then the mgf of

Y:;ai)(i is M, (t) :I;IMXI_ (af), where —h, <t<h,i=12,...n.

Proof .
MY (t) = E(etY) = E{exp(tz ain_)} — E(etale o2 %2 ---em"X”)
i=l
= E(e"™)-.- E(e"™") < By theorem 5.3-1, page 191.

“T[M, (ap) M, (1) = E@")

A corollary follows immediately, and it will be used in some
important examples.



Corollary for Theorem 5.4-1
If X,,X,,...,X, 1s arandom sample of size n from a distribution with mgf M(t),

where —h <t < h, then
(a) Themgfof Y => X, is M, () =] [M()=[M®)]", —h<t<h.
i=1 i=1

(b) The mgf of }zzl){i is M (1) = f[M(lz) = [M(i)} _h<ton
n e n n n

i=1

n
b

Example 2 (Page 197)
Let X|,X,,...,X, denote the outcome of n Bernoulli trials. Each
with probability of success p. The mgf of X, i=1,2,...,n1s
M(t)=1-p+pe', —oo<t<on,
Now let ¥ = ZX .» Now compute the mgf of Y. Figure out the distribution of Y.

i=1
Solution :

M, =TT0-p+pe)=0-p+pe'y.

—> Y ~b(n, p)!!



Theorem 5.4-2
IfX,,X,,...,X, are independent chi-square RVs with 7,,7,,...,r
degrees of freedom, respectively.
Then Y =X, + X, +--+ X is y°(r;+7,++71).
Proof .
For each X, 1ts mgf is given by
M, (1)=(1-20)"", i=l...,n.  t<-—.
Hence by the corollary for theorem 5.4-1, we have

n 1
(et
M,@)=]]M, @®)=1-2) >
i=1

=Y~ (447

Theorem 3.3-2

If the random variable X is N(u,0°), o~ >0, then the random variable

2
y- & 02“) = 7% is (D).



Proof of theorem 3.3-2

Obviously, Z = X-u is N(0,1). Since V = Z?, the cdf for V is given by

G(v):P(; <y)=P(—v < Z <), y>0.
— J._@ \/;_ﬂe_zz/ dz = 2foﬁ \/;_ﬂe_zz/ *dz
=2 '[Ov ﬁe‘y d \/; <— Changing of variable with z = \/;
= fov \/;ﬂiyey 2dy.
By fundamental theorem of Calculus, its pdf is given by
g)=G'(v) = 217zv e’ = ﬁvwlew2 =7 Fl(l/2) Ve 0<v<o

Hence V follows y”(1).

The next two corollaries combine and extend the results of Theorems 3.3-2 and
5.4-2 and give one interpretation of degrees of freedom.



Corollary

Let Z,,...,Z, have standard normal distributions, N(0,1). If Z,,...

are independent, then W = Z> + Z; +---+Z_ ~ y°(n).

Proof. Since Z, ~ N(0,1), Z7 ~ x*(1). i=12,...,n.
By theorem 5.4-2 and 3.3-2, we have W ~ y*(n).

Corollary
IfX,,..., X areindependent normal RVs with X, ~ N(u.,0)),

i =1,...,n. Then the distribution of

2
W:Z(Xi _ﬂi]
i=l1

O.

l

is y*(n).
. ) X —u
Proof . Since X; ~ N(y;,0;), we have ———~ N(0,1).

i

X —u :
=Z = LT N(0,1). And Z,,...,Z, are independent, by the

O.

1

above corollary, we have W ~ y”(n).

Z

n



