Chapter 5 Distributions of Functions of random variables

Section 5.1 Functions of one random variable

Question : Let X be a RV of either discrete or continuous type. Consider a function of X, say, $Y=u(X)$. Then Y is also be a RV and has its $p m f$ or $p d f$.
How to compute the $p m f$ or $p d f$?
$>$ Discrete case:
Let X be a discrete RV with $\operatorname{pmf} f(x): \bar{S} \rightarrow[0,1]$, and $Y=u(X)$ be a one-to-one transformation with inverse $X=v(Y)$. Then the pmf of Y is
$g(Y)=P(Y=y)=P(u(x)=y)=P(x=v(y))$ for $y \in u(\bar{S})$
since $P(X=x)=f(x)$, we have $g(y)=f[v(y)]$ for $y \in u(\bar{S})$.
Example1 (Page 177)
Let X has a Possion distribution with $\lambda=4$, so it has the pmf

$$
f(x)=\frac{4^{-x} e^{-4}}{x!}, \quad x=0,1,2, \ldots
$$

If $\mathrm{Y}=\sqrt{X}$, what's the pmf $g(y)$ of Y ?

Example1 (c.n.t.)

Solution: $Y=u(X)=\sqrt{X} \Rightarrow X=v(Y)=Y^{2}$
$g(y)=P(Y=y)=P\left(X=y^{2}\right)=f\left(y^{2}\right)=\frac{4^{y^{2}} e^{-4}}{\left(y^{2}\right)!}, \quad y=0, \sqrt{1}, \sqrt{2}, \ldots$
Continuous case:
Let X be a continuous-type RV with $\operatorname{pdf} f(x):\left[c_{1}, c_{2}\right] \rightarrow[0,+\infty)$

- Case 1: $Y=u(X)$ is a continuous increasing function of X with inverse function $X=v(Y)$. To calculate the pdf of Y, say, $g(y)$,

Let $d_{1}=u\left(c_{1}\right)$ and $d_{2}=u\left(c_{2}\right)$. Then $d_{1} \leq Y \leq d_{2}$
(2) $G(y)=P(Y \leq y)=P[u(X) \leq y]=P[X \leq v(y)]=\int_{c_{1}}^{v(y)} f(x) d x$
$\vec{g}(y)=G^{\prime}(y)=\frac{d G(y)}{d[v(y)]} \frac{d[v(y)]}{d y}=\frac{d\left[\int_{c_{1}}^{v(y)} f(x) d x\right]}{d[v(y)]} \frac{d[v(y)]}{d y}=f[v(y)] v^{\prime}(y)$

$$
=f[v(y)] \frac{d[v(y)]}{d y}=f[v(y)]\left|\frac{d[v(y)]}{d y}\right| . \quad d_{1} \leq y \leq d_{2}
$$

- Case 2: $Y=u(X)$ is a continuous decreasing function of X with inverse function $X=v(Y)$. To calculate the pdf of Y, say, $g(y)$,
(1)Determine the range of Y : Since $Y=u(X)$ is continuousand increasing, Let $d_{1}=u\left(c_{1}\right)$ and $d_{2}=u\left(c_{2}\right)$. Then $d_{2} \leq Y \leq d_{1}$

$$
=-f[v(y)] \frac{d[v(y)]}{d y}=f[v(y)]\left|\frac{d[v(y)]}{d y}\right| . \quad d_{2} \leq y \leq d_{1}
$$

Summary : In both increasing or decreasing cases, $g(y)=f[v(y)]\left|\frac{d[v(y)]}{d y}\right|$.

Example2 (Page 174)

Let X has the $\operatorname{pdf} f(x)=3\left(1-x^{2}\right), 0<x<1$. Consider $Y=(1-X)^{3}$
Calculate the $p d f$ of $Y, g(y)$.
$Y=u(X)=(1-X)^{3} \rightarrow$ continuous decreasing function.
Inverse function: $X=v(Y)=1-Y^{1 / 3}$.
(1)Determine the range of Y : Since $0<x<1$, we have $0<y<1$.
(2) $g(y)=f[v(y)]\left|\frac{d[v(y)]}{d y}\right|$ where $\frac{d[v(y)]}{d y}=-\frac{1}{3} y^{-2 / 3}$

$$
=3\left[1-\left(1-y^{1 / 3}\right)\right]^{2}\left|-\frac{1}{3} y^{-2 / 3}\right|=1, \quad 0<y<1 . \quad Y \sim U(0,1) .
$$

Theorem 5.1-1 [Page175. random number generator]
Let $Y \sim U(0,1) . F(x)$ have the properties of a cdf of continuous type with $F(a)=0, F(b)=1$, and suppose that $F(x)$ is strictly increasing such that $F(x):(a, b) \rightarrow[0,1]$ where a and b could be $-\infty$ and ∞ respectively. Then $X=F^{-1}(Y)$ is a continuous-type RV with cdf $F(x)$.

Proof. Idea:We need to show $P(X \leq x)=F(x)$.

$$
P(X \leq x)=P\left(F^{-1}(Y) \leq x\right)=P(Y \leq F(x)) \quad \text { as }\left\{y \mid F^{-1}(y) \leq x\right\}=\{y \mid y \leq F(x)\} .
$$

Note that $Y \sim U(0,1), P(Y \leq y) \stackrel{0<y<1}{=} \int_{0}^{y} 1 d z=y$. Therefore,

$$
P(X \leq x)=P(Y \leq F(x))=F(x) \quad \leftarrow \text { Complete the proof. }
$$

Remark : Random number generator from arbitary distribution
(1) gnerator a random number from $U(0,1)$
(2) Take $x=F^{-1}(y)$.

Theorem 5.1-2

Let X have the cdf $F(x)$ of the continuous type that is strictly increasing on the support $a<x<b$. Then the random variable Y, defined by $Y=F(X)$, has a distribution that is $U(0,1)$.
Proof. Since $F(a)=0$ and $F(b)=1$, and $F(x)$ is strictly increasing,
$Y=F(X)$ with range $\overline{S_{Y}}=(0,1)$.
Consider the cdf of $Y: P(Y \leq y)=P(F(x) \leq y), \quad y \in(0,1)$
Since $F(x)$ is strictly increasing,
$\{F(X) \leq y\}$ is equivalent to $\left\{X \leq F^{-1}(y)\right\}$; thus,
$P(Y \leq y)=P[F(X) \leq y]=P\left(X \leq F^{-1}(y)\right)$
Since $P(X \leq x)=F(x)$, we have
$P(Y \leq y)=F\left[F^{-1}(y)\right]=y, 0<y<1$,
which is the cdf of a $U(0,1)$ random variable.
$>$ What if the $\mathrm{Y}=\mathrm{u}(\mathrm{X})$ is not one-to-one

Example3

Assume X is a continuous $R V$ with $\operatorname{pdf} f(x)=\frac{1}{\pi\left(1+x^{2}\right)} . \quad x \in(-\infty,+\infty)$.
Let $Y=X^{2} . \quad$ Find the pdf of $Y . \overline{S_{Y}}=[0,+\infty)$.
Let the cdf of Y be $G(y)$. Then $G(y)=P(Y \leq y), \quad y \in[0,+\infty)$.

$$
\begin{aligned}
& =P\left(X^{2} \leq y\right)=P(-\sqrt{y} \leq X \leq \sqrt{y})=\int_{-\sqrt{y}}^{\sqrt{y}} f(x) d x \\
& =\int_{-\sqrt{y}}^{\sqrt{y}} \frac{1}{\pi\left(1+x^{2}\right)} d x=2 \int_{0}^{\sqrt{y}} \frac{1}{\pi\left(1+x^{2}\right)} d x
\end{aligned}
$$

$\Rightarrow g(y)=G^{\prime}(y)=\frac{2}{\pi(1+y)} \frac{1}{2} \frac{1}{\sqrt{y}}=\frac{1}{\pi(1+y) \sqrt{y}}$.
(1) Find the $\operatorname{cdf} G(y)=P(Y \leq y)$
(2) Get the pdf $g(y)=G^{\prime}(y)$

Chapter 5 Distributions of Functions of random variables

Section 5.2 Several Random Variables (Multivariate RVs)

$>$ Random experiment : Any procedure that can be repeated infinitely times and has more than one possible outcomes
$>$ Performing a random experiment one time, the outcome may contain:

- One thing of interest univariate $R V: X, f(x)$, joint pmf or pdf
- A tuple of two things of interest bivariate $R V:(X, Y), f(x, y)$, pmf or pdf
- A tuple of several things of interest Multivariate $R V:\left(X_{1}, X_{2}, \ldots \ldots, X_{n}\right)$

The corresponding joint $\operatorname{pmf} f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ with domain \bar{S}
Discrete type
(1) $f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \geq 0$
(2) $\sum_{\left(x_{1}, x_{2}, \ldots x_{n}\right) \in S} f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=1$

Continuous type
(3) $P\left(\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in A\right)=\sum_{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in A} f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$

$$
\text { (3) } P\left(\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in A\right)=\int \cdots \int_{A} f\left(x_{1}, x_{2}, \ldots, x_{n}\right) d x_{1} \cdots d x_{n}
$$

A random experiment consists of performing a random experiment several times independently. For this case, the joint pmf or pdf is easier to be obtained.

Example 1

Roll a fair die twice let X_{1} denote the point of the first roll and X_{2} denote the point of the second roll.

$$
\begin{aligned}
& \text { For } X_{1}=x_{1}, \text { its } \operatorname{pmf} f_{1}\left(x_{1}\right)=P\left(X_{1}=x_{1}\right)=\frac{1}{6}, x_{1}=1,2, \ldots, 6 \\
& \text { For } X_{2}=x_{2}, \text { its } \operatorname{pmf} f_{2}\left(x_{2}\right)=P\left(X_{2}=x_{2}\right)=\frac{1}{6}, \quad x_{2}=1,2, \ldots, 6
\end{aligned}
$$

Assuming the two experiments (X_{1} and X_{2}) ar independent. Then for $X_{1}=x_{1}, X_{2}=x_{2}$, the joint pmf of X_{1} and X_{2} is $f\left(x_{1}, x_{2}\right)=P\left(X_{1}=x_{1}, X_{2}=x_{2}\right)=f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right)$.

Definition 5-2-1

[Random Sample of size 2 from a common distribution]
Repeat an experiment twice and independently leads to two independent RVs from the same distribution

Definition 5-2-2 [n independent RVs]

The n RVs $X_{1}, X_{2}, \ldots, X_{n}$ are said to be mutually independent if $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right) \cdots f_{n}\left(x_{n}\right)$, where $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is the joint pmf or pdf of $x_{1}, x_{2}, \ldots, x_{n}$, and $f_{i}\left(x_{i}\right)$ for $n=1,2, \ldots, n$ is the marginal pmf or pdf of X_{i}. In this case suppose the pmf or pdf is $f\left(x_{i}\right), i=1, \ldots, n$

Definition 5-2-3 $g\left(x_{1}, \ldots, x_{n}\right)=f\left(x_{1}\right) \cdots f\left(x_{n}\right)$

[Random Sample of size in from a common distribution]
Repeat an experiment n times and independently leads to n independent and identically distributed RVs $X_{1}, X_{2}, \ldots \ldots, X_{n}$

Example 2 [Page 190]

Let X_{1}, X_{2}, X_{3} be a random samle of size 3 from a distribution with $\operatorname{pdf} f(x)=e^{-x}, \quad x \in(0,+\infty)$

The joint pdf $g\left(x_{1}, x_{2}, x_{3}\right)=f\left(x_{1}\right) f\left(x_{2}\right) f\left(x_{3}\right)=e^{-x_{1}} e^{-x_{2}} e^{-x_{3}}$.
"independent and identically distributed" is often be written as i.i.d.

Question: $\quad P\left(0<x_{1}<1,2<x_{2}<4,3<x_{3}<7\right) \quad x_{i} \in(0,+\infty), i=1,2,3$
Solution: $\quad P\left(0<x_{1}<1,2<x_{2}<4,3<x_{3}<7\right)$

$$
=P\left(0<x_{1}<1\right) P\left(2<x_{2}<4\right) P\left(3<x_{3}<7\right)=\int_{0}^{1} e^{-x_{1}} d x_{1} \int_{2}^{4} e^{-x_{2}} d x_{2} \int_{3}^{7} e^{-x_{3}} d x_{3}
$$

Definition 5-2-4 [Mathematical expectation for in RVs]

For $n \mathrm{RVs}, X_{1}, X_{2}, \ldots, X_{n}$ where the joint pmf or pdf is represented by $f\left(x_{1}, x_{2}, \ldots, x_{n}\right),\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \bar{S}$. For a function $u\left(x_{1}, x_{2}, \ldots, x_{n}\right)$,
its mathematical expectation is given by
$E\left[u\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right]=\left\{\begin{array}{l}\sum_{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \bar{S}} u\left(x_{1}, x_{2}, \ldots, x_{n}\right) f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \quad \text { Discrete RVs } \\ \int \cdots \int_{\bar{S}} u\left(x_{1}, x_{2}, \ldots, x_{n}\right) f\left(x_{1}, x_{2}, \ldots, x_{n}\right) d x_{1} \cdots d x_{n} \text { Continuous RVs }\end{array}\right.$
In case where the $n \operatorname{RVs} X_{1}, X_{2}, \ldots, X_{n}$ are independent, $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=f_{X_{1}}\left(x_{1}\right) \cdots f_{X_{n}}\left(x_{n}\right)$

Mathematical Expectation is a linear operator

The next theorem proves that the expected value of the product of functions of n independent random variables is the product of their expected values.

Theorem 5.2-1

Assume $X_{1}, X_{2}, \ldots, X_{n}$ are independent RVs and $Y=u_{1}\left(X_{1}\right) u_{2}\left(X_{2}\right) \cdots u_{n}\left(X_{n}\right)$
If $E\left[u_{i}\left(X_{i}\right)\right] i=1,2, \ldots, n$ exist. Then

$$
E(Y)=E\left[u_{1}\left(X_{1}\right) u_{2}\left(X_{2}\right) \cdots u_{n}\left(X_{n}\right)\right]=E\left[u_{1}\left(X_{1}\right)\right]\left[u_{2}\left(X_{2}\right)\right] \cdots\left[u_{n}\left(X_{n}\right)\right]
$$

Proof of theorem 5.2-1

Proof. In the discrete case(the continuous case is left as an exercise)

$$
\begin{aligned}
& E\left[u_{1}\left(X_{1}\right) u_{2}\left(X_{2}\right) \cdots u_{n}\left(X_{n}\right)\right]=\sum_{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \bar{S}} u_{1}\left(x_{1}\right) u_{2}\left(x_{2}\right) \cdots u_{n}\left(x_{n}\right) f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \\
& \quad=\sum_{x_{1}} \sum_{x_{2}} \cdots \sum_{x_{n}} u_{1}\left(x_{1}\right) u_{2}\left(x_{2}\right) \cdots u_{n}\left(x_{n}\right) f_{X_{1}}\left(x_{1}\right) \cdots f_{X_{n}}\left(x_{n}\right) \\
& =\sum_{x_{1}} u\left(x_{1}\right) f\left(x_{1}\right) \sum_{x_{2}} u\left(x_{2}\right) f\left(x_{2}\right) \cdots \sum_{x_{n}} u\left(x_{n}\right) f\left(x_{n}\right) \\
& =E\left[u_{1}\left(X_{1}\right)\right]\left[u_{2}\left(X_{2}\right)\right] \cdots\left[u_{n}\left(X_{n}\right)\right]
\end{aligned}
$$

We now prove an important theorem about the mean and the variance of a linear combination of random variables.

Theorem 5.2-2

Assume $X_{1}, X_{2}, \ldots, X_{n}$ are independent RVs with respective mean $u_{1}, u_{2}, \cdots u_{n}$ and variances $\sigma_{1}^{2}, \ldots, \sigma_{n}^{2}$.Consider $Y=\sum_{i=1}^{n} a_{i} X_{i}$ where $\mathrm{a}_{1}, \ldots, a_{n}$ are real constants.
Then $E(Y)=\sum_{i=1}^{n} a_{i} u_{i}, \operatorname{Var}(Y)=\sum_{i=1}^{n} a_{i}^{2} \sigma_{i}^{2}$

Proof of theorem 5.2-2

Proof.

$$
E(Y)=E\left(\sum_{i=1}^{n} a_{i} X_{i}\right)=\sum_{i=1}^{n} a_{i} E\left(X_{i}\right)=\sum_{i=1}^{n} a_{i} u_{i}
$$

$$
\operatorname{Var}(Y)=E\left\{[Y-E(Y)]^{2}\right\}=E\left\{\left[\sum_{i=1}^{n} a_{i} X_{i}-\sum_{i=1}^{n} a_{i} u_{i}\right]^{2}\right\}=E\left\{\left[\sum_{i=1}^{n} a_{i}\left(X_{i}-u_{i}\right)\right]^{2}\right\}
$$

$$
=E\left[\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} a_{j}\left(X_{i}-u_{i}\right)\left(X_{j}-u_{j}\right)\right] \quad \begin{gathered}
\text { When } i=j: \\
E\left[\left(X_{i}-u_{i}\right)\left(X_{j}-u_{j}\right)\right]=\sigma_{i}^{2}
\end{gathered}
$$

$$
=\sum_{i=1}^{n} a_{i}^{2} \sigma_{i}^{2}
$$

Example 3

$$
E\left[\left(X_{i}-u_{i}\right)\left(X_{j}-u_{j}\right)\right]=0
$$

When $\mathrm{X}_{1}, X_{2}, \ldots, X_{n}$ are independent and identically distributed RV
with mean u and variance σ^{2}. Consider $\bar{X}=\sum_{i=1}^{n} \frac{1}{n} X_{i} . \longrightarrow$ Sample mean

$$
E(\bar{X})=\sum_{i=1}^{n} \frac{1}{n} u=u . \quad \operatorname{Var}(\bar{X})=\sum_{i=1}^{n}\left(\frac{1}{n}\right)^{2} \sigma^{2}=\frac{\sigma^{2}}{n} .
$$

Definition 5.2-5 [Statistic]

Any function of the sample $X_{1}, X_{2}, \ldots, X_{n}$ that don't have any unknown parameters is called a statistic.
Here \bar{X} is a statistic and also an estimator of mean μ.
Another important statistic is the sample variance

$$
S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}
$$

and later we find that S^{2} is an estimator of σ^{2}.

Chapter 5 Distributions of Functions of random variables

Section 5.4 Moment generating function technique

> Mgf, if exists, uniquely determines the distribution of the RV.
Therefore, the distribution of a RV can be equivalently found via its mgf.

Example 1

Let X_{1} and X_{2} be independent $R V$ with uniform distribution on $\{1,2,3,4\}$.
Let $Y=X_{1}+X_{2}$. What's the distributin of Y, i.e., pmf of Y ?
Solution:

$$
\begin{aligned}
& f(x)=\frac{1}{4}, \quad x=1,2,3,4 \Rightarrow M_{X}(t)=E\left(e^{t X}\right)=\sum_{x=1}^{4} f(x) e^{t x}=\frac{1}{4} \sum_{x=1}^{4} e^{t x} . \\
& M_{Y}(t)=E\left(e^{t Y}\right)=E\left[e^{t\left(X_{1}+X_{2}\right)}\right]=E\left(e^{t X_{1}}\right) E\left(e^{t X_{2}}\right) \quad \text { by theorem 5.3-1 on page } 191 . \\
& =\left(\frac{1}{4} \sum_{x=1}^{4} e^{t x_{1}}\right)\left(\frac{1}{4} \sum_{x=1}^{4} e^{t x_{2}}\right) \\
& =\frac{1}{16} e^{2 t}+\frac{2}{16} e^{3 t}+\frac{3}{16} e^{4 t}+\frac{4}{16} e^{5 t}+\frac{3}{16} e^{6 t}+\frac{2}{16} e^{7 t}+\frac{1}{16} e^{8 t} . \\
& \Rightarrow \text { The pmf of } Y, g(y)=P(Y=y)=\text { the coefficient of } e^{y t}, y=2,3, \ldots, 8 \text {. }
\end{aligned}
$$

Theorem 5.4-1

If $X_{1}, X_{2}, \ldots, X_{n}$ are independent RVs with respective mgfs $M_{X_{i}}(t)$ where $-h_{i}<t<h_{i}$ for positive number $h_{i}, i=1,2, \ldots, n$. Then the mgf of $Y=\sum_{i=1}^{n} a_{i} X_{i}$ is $M_{Y}(t)=\prod_{i=1}^{n} M_{X_{i}}\left(a_{i} t\right), \quad$ where $-h_{i}<t<h_{i}, i=1,2, \ldots, n$.

Proof.

$$
\begin{aligned}
M_{Y}(t) & =E\left(e^{t Y}\right)=E\left[\exp \left(t \sum_{i=1}^{n} a_{i} X_{i}\right)\right]= & E\left(e^{t t_{1} X_{1}} e^{t a_{2} X_{2}} \cdots e^{t t_{n} X_{n}}\right) \\
& =E\left(e^{a_{1} X_{1}}\right) \cdots E\left(e^{a_{n} X_{n}}\right) & \leftarrow \text { By theorem 5.3-1, page 191. } \\
& =\prod_{i=1}^{n} M_{X_{i}}\left(a_{i} t\right) & \leftarrow M_{X}(t)=E\left(e^{t X}\right)
\end{aligned}
$$

A corollary follows immediately, and it will be used in some important examples.

Corollary for Theorem 5.4-1

If $X_{1}, X_{2}, \ldots, X_{n}$ is a random sample of size n from a distribution with $\operatorname{mgf} \mathrm{M}(\mathrm{t})$, where $-h<t<h$, then
(a) The mgf of $Y=\sum_{i=1}^{n} X_{i}$ is $M_{Y}(t)=\prod_{i=1}^{n} M(t)=[M(t)]^{n}, \quad-h<t<h$.
(b) The mgf of $\bar{X}=\sum_{i=1}^{n} \frac{1}{n} X_{i}$ is $M_{\bar{X}}(t)=\prod_{i=1}^{n} M\left(\frac{1}{n} t\right)=\left[M\left(\frac{t}{n}\right)\right]^{n},-h<\frac{t}{n}<h$.

Example 2 (Page 197)

Let $X_{1}, X_{2}, \ldots, X_{n}$ denote the outcome of n Bernoulli trials. Each with probability of success p. The $m g f$ of $X_{i}, i=1,2, \ldots, n$ is

$$
M(t)=1-p+p e^{t}, \quad-\infty<t<\infty .
$$

Now let $Y=\sum_{i=1}^{n} X_{i}$, Now compute the $m g f$ of Y. Figure out the distribution of Y. Solution:

$$
\begin{aligned}
M_{Y}(t)=\prod_{i=1}^{n}\left(1-p+p e^{t}\right)=\left(1-p+p e^{t}\right)^{n} & \\
& \rightarrow Y \sim b(n, p)!!!
\end{aligned}
$$

Theorem 5.4-2

If $X_{1}, X_{2}, \ldots, X_{n}$ are independent chi-square RVs with $r_{1}, r_{2}, \ldots, r_{n}$ degrees of freedom, respectively.
Then $Y=X_{1}+X_{2}+\cdots+X_{n}$ is $\chi^{2}\left(r_{1}+r_{2}+\cdots+r_{n}\right)$.
Proof.
For each X_{i}, its mgf is given by

$$
M_{X_{i}}(t)=(1-2 t)^{-r_{i} / 2}, \quad i=1, \ldots, n . \quad t<\frac{1}{2} .
$$

Hence by the corollary for theorem 5.4-1, we have

$$
\begin{aligned}
& M_{Y}(t)=\prod_{i=1}^{n} M_{X_{i}}(t)=(1-2 t)^{-\frac{1}{2}\left(r_{i}+\cdots+r_{n}\right)} \\
\Rightarrow Y \sim & \chi^{2}\left(r_{1}+\cdots+r_{n}\right)
\end{aligned}
$$

Theorem 3.3-2

If the random variable X is $N\left(\mu, \sigma^{2}\right), \sigma^{2}>0$, then the random variable $V=\frac{(X-\mu)^{2}}{\sigma^{2}}=Z^{2}$ is $\chi^{2}(1)$.

Proof of theorem 3.3-2

Obviously, $Z=\frac{X-\mu}{\sigma}$ is $N(0,1)$. Since $V=Z^{2}$, the cdf for V is given by

$$
\begin{aligned}
G(v)= & P\left(Z^{2} \leq v\right)=P(-\sqrt{v} \leq Z \leq \sqrt{v}) . \quad v \geq 0 . \\
& =\int_{-\sqrt{v}}^{\sqrt{v}} \frac{1}{\sqrt{2 \pi}} e^{-z^{2} / 2} d z=2 \int_{0}^{\sqrt{v}} \frac{1}{\sqrt{2 \pi}} e^{-z^{2} / 2} d z \\
& =2 \int_{0}^{v} \frac{1}{\sqrt{2 \pi}} e^{-y / 2} d \sqrt{y} \quad \leftarrow \text { Changing of variable with } z=\sqrt{y} \\
& =\int_{0}^{v} \frac{1}{\sqrt{2 \pi y}} e^{-y / 2} d y .
\end{aligned}
$$

By fundamental theorem of Calculus, its pdf is given by

$$
g(v)=G^{\prime}(v)=\frac{1}{\sqrt{2 \pi v}} e^{-v / 2}=\frac{1}{\sqrt{2 \pi}} v^{1 / 2-1} e^{-v / 2}=\frac{1}{2^{1 / 2} \Gamma(1 / 2)} v^{1 / 2-1} e^{-v / 2}, \quad 0<v<\infty
$$

Hence V follows $\chi^{2}(1)$.
The next two corollaries combine and extend the results of Theorems 3.3-2 and 5.4-2 and give one interpretation of degrees of freedom.

Corollary

Let Z_{1}, \ldots, Z_{n} have standard normal distributions, $N(0,1)$. If Z_{1}, \ldots, Z_{n} are independent, then $W=Z_{1}^{2}+Z_{2}^{2}+\cdots+Z_{n}^{2} \sim \chi^{2}(n)$.

Proof. Since $Z_{i} \sim N(0,1), Z_{i}^{2} \sim \chi^{2}(1) . \quad i=1,2, \ldots, n$.
By theorem 5.4-2 and 3.3-2, we have $W \sim \chi^{2}(n)$.

Corollary

If X_{1}, \ldots, X_{n} are independent normal RVs with $X_{i} \sim N\left(\mu_{i}, \sigma_{i}^{2}\right)$,
$i=1, \ldots, n$. Then the distribution of

$$
W=\sum_{i=1}^{n}\left(\frac{X_{i}-\mu_{i}}{\sigma_{i}}\right)^{2}
$$

is $\chi^{2}(n)$.
Proof. Since $X_{i} \sim N\left(\mu_{i}, \sigma_{i}^{2}\right)$, we have $\frac{X_{i}-\mu_{i}}{\sigma_{i}} \sim N(0,1)$.
$\Rightarrow Z_{i}=\frac{X_{i}-\mu_{i}}{\sigma_{i}} \sim N(0,1)$. And Z_{1}, \ldots, Z_{n} are independent, by the
above corollary, we have $W \sim \chi^{2}(n)$.

