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We propose a deep learning framework for predicting the popularity of TikTok videos, as illustrated in Fig-

ure 1. Our approach jointly trains a recognition model (encoder) that maps video features into a deep latent

space, and a generative model (decoder) that reconstructs popularity metrics from the latent variables. Both

the encoder and decoder are implemented using deep neural networks. Numerical experiments demonstrate

the effectiveness of our method, which secured first place during the first three weeks of the testing phase

and second place in the final week.
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Figure 1 Diagram of our framework, which learns stochastic mappings between an observed feature space (x-

space), latent z-space, and observed label space (y-space).
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1. Introduction

Would you determine TikTok video popularity by tossing a coin? Replacing deterministic metrics

with a random decision may seem irrational, yet introducing stochastic outputs for popularity

prediction offers several advantages. First, feature components that are irrelevant to the prediction

task can be treated as stochastic noise. Second, stochastic outputs are valuable for quantifying the

uncertainty of predictions. Motivated by these insights, we adopt a variational inference approach

combined with deep learning to provide stochastic estimators for the prediction task. The key ideas

are illustrated in Figure 1.

2. Methodology

Let D represent our training dataset, given by
{

(x1,y1), . . . , (xn,yn)
}
, where xi denotes the features

associated with the i-th video, and yi ∈R4 represents the corresponding popularity metrics (views,

likes, comments, and shares). The feature set xi is divided into four components: (1) visual content,

(2) acoustic content, (3) textual description, and (4) social influence, denoted as xi = (xij)
4
j=1. We

preprocess these features, with detailed implementation described in Section 2.2. Given D, we

utilize the variational auto-encoder framework [2] to learn a latent variable z that aids in predicting

the popularity metrics. The relationship among x, y, and z is modeled as x→ z→ y. By the rules

of probability, this gives p(x,y,z) = p(x)p(z | x)p(y | z). Here, we define p(z | x) as the encoder,

which maps features to the latent space, and p(y | z) as the decoder, which maps the latent variable

to popularity metrics, approximating the ground truth. Both probability models are parameterized

using neural networks with parameters θ and φ, respectively.

2.1. Formulation

A direct but intractable goal for our problem is to maximize the regularized log-likelihood model:

max
θ,φ

{
E(x,y)∼D

[
log pθ,φ(x,y)−λ · KL

(
pθ(z | x)

∥∥∥p0(z)
)]}

, (Ideal)

where the second term represents the KL-divergence between the encoder and the uninforma-

tive prior p0(z) = N (0, I). It peanlizes over too complex encoder mapping. Unfortunately, the
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log-likelihood function for the first part is challenging to compute, as evaluating the marginal distri-

bution pθ,φ(x,y) =
∫
z
pθ,φ(x,y,z)dz requires high-dimensional integeration. To tackle this challenge

and inspired from conventional Bayesian inference literature, we replace the optimization objective

with the evidence lower bound :

max
θ,φ

{
E(x,y)∼D

[
Epθ(z|x)

[
log pφ(y | z)

]
−λ · KL

(
pθ(z | x)

∥∥∥p0(z)
)]}

. (1)

In the following, we discuss key components of our optimization problem.

Neural Network Encoder. We build the encoder model pθ(z | x) =N (z;µ,diag(σ2)), where the

parameters µ and σ2 depend on feature x and weight θ. Let us assume the conditional independence

of features from distinct parts, then pθ(z | x)∝ p0(z)
∏4

j=1 pθ(z | xj), and consequently, we build

pθ(z | xj) =N (z;µj,diag(σ2
j )), (µj, logσj) = EncoderNeuralNetθ(xj). (2)

We recover pθ(z | x) =N (µ,diag(σ2)) with

µ=
4∑

j=1

[ µj � 1
σ2
j∑4

j=1
1
σ2
j

]
, σ2 =

1∑4

j=1
1
σ2
j

, (3)

where � and 1
σ

are operated element-wisely, and we name the operation above as pooling.

Neural Network Decoder. Similar to the encoder setting, we model the decoder pφ(y | z) =

N (y;µ′,diag(σ′2)), where the parameters (µ′, logσ′) = DecoderNeuralNetφ(z).

Optimization. Iteratively, we obtain the stochastic gradient estimator of (1) with respect

to (w.r.t.) θ and φ, and then perform the gradient update. We terminate the algorithm until con-

vergence. Let us take the first term in (1) to discuss how to compute its gradient as an example,

as the second term can be handled similarly. The unbiased gradient w.r.t. φ can be obtained easily

because

∇φE(x,y)∼D

[
Epθ(z|x)

[
log pφ(y | z)

]]
=E(x,y)∼D

[
Epθ(z|x)

[
∇φ log pφ(y | z)

]]
.

However, the unbiased gradient w.r.t. θ is challenging to derive as ∇θEpθ(z|x)[·] 6= E∇θpθ(z|x)[·]. W

apply the reparameterization trick to express z∼ pθ(z | x) as z = g(ε, θ,x), where the distribution

of random variable ε is independent of x and θ. In detail,

z = g(ε, θ,x) =µ+σ� ε, ε∼N (0, I).
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Then we can estimate the gradient w.r.t. θ in the following:

∇θE(x,y)∼D

[
Epθ(z|x)

[
log pφ(y | z)

]]
=E(x,y)∼D

[
∇θEpθ(z|x)

[
log pφ(y | z)

]]

=E(x,y)∼D

[
∇θEε

[
log pφ(y | g(ε, θ,x))

]]
=E(x,y)∼D

[
Eε

[
∇θ log pφ(y | g(ε, θ,x))

]]
.

Prediction and Uncertainty Quantification. After training, for a given new feature vector x,

we first pass it through the encoder pθ(z | x) to obtain the latent variable z. This latent variable

is then mapped through the decoder pφ(y | z) to generate the predicted output y. We repeat this

process for 103 independent trials, using the sample mean of the outputs as our point estimate,

and construct error bars for the predicted output based on a 95% confidence interval.

2.2. Data Pre-Processing

Visual Content. For a given visual content, we first perform downsampling to extract 10 frames

at fixed time intervals. From each frame, we extract a feature vector using the ResNet50 convolu-

tional neural network, pretrained on the ImageNet dataset, which has achieved notable success in

computer vision tasks. The final feature output is obtained by combining these 10 feature vectors.

Acoustic Content. Acoustic content provides complementary information to the visual compo-

nent of the video. For feature representation, we use the widely adopted Mel-Frequency Cepstral

Coefficients (MFCC) [3]. Specifically, we compute a 48-dimensional acoustic feature vector, consist-

ing of a 24-dimensional mean vector and a 24-dimensional variance vector of the MFCC features.

Textual Content. Users typically attach brief descriptions to their videos. We collect the text

from all videos and apply contrastive learning [4] to capture the latent space of the textual content.

This process results in a 20-dimensional textual feature vector.

Social Content. The popularity of each video is significantly influenced by both the publisher

and its release date. To capture these factors, we construct the following features for the social

content: author ID, number of followers, number of people the author is following, total number of

hearts (likes), total number of videos, and the time elapsed since the release date.

Post-Processing. For continuous-valued features, we normalize them to have zero mean and unit

variance. We then extract the necessary features from four components to serve as input to our

framework.
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3. Numerical Results
Both the encoder and decoder networks are implemented as LeakyReLU neural networks with

seven hidden layers, and training was completed over 144 RTX 4090 GPU hours. The following

plots present point and interval estimates for the popularity metrics of each video in the testing

dataset. Each data point is normalized by subtracting the predicted output from the true output,

where red data points closer to the origin indicate better prediction performance. Purple shaded

areas represent the constructed error bars, where the large area means we are less certain regarding

the prediction outputs.

0 50 100 150 200 250
Index

6

4

2

0

2

4

lo
g(

1+
M

et
ric

)
lo

g(
1+

Tr
ue

M
et

ric
)

video_comment_count

0 50 100 150 200 250
Index

12.5

10.0

7.5

5.0

2.5

0.0

2.5

5.0

video_heart_count

0 50 100 150 200 250
Index

15

10

5

0

5

video_play_count

0 50 100 150 200 250
Index

8

6

4

2

0

2

video_share_count

Figure 2 Experiment results on testing dataset. Here the y-axis is normalizd to be log(1 + Metric) − log(1 +

MetricTrue), where MetricTrue denotes the true output, and the x-axis denotes the index of data samples.

4. Conclusion
We develop a deep learning-based variational inference approach for TikTok video popularity pre-

diction, which not only yields superior performance, but also provides uncertainty quantification

that estimates the prediction error. Its pratical performance on testing dataset has the second-

highest rank, as validated by official rankings.
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