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Offline pricing is an essential problem in eCommerce decision-making, aiming to estimate an optimal price that

maximizes the expected profit based on historical data. Due to the decision-dependent effect and lack of market

environment information, it is imperative to develop a flexible and robust pricing strategy. In this study, we propose

a novel two-step procedure to tackle this challenge. In the first step, we provide a data-driven and non-parametric

distributional estimate of customer demand. In the second step, we provide a robust profit estimate that maintains

satisfactory performance even with inaccurate demand estimators. Our proposed framework is also supported by

empirical analysis. Notably, its numerical performance on the File Folders SKU 21 product has the impressive

rank of 2 among all File Folders SKU products, as per official rankings.

1. Introduction

Pricing for eCommerce products has been an important research topic in recent years. Compared

with the conventional newsvendor problem that aims to decide about an order quantity for profit

optimization, the pricing problem is more challenging due to the decision-dependent effect: The decision

of order quantity for the former problem does not influence the distribution of random parameters,

while the decision for the latter problem can affect the customer demand distribution. Such an effect

causes difficulty in both computational traceability and model estimation. Even worse, due to the limited

information, it is difficult to establish an accurate relation between the unit price and the customer

demand distribution. If the retailer adopts the classical Predict-then-Optimize framework [3] that first

estimates such a relation and then optimizes pricing strategy, the non-negligible estimation error in

the first step will amplify the optimization error in the second step.

In this report, we propose a distributionally robust contextual optimization model with the

decision-dependent Wasserstein ambiguity set to solve this problem. Specifically, we examine the

performance among all possible choices of price in a two-step procedure and pick the price that achieves

the best performance. In the first step, we adopt from [1] to develop a data-driven and non-parametric

approximation of the customer demand distribution based on historical samples on price, demand,

and Cprice (i.e., competitor’s price). In the second step, we estimate the worst-case expected profit,

where the worst-case means we take into account all candidate demand distributions that are close
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Figure 1 An overview of the proposed framework, which consists of two critical components: (a) a non-parametric

framework that estimates the demand distribution based on historical samples; (b) a distributionally robust

solver that estimates a robust profit based on the estimated demand distribution.

to the estimated demand distribution with respect to the Wasserstein metric. We summarize the general

framework in Figure 1, and more details are provided in Section 2.

2. Methodology

Consider a retailer who sells a single product with finite amount of inventory. Assume the amount of

inventory available for sale, denoted as y∈R+ is known to the retailer, and he/her determines the price

p∈ [pl,pu] for sale. Besides, the retailer is provided with the cprice (i.e., competitors’ price) z∈RM with

M∈N+, which can be viewed as a covariate variable. Here we assume that the price decision p and the

cprice z will influence the customer demand D distribution, which follows the probability distribution

fD(p,z). The goal is to select the optimal price such that the expected profit ED∼fD(p,z)[c(p,D)] is

maximized. In the following, we provide the detailed expression regarding the profit function c(p,D).

Profit Model. It is known that the profit depends on sales, Cost of Goods Sold (COGs), eCommerce

Fee (FBA), Referral Fee (REFFEE), and Ad Spend (ADSPEND). Given the price p, customer demand

D, and inventory level y, we know sales=p(D∧y). We make the following assumption regarding the

other four variables:

Assumption 1. COGs=a1 ·(D∧y); FBA=a2 ·(D∧y); REFFEE=15%·p(D∧y); ADSPEND is a

constant independent of any other variable.

Here, we validate these assumptions using the provided SKU dataset File Folders SKU 21. It

turns out that these models fit the data with the high confidence level. Specifically, the coefficients

a1 = 4.43965609,a2 = 6.60097822. Based on Assumption 1, we re-write the loss function c(p,D) =

0.85·p(D∧y)−(a1+a2)·(D∧y)−ADSPEND. Consider the ideal case where the demand distribution

fD(p,z) is exactly known for any price p and cprice z, the profit maximization problem becomes

max
p∈[pl,pu]

ED∼fD(p,z)

[
0.85·p(D∧y)−(a1+a2)·(D∧y)

]
−ADSPEND. (Ideal)

In a practical case, one may not have full information regarding the inventory level y, the cprice (i.e.,

competitors’ prices) z, the variable ADSPEND, and the demand distribution fD(p,z). To tackle this

challenge, we make the following simplifications:
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• We find in most situations, the inventory level y is always greater than the units ordered, which

motivates us to assume that D�y. Thereby one can replace D∧y with y in problem (Ideal).

• The cprice z can be estimated using historical data based on time series prediction (e.g., based

on python package Skforecast).

• From Figure 2, we find the variable ADSPEND seems to be correlated with variable unitsordered.

Therefore, we estimate its value using time series prediction and treating variable unitsordered

as an exogenous feature.

• The demand distribution fD(p,z) is difficult to obtain. In the following, we provide a non-parametric

and data-driven way for estimating fD(p,z).
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Figure 2. Plot of ADSPEND

and Unitsordered versus time

index for product File

Folders SKU 21.

Demand Distribution. We provide a data-driven estimation of

the demand distribution fD(p, z), in which only data samples

{(pi,zi,Di)}Ni=1 are available. For a given price-cprice pair (p,z), we

approximate the true demand distribution using the weighted discrete

distribution sharing the same support of the training dataset:

P̂(p,z)
n =

N∑
i=1

ωi(p,z)δDi,

where the weight function {ωi(p,z)}Ni=1 are obtained using the (Gaus-

sian) kernel regression model:

ωi(p,z)∝exp
(
−‖(p,z)−(pi,zi)‖22

2σ2

)
,

N∑
i=1

ωi(p,z)=1. (1)

Previous studies have proposed several modeling for customer demand, such as additive linear model [6, 2]

and multiplicative model [4, 5]. However, it is vague whether those models result in an accurate estimation

of the demand in our setting because the cprice z is involved. Instead, we use a data-driven estimator in

this part, which is quite flexible as we ’let the data speak for itself.’

Distributionally Robust Formulation. A natural pricing idea is to solve the sample average approx-

imation (SAA) counterpart of problem (Ideal), i.e., by replacing fD(p,z) with the estimated distribution

P̂n and solve the approximated problem. However, SAA may not achieve satisfactory performance

because the estimate P̂n is not accurate enough. Instead, we solve the distributionally robust counterpart

of the SAA problem using the 2-Wasserstein distance to model the ambiguity set:

max
p∈[pl,pu]

{
min

P: supp(P)⊆supp(P̂(p,z)n )

ED∼P[c(p,D)]: W
(
P,P̂(p,z)

n

)
≤ε

}
. (DRO-Pricing)

Here the 2-Wasserstein distance is defined as

W(P,Q):=min
γ

{(
E[‖ω−ω′‖2]

)1/2
:
γ is a joint distribution of (ω,ω′)
with mariginal distributions P and Q

}
.
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For fixed price p and cprice z, according to the definition of Wasserstein distance, the inner minimization

problem can be reformulated as a linear program that can be solved efficiently:

min
γ∈RN×N ,ν∈RN

+

{
N∑
i=1

νic(p,D
i):

{∑N

i=1γi,j=νj,∀j,
∑N

j=1γi,j=ω
i(p,z),∀i,∑N

i,j=1γi,j|Di−Dj|2≤ε2

}}
. (2)

It is worth mentioning that (DRO-Pricing) is a nonconvex optimization problem because the decision

variable p influences both the objective function and the demand distribution. However, it is required

that the optimized pricing value should end in 0.05 or 0.09. Therefore, we solve problem (DRO-Pricing)

by enumerating all possible choices of price p, whereas for each value p one only needs to solve a linear

programming formulation (2). Similarly, one can obtain an optimistic pricing strategy by replacing the

inner minimization in problem (DRO-Pricing) with maximization.

Remark 1 (The Spirit of Robustness). By solving problem (DRO-Pricing), the retailer tends to

find a price to maximize his/her profit under the worst scenario among all customer demand distributions.

Even if the true demand distribution is shifted slightly compared to the estimated demand distribution

due to the dynamic market environment, a distributionally robust pricing strategy could still provide

a lower bound on the actual profit. On the supply side, there is less room for the retailer to make a

wrong pricing strategy with limited information on the demand distribution because of the marginal

cost. Therefore, a distributionally robust strategy seems preferable.

3. Numerical Study

The bandwidth parameter σ2 in (1) and the radius of ambiguity set ε in (DRO-Pricing) plays a critical

impact on the performance of our model. In our numerical study, we tune these hyper-parameters using

cross-validation: we split the given dataset into the training and validation sets. For each candidate pair

(σ2,ε), we formulate the estimated profit for each sample in the validation set based on the training set.

Then, we take the optimal hyper-parameter as the one that achieves the smallest residual error between

the estimated profit and the true profit in the validation set.

3.1. Profit Estimation
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Figure 3. Plot of esti-

mated profit versus true

profit in last 30 days.

We use the historical data from the last 30 days as the testing data and

use the remaining data as the training data to examine the performance of

our profit estimation algorithm. Figure 3 reports the plot of true expected

profit 1 together with estimated robust and optimistic profit. From the

plot, we find our profit estimation algorithm works reasonably well: the

true profit is generally covered by [robust profit,optimistic profit] with a

reasonably tight interval width.

1 We take the average of profit within the nearest 7 days as the true expected profit.
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3.2. Visualization of Demand Distribution

Next, we visualize the estimated robust demand distribution for various price choices and fix the cprice

z=22.99 by treating the provided dataset as the training set. See the visualization in Figure 4. From the

plot, we find that customer demand tends to decrease as the price value increases, which is consistent

with our intuition.
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Figure 4 The four left plots visualize the estimated demand distribution for different prices. The rightmost plot reports

the estimated average demand across different choices of price.

3.3. Optimal Pricing
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Figure 5. Left two: estimated profit for differ-

ent prices during Week 1/Week 2 testing phase;

Right: Estimated profit v.s. true profit.

Finally, we present the average of estimated profits

across different price choices for Week 1 (Sep.12-

18) and Week 2 (Sep.19-25) in Figure 5. From the

plots, we realize that price 23.99 results in the best

robust profit, but its interval width (optimistic

profit minus robust profit) is also the largest, indi-

cating it is not a stable and robust choice. Instead, we prefer to take a price that results in (nearly) the

best robust profit but with a significantly small interval width. Therefore, we take the price 18.29 in

Week 1 and price 18.49 in Week 2. Figure 5(c) plots the estimated profit and true profit during these

two weeks, from which we can see that the numerical performance of our pricing and profit estimation

strategy works reasonably well.

4. Conclusion

We develop a data-driven pricing strategy that not only yields an optimal price but also provides interval

estimation of the expected profit. Its practical performance on the File Folders SKU 21 product has

the second-highest rank among all File Folders SKU products, as validated by official rankings.
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