Lecture 8 Basics of Optimization

- Gradient Descent, Stochastic Gradient Descent, Newton's Method
- Stochastic Gradient Descent
- Newton's Method
- Example: Solving maximum likelihood estimator for CT imaging

Contents

• Gradient Descent, Stochastic Gradient Descent, Newton's Method

Stochastic Gradient Descent

Newton's Method

Example: Solving maximum likelihood estimator for CT imaging

Basics of Optimization 8-2

Multiple linear regression

▶ set-up: p variables, n observations:

$$y_i=\beta_0+\beta_1x_{i1}+\dots\beta_px_{ip}+\epsilon_i,\quad i=1,\dots,n$$
 coefficients $\beta=[\beta_0,\beta_1,\cdots,\beta_p]^\intercal$

$$\min_{\beta} \sum_{i=1}^{n} (y_i - (\beta_0 + \beta_1 x_{i1} + \dots \beta_p x_{ip}))^2$$

matrix-vector form

$$y = X\beta + \epsilon, \quad X = \begin{bmatrix} 1 & x_{11} & \cdots & x_{p1} \\ \vdots & \vdots & & \vdots \\ 1 & x_{1n} & \cdots & x_{pn} \end{bmatrix} \in \mathbb{R}^{n \times (p+1)}$$

parameter estimation

$$\min_{\alpha} \|y - X\beta\|_2^2$$

Simple linear regression

► Linear regression model

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i, \quad i = 1, 2, \dots, n$$

▶ To estimate (β_0, β_1) , we find values that minimize the sum-of-squares error

$$\min_{\beta_0,\beta_1} \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i)^2$$

$$\hat{\beta}_1 = S_{xy} / S_{xx}$$

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

$$S_{xy} = \sum_{i=1}^{n} (y_i - \bar{y})(x_i - \bar{x}), \ S_{xx} = \sum_{i=1}^{n} (x_i - \bar{x})^2$$

Solving multiple linear regression

$$\min_{\boldsymbol{\beta}} \ f(\boldsymbol{\beta}) := \| \boldsymbol{y} - \boldsymbol{X} \boldsymbol{\beta} \|_2^2, \quad \boldsymbol{X} \in \mathbb{R}^{n \times (p+1)}$$

- Gradient $\nabla f(\beta) = 2X^{\mathsf{T}}(X\beta y)$
- Exact solution $\hat{\beta} = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}y$
- lacktriangle issue: complexity $\mathcal{O}(p^3)$
- lacktriangle issue: $(X^\intercal X)^{-1}$ may not be a good idea

Solving optimization problem

solve optimization problem

$$\min_{x} f(x)$$

• produce sequence of points $x^{(k)}$, k = 0, 1, 2, ... with

$$f(x^{(k)}) \to p^*$$

▶ iterative methods for solving optimality condition

$$\nabla f(x^*) = 0$$

First-order method: Gradient decent

$$x^{(k+1)} = x^{(k)} - t_k \nabla f(x^{(k)})$$

 t_k : step-size for the kth iteration $\nabla f(x)$: gradient vector

- for convex optimization it gives the global optimum under fairly general conditions.
- for nonconvex optimization it may achieve a local optimum

Example: solving multiple linear regression

$$\min_{\beta} f(\beta) := \| y - X\beta \|_2^2, \quad X \in \mathbb{R}^{n \times (p+1)}$$

- Gradient $\nabla f(\beta) = 2X^{\mathsf{T}}(X\beta y)$
- ► Exact solution $\hat{\beta} = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}y$, issue: complexity $\mathcal{O}(p^3)$
- ► Gradient descent

$$\beta^{(k+1)} = \beta^{(k)} - 2t_k X^{\mathsf{T}} (X\beta^{(k)} - y)$$

complexity $\mathcal{O}(np)$

Question: does this converges to the desired result?

Convex function

A function f is convex if

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

Property (first-order):

$$f(x^*) \ge f(x) + g(x)^T (x^* - x)$$

A easy to use way to check: Univariate $f(\boldsymbol{x})$ is convex if and only if

$$\frac{\partial^2 f(x)}{\partial x^2} \ge 0$$

Convex function

Multivariate $f(x): \mathbb{R}^d \to \mathbb{R}$ is convex if and only if the Hessian matrix is positive semi-definite (PSD)

$$H := H[f(x)] = \begin{bmatrix} \frac{\partial^2 f(x)}{\partial x_1^2} & \cdots & \frac{\partial^2 f(x)}{\partial x_1 \partial x_d} \\ \cdots & \cdots & \cdots \\ \frac{\partial^2 f(x)}{\partial x_1 \partial x_d} & \cdots & \frac{\partial^2 f(x)}{\partial x_d^2} \end{bmatrix}$$

and this matrix H is PSD means either one of the following is true

- 1. H can be written as $H = SS^T$ for some matrix S
- 2. All eigenvalues of H are non-negative
- 3. All the principal sub-matrices of H, denoted as H_i , satisfy $\det(H_i) \geq 0$

Example: solving multiple linear regression

$$\min_{\beta} \|y - X\beta\|_2^2, \quad X \in \mathbb{R}^{n \times (p+1)}$$

- $f(\beta) = \|y X\beta\|_2^2$
- $\qquad \qquad \mathbf{Gradient} \ \nabla f(\beta) = 2X^\intercal (X\beta y)$
- ▶ Hessian $H[f](\beta) = 2X^\intercal X$ (using basic multivariate calculus)

Examples

convex functions

- ightharpoonup affine: ax + b
- ightharpoonup exponential e^{ax}
- ▶ powers $|x|^{\alpha}$ for $p \ge 1$

concave:

- ightharpoonup affine: ax + b
- ▶ $\log \log x$
- powers x^{α} for $0 \le \alpha \le 1$

Convergence results

Gradient descent: for strongly convex f with constant m

$$f(x^{(k)}) - f(x^*) \le c^k (f(x^{(0)}) - f(x^*))$$

 $c\in(0,1)$ is a constant depends on $x^{(0)},$ step-size, m etc. Very simple, but converges very slow.

Number of iterations until $f(x) - f(x^*) \le \epsilon$ is $\mathcal{O}(\log(1/\epsilon))$

▶ **Newton's method**: for strongly convex f with constant m number of iterations until $f(x) - p^* \le \epsilon$ is $\mathcal{O}(\log\log(1/\epsilon))$

Convergence proof

key quantity: Euclidean distance to the optimal set Let x^* be any minimizer of f

$$||x^{(k+1)} - x^*||_2^2 = ||x^{(k)} - t_k g^{(k)} - x^*||_2^2$$

$$= ||x^{(k)} - x^*||_2^2 - 2t_k g^{(k)T}(x^{(k)} - x^*) + t_k^2 ||g^{(k)}||_2^2$$

$$\leq ||x^{(k)} - x^*||_2^2 - 2t_k (f(x^{(k)}) - f^*) + t_k^2 ||g^{(k)}||_2^2$$

where
$$f^* = f(x^*) \ge f(x^{(k)}) + g^{(k)T}(x^* - x^{(k)})$$

Basic inequality: for convex differentiable f:

$$f(y) \ge f(x) + \nabla f(x)^T (y - x)$$

apply recursively to get

$$||x^{(k+1)} - x^*||_2^2$$

$$\leq ||x^{(1)} - x^*||_2^2 - 2\sum_{i=1}^k t_i (f(x^{(i)}) - f^*) + \sum_{i=1}^k t_i^2 ||g^{(i)}||_2^2$$

$$\leq \|x^{(i)} - x^*\|_{2}^{2} - 2\sum_{i=1}^{k} t_{i}(f(x^{(i)}) - f^*) + C$$

$$\leq R^{2} - 2\sum_{i=1}^{k} t_{i}(f(x^{(i)}) - f^*) + G^{2}\sum_{i=1}^{k} t_{i}^{2}$$

$$f(x^{(i)}) - f^* > f_{\text{best}}^{(k)} - f^*$$

we have

$$f_{ ext{best}}^{(k)} - f^* \leq rac{R^2 + G^2 \sum_{i=1}^k t_i^2}{2 \sum_{i=1}^k t_i}$$

$$= \min_{i=1}^{n} \int_{\mathbb{R}^{n}} f(x^{(i)}) \|g\|_{2} \leq G$$
 for all gradient g

$$f_{\mathrm{best}}^{(k)} = \min_{i=1,\dots,k} f(x^{(i)}), \ \|g\|_2 \leq G$$
 for all gradient g

Strong convexity and implications

lacksquare f is strongly convex on domain S if there exists an m>0 such that

$$H[f(x)] > mI$$
, for all $x \in S$.

- implications
 - for $x, y \in S$

$$f(y) \ge f(x) + \nabla f(x)^{\mathsf{T}}(y - x) + \frac{m}{2} ||x - y||_2^2$$

• for $x \in S$, and x^* being the minimizer

$$f(x) - f(x^*) \le \frac{1}{2m} \|\nabla f(x)\|_2^2$$

useful as a stoping criterion

Stopping criterion

- ▶ Stop when $\frac{R^2 + G^2 \sum_{i=1}^k t_i^2}{2 \sum_{i=1}^k t_i}$ is small
- ▶ Stop when $\|\nabla f(x)\|_2^2$ is sufficiently small
- ▶ Stop when $||x^{k+1} x^k||_2$ or $|f(x^{k+1}) f(x^k)|$ is small
- ▶ Reality: there isn't a universally good stopping criterion

Logistic regression

random variable $y \in \{0, 1\}$ with distribution

$$h(x; a, b) = \mathbb{P}(y = 1) = \sigma(a^{T}x + b)$$

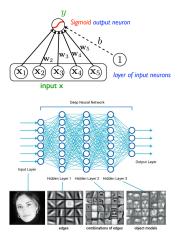
Sigmoid function

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

maximum likelihood

$$\max_{a,b} \sum_{i=1}^{n} \{ y_i \log h(x_i; a, b) + (1 - y_i) \log(1 - h(x_i; a, b)) \}$$

Deep learning and neural networks



Example: Optimization in training neural networks

Data: $(x_i, y_i), i = 1, ..., n$.

Loss function: $\ell(w, \alpha, \beta) = \sum_{i=1}^{n} (y_i - \sigma(w^T z_i))^2$

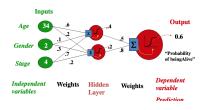
$$\min_{w,\alpha,\beta}\ell(w,\alpha,\beta)$$

where

$$z_{i,1} = \sigma(\alpha^T x_i), \quad z_{i,2} = \sigma(\beta^T x_i)$$

Sigmoid function $\sigma(x) = \frac{1}{1+e^{-u}}$

- ▶ Not a convex objective function
- Use gradient descent to find a local optimum solution



Gradient descent: backpropagation

Backpropagation computes the gradient in weight space of a feedforward neural network, with respect to a loss function.

- ▶ Loss function: $\ell(w, \alpha, \beta) = \sum_{i=1}^{n} (y_i \sigma(w^T z_i))^2$
- ► Gradient with respect to the weights *w* in the last layer

$$\frac{\partial \ell(w, \alpha, \beta)}{\partial w} = -\sum_{i=1}^{n} 2(y_i - \sigma(u_i))\sigma(u_i)(1 - \sigma(u_i))z_i$$

where $u_i = w^T z_i$, $z_{i,1} = \sigma(\alpha^T x_i)$, $z_{i,2} = \sigma(\beta^T x_i)$

▶ Use chain rule, gradient with respect to weights in previous layer

$$\frac{\partial \ell(w, \alpha, \beta)}{\partial \alpha} = \frac{\partial \ell(w, \alpha, \beta)}{\partial z_{i,1}} \frac{\partial z_{i,1}}{\partial \alpha}$$

$$= -\sum_{i=1}^{n} 2(y_i - \sigma(u_i))\sigma(u_i)(1 - \sigma(u_i))w_1\sigma(v_i)(1 - \sigma(v_i))x_i$$

where $v_i = \alpha^T x_i$

Example: prostate cancer

The data for this example come from a study by Stamey et al. (1989). They examined the correlation between the level of prostate-specific antigen and a number of clinical measures in men who were about to receive a radical prostatectomy. The variables are log cancer volume (lcavol), log prostate weight (lweight), age, log of the amount of benign prostatic hyperplasia (lbph), seminal vesicle invasion (svi), log of capsular penetration (lcp), Gleason score (gleason), and percent of Gleason scores 4 or 5 (pgg45). The correlation matrix of the predictors given in Table 3.1 shows many strong correlations. Figure 1.1 (page 3) of Chapter 1 is a scatterplot matrix showing every pairwise plot between the variables. We see that svi is a binary variable, and gleason is an ordered categorical variable. We see, for example, that both lcavol and lcp show a strong relationship with the response lpsa, and with each other. We need to fit the effects jointly to untangle the relationships between the predictors and the response.

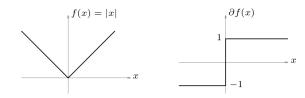
<u>Variable selection</u>: for multiple linear regression, select the "most important" variables that are responsible for the output:

$$\min_{\beta} \|y - X\beta\|_2^2 + \lambda \|\beta\|_1$$

where
$$\|\beta\|_1 = \sum_{i=1}^p |\beta_i|$$

Example of subgradient

$$f(x) = |x|$$



righthand plot shows $\bigcup \{(x,g) \mid x \in \mathbf{R}, g \in \partial f(x)\}$

We need this to solve lasso:

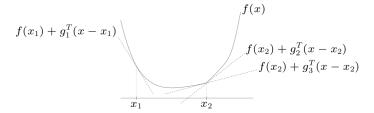
$$\min_{\beta} \|y - X\beta\|_2^2 + \lambda \|\beta\|_1$$

where
$$\|\beta\|_1 = \sum_{i=1}^p |\beta_i|$$

Extension: Subgradient

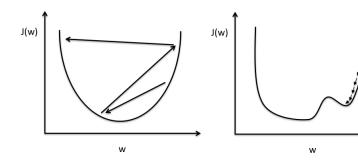
g is a subgradient of f (not necessarily convex) at x if

$$f(y) \ge f(x) + g^T(y - x), \quad \forall y$$



 g_2 , g_3 are subgradients at x_2 ; g_1 is a subgradient at x_1

Choice of step-size



Large learning rate: Overshooting.

Small learning rate: Many iterations until convergence and trapping in local minima.

Step size rules

- ► Step sizes are fixed ahead of time
- ▶ Constant step size: $t_k = t$ (constant)
- ► Constant step length: $t_k = \gamma/\|\nabla f(x^{(k)})\|_2$ (so $\|x^{(k+1)} x^{(k)}\|_2 = \gamma$)
- ▶ Square summable but not summable: step sizes satisfy

$$\sum_{k=1}^{\infty} t_k^2 < \infty, \quad \sum_{k=1}^{\infty} t_k = \infty$$

- e.g., $t_k = 1/k$
- Nonsummable diminishing: step sizes satisfy

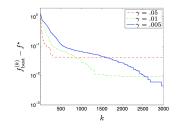
$$\lim_{k \to \infty} t_k = 0, \quad \sum_{k=1}^{\infty} t_k = \infty.$$

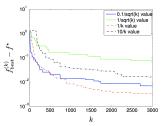
Example

Minimizing piecewise linear function

$$\mathsf{minimize}_{a,b} \ \max_{i=1,\dots,m} (a_i^T x + b_i)$$

Problem instance with 20 variables.





Contents

Gradient Descent, Stochastic Gradient Descent, Newton's Method

Stochastic Gradient Descent

Newton's Method

Example: Solving maximum likelihood estimator for CT imaging

Basics of Optimization 8-29

Stochastic gradient descent (SGD)

- ▶ Sequentially "load" part of data; use gradient using "mini-batches" of data
- ▶ Save memory; sometimes has better performance for non-convex problems
- ▶ Uses noisy unbiased subgradients

$$x^{(k+1)} = x^{(k)} - t_k \tilde{g}^{(k)}$$

 $\blacktriangleright \ \tilde{g}^{(k)}$ is any noisy unbiased estimate of gradient using "mini-batch" $x^{(k)}$

$$\mathbb{E}[\tilde{g}^{(k)}] = g^{(k)}$$

Stochastic gradient descent for linear regression

Loss function

$$\min_{\beta} \|y - X\beta\|_2^2$$

Gradient: $f(\beta) = 2X^T(X\beta - y)$ Partition the **data** into M parts

$$y = \begin{bmatrix} y_1 \\ \vdots \\ y_M \end{bmatrix}, X = \begin{bmatrix} X_1 \\ \vdots \\ X_M \end{bmatrix}$$

Stochastic gradient descent:

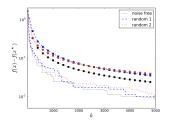
$$\beta^{(k+1)} = \beta^{(k)} - t_k X_k^T (X_k \beta^{(k)} - y_k)$$

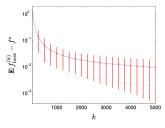
Compare with Gradient descent

$$\beta^{(k+1)} = \beta^{(k)} - t_k X^{\mathsf{T}} (X\beta^{(k)} - y)$$

Example

Minimizing piecewise linear function with SGD (solid lines are averaged over 100 instances)





Contents

Gradient Descent, Stochastic Gradient Descent, Newton's Method

Stochastic Gradient Descent

Newton's Method

Example: Solving maximum likelihood estimator for CT imaging

Basics of Optimization 8-33

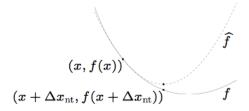
Second-order Method: Newton's method

$$x^{(k+1)} = x^{(k)} - t_k [H\{f(x^{(k)})\}]^{-1} \nabla f(x^{(k)})$$

 t_k : step-size for the kth iteration

 $\,\blacktriangleright\,$ interpretation x+v minimizes the second order approximation of the function

$$f(x+v) \approx f(x) + \nabla f(x)^{\mathsf{T}} v + \frac{1}{2} v^{\mathsf{T}} H\{f(x)\} v$$



Contents

Gradient Descent, Stochastic Gradient Descent, Newton's Method

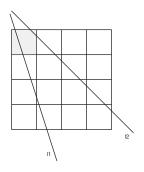
Stochastic Gradient Descent

Newton's Method

• Example: Solving maximum likelihood estimator for CT imaging

Basics of Optimization 8-35

CT image reconstruction using MLE



- n line integral measurements.
- ightharpoonup image of size $p \times p$
- jth line is characterized by $\{l_{ij}\}$, where l_{ij} is the length of the intersection of jth line with ith pixel (or zero if they don't intersect)

▶ Measurements forms a vector $y \in \mathbb{R}^n$

$$y_i \sim \mathsf{Poisson}(\lambda_i), \quad j = 1, \dots, n.$$

▶ The parameters $\{\lambda_i\}$ are determined according to Beer's law:

$$\lambda_j = I_j e^{-\sum_{i=1}^{p^2} l_{ij} x_j},$$

where I_j is the intensity of the ith X-ray before passing through the object.

▶ The problem is to reconstruct the pixel densities $x \in \mathbb{R}^{p^2}$ from the line integral measurements y.

Maximum likelihood estimate

► The likelihood function is given by

$$p_x(y) = \prod_{j=1}^n \frac{\lambda_j^{y_j}}{y_j!} e^{-\lambda_j},$$

► Log-likelihood function

$$\ell(x) = \log p_x(y) = \sum_{i=1}^n (y_i \log \lambda_i - \lambda_j - \log(y_i!)).$$

▶ MLF estimate

$$\mathsf{minimize}_x \quad -\sum_{i=1}^n (y_i \log \lambda_j - \lambda_j)$$

 \triangleright To prevent overfitting the noisy data, we also add a regularization term $\phi(x)$ in the cost function

minimize_x
$$-\sum_{i=1}^{n} (y_j \log \lambda_j + \lambda_j) + \lambda \phi(x).$$

e.g. $\phi(x) = ||x||_2^2$, $\phi(x) = ||x||_1$.

Matrix-vector representation

$$minimize_x \quad f(x) = y^T L x + I^T e^{-Lx} + \lambda \phi(x).$$

Forward projection matrix $L = [l_1, \dots, l_n] \in \mathbb{R}^{n \times p^2}$.

 $I = [I_1, \cdots, I_n]^T \in \mathbb{R}^n$. Functions e^x are overloaded to operate on each element of the input vector. \triangleright Since f(x) is differentiable and convex, a necessary and sufficient condition for a solution x^* to be optimal is

Since
$$f(x)$$
 is differentiable and convex, a necessary and sufficient condition for solution x^* to be optimal is

olution
$$x^*$$
 to be optimal is
$$\nabla f(x^*) = L^T \left(u - \operatorname{diag}\{I\} e^{-Lx^*} \right) + \lambda \nabla \phi(x^*) = 0$$

 $\nabla f(x^*) = L^T \left(y - \mathbf{diag}\{I\} e^{-Lx^*} \right) + \lambda \nabla \phi(x^*) = 0.$

 $H = L^T \operatorname{diag}\{\hat{y}\}L + \lambda H[\phi(x)] > 0,$

 $\hat{y} = \mathbf{diag}\{I\}e^{-Lx}$

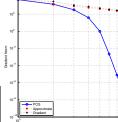
Hessian matrix

where

Results

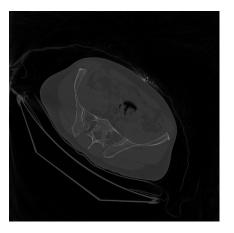
We simulated a parallel beam CT geometry, with 100 detectors, and 180 uniform angular sampling, so m=18000. The rays spread out wide enough to cover the entire image, with uniform intensities $I_j=10^6$. The image has 64×64 (= 4096) pixels.

Use $\|\nabla f\|_2 < 10^{-8}$ as a stopping criterion.

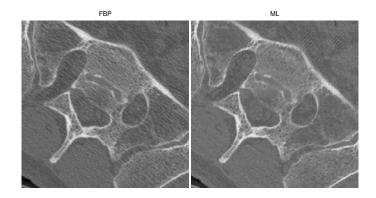


Iterations

Using real data measured on a GE fan beam geometry CT scanner: 1024×1024 .



Comparison with a deterministic inverse algorithm



Summary

- ► Gradient descent and convergence
 - Example: solving multiple linear regression, logistic regression, neural networks
 - Subgradient
 - Step-size
 - ► Stochastic gradient descent

Newton's method