1

AIE6001 Assignment 2: Eigenvalue, Probability, Stochastic Processes

Due date: 11:59 PM, Tuesday, October 21, 2025.

Remark: The Maximum point is 100. For instance, if your grade with bonus point is 95+10=105, your actual grade will be min(105, 100) = 100.

Question 1 (Eigenvalue). Let $c \in \mathbb{R}$ and A be a $n \times n$ matrix. Suppose the sum of the entries in each column of A is c. Show that c is an eigenvalue of A. (10 points)

Question 2 (Eigenvalue). Suppose A is a real $n \times n$ skew-symmetric matrix ($A^{\top} = -A$). Prove that any real eigenvalue of A must be zero. (10 points)

Question 3 (Eigenvalue). Suppose A is a $n \times n$ matrix with $A^k = 0$ for some positive integer k. Prove that the only eigenvalue of A is 0. (10 points)

Question 4 (SVD). Show the proof of the low-rank approximation theorem stated in Slides Lecture 3. pdf. (10 points)

Question 5 (Events). Prove that for any given events A_1, \ldots, A_n , it holds that

$$P\Big(\bigcup_{i=1}^{n} A_i\Big) \le \sum_{i=1}^{n} P(A_i).$$

Give an example where equality does not hold.

(10 points)

Question 6 (Probability). A poker hand is defined as drawing 5 cards at random without replacement from a deck of 52 playing cards. Find the probability of each of the following poker hands:

- 1) Four of a kind (four cards of equal face value and one card of a different value).
- 2) Full house (one pair and one triple of cards with equal face value).
- 3) Three of a kind (three equal face values plus two cards of different values).
- 4) Two pairs (two pairs of equal face value plus one card of different value).
- 5) One pair (one pair of equal face value plus three cards of different values).

(10 points)

Question 7 (pdf). Let X be a random variable with pdf $f(x) = \frac{1}{\pi(1+x^2)}, x \in (-\infty, \infty)$. Show that $\mathbb{E}[|X|]$ is infinite, and hence it means that it does not exist.

Question 8 (Conditional Probability). Let X have an exponential distribution with mean $\Theta > 0$. Show that

$$P(X > x + y \mid X > x) = P(X > y).$$

(10 points)

Question 9 (Ordered Statistics). Let X_1, \ldots, X_n be i.i.d. random variables. Let $Y_n = \min(X_1, \ldots, X_n)$ and $Z_n = \max(X_1, \ldots, X_n)$. Find the probability that both Z_n and Y_n lie in the interval [a, b], where $-\infty < a < b < \infty$.

(10 points)

- **Question 10** (Stochastic Process). 1) Suppose you keep on tossing a fair coin. What is the expected number of tosses such that you can have **HHH** (heads heads heads) in a row? What is the expected number of tosses to have **THH** (tails heads heads) in a row?
- 2) Keep flipping a fair coin until either HHH or THH occurs in the sequence. What is the probability that you get an HHH subsequence before THH?

(10 points)

Question 11 (Stochastic Process, bonus). A drunk man is at the 17th meter of a 100-meter-long bridge. He has a 50% probability of staggering forward or backward one meter each step.

- What is the probability that he will make it to the end of the bridge (the 100th meter) before the beginning (the 0th meter)?
- What is the expected number of steps he takes to reach either the beginning or the end of the bridge?

(10 points)