Lecture 3 Eigenvalue, Matrix Decomposition

- Motivation
- Eigenvalues and Eigenvectors
- Properties about Eigenvalues
- Eigenvalue Decomposition
- Singular Value Decomposition

Contents

- Motivation
- Eigenvalues and Eigenvectors
- Properties about Eigenvalues
- Eigenvalue Decomposition
- Singular Value Decomposition

- \bullet In a certain town, 30% married men get divorced each year and 20% single men get married each year.
- There are 8000 married men and 2000 single men at the beginning
 Assume the total population always remains constant.
- Let $\mathbf{w}_0 = \begin{pmatrix} 8000 \\ 2000 \end{pmatrix}$ be the initial status, and \mathbf{w}_i denote the status after i years.
- What is the marital status when time goes to infinity? How about we change \mathbf{w}_0 ?

- \bullet In a certain town, 30% married men get divorced each year and 20% single men get married each year.
- There are 8000 married men and 2000 single men at the beginning.
 Assume the total population always remains constant.
- Let $\mathbf{w}_0 = \begin{pmatrix} 8000 \\ 2000 \end{pmatrix}$ be the initial status, and \mathbf{w}_i denote the status after i years.
- What is the marital status when time goes to infinity? How about we change \mathbf{w}_0 ?

- In a certain town, 30% married men get divorced each year and 20% single men get married each year.
- There are 8000 married men and 2000 single men at the beginning.
 Assume the total population always remains constant.
- Let $\mathbf{w}_0 = \begin{pmatrix} 8000 \\ 2000 \end{pmatrix}$ be the initial status, and \mathbf{w}_i denote the status after i years.
- What is the marital status when time goes to infinity? How about we change \mathbf{w}_0 ?

- In a certain town, 30% married men get divorced each year and 20% single men get married each year.
- There are 8000 married men and 2000 single men at the beginning.
 Assume the total population always remains constant.
- Let $\mathbf{w}_0 = \begin{pmatrix} 8000 \\ 2000 \end{pmatrix}$ be the initial status, and \mathbf{w}_i denote the status after i years.
- What is the marital status when time goes to infinity? How about we change \mathbf{w}_0 ?

Let

$$A = \begin{bmatrix} 0.7 & 0.2 \\ 0.3 & 0.8 \end{bmatrix}.$$

and $\mathbf{w}_i = A\mathbf{w}_{i-1} = A^i\mathbf{w}_0$.

- Using computer, we find $\mathbf{w}_n \to \begin{pmatrix} 4000 \\ 6000 \end{pmatrix}$ as $n \to \infty$.
- We represent a general initial marital status as

$$\mathbf{w}_0 = x_1 \mathbf{u}_1 + x_2 \mathbf{u}_2$$
, where $\mathbf{u}_1 = \begin{bmatrix} 0.4 \\ 0.6 \end{bmatrix}$, $\mathbf{u}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$.

We check that $A\mathbf{u}_1 = \mathbf{u}_1$ and $A\mathbf{u}_2 = 0.5\mathbf{u}_2$

ullet Then the marital status after n years is

$$A^n \mathbf{w}_0 = x_1 A^n \mathbf{u}_1 + x_2 A^n \mathbf{u}_2 = x_1 \mathbf{u}_1 + x_2 0.5^n \mathbf{u}_2 \to x_1 \mathbf{u}_1$$

Let

$$A = \begin{bmatrix} 0.7 & 0.2 \\ 0.3 & 0.8 \end{bmatrix}.$$

and $\mathbf{w}_i = A\mathbf{w}_{i-1} = A^i\mathbf{w}_0$.

- Using computer, we find $\mathbf{w}_n \to \begin{pmatrix} 4000 \\ 6000 \end{pmatrix}$ as $n \to \infty$.
- We represent a general initial marital status as

$$\mathbf{w}_0 = x_1 \mathbf{u}_1 + x_2 \mathbf{u}_2$$
, where $\mathbf{u}_1 = \begin{bmatrix} 0.4 \\ 0.6 \end{bmatrix}$, $\mathbf{u}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$.

We check that $A\mathbf{u}_1 = \mathbf{u}_1$ and $A\mathbf{u}_2 = 0.5\mathbf{u}_2$

ullet Then the marital status after n years is

$$A^n \mathbf{w}_0 = x_1 A^n \mathbf{u}_1 + x_2 A^n \mathbf{u}_2 = x_1 \mathbf{u}_1 + x_2 0.5^n \mathbf{u}_2 \to x_1 \mathbf{u}_1.$$

Let

$$A = \begin{bmatrix} 0.7 & 0.2 \\ 0.3 & 0.8 \end{bmatrix}.$$

and $\mathbf{w}_i = A\mathbf{w}_{i-1} = A^i\mathbf{w}_0$.

- Using computer, we find $\mathbf{w}_n \to \begin{pmatrix} 4000 \\ 6000 \end{pmatrix}$ as $n \to \infty$.
- We represent a general initial marital status as

$$\mathbf{w}_0 = x_1 \mathbf{u}_1 + x_2 \mathbf{u}_2$$
, where $\mathbf{u}_1 = \begin{bmatrix} 0.4 \\ 0.6 \end{bmatrix}$, $\mathbf{u}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$.

We check that $A\mathbf{u}_1 = \mathbf{u}_1$ and $A\mathbf{u}_2 = 0.5\mathbf{u}_2$

ullet Then the marital status after n years is

$$A^n \mathbf{w}_0 = x_1 A^n \mathbf{u}_1 + x_2 A^n \mathbf{u}_2 = x_1 \mathbf{u}_1 + x_2 0.5^n \mathbf{u}_2 \to x_1 \mathbf{u}_1.$$

Contents

- Motivation
- Eigenvalues and Eigenvectors
- Properties about Eigenvalues
- Eigenvalue Decomposition
- Singular Value Decomposition

Definition

- Let A be an $n \times n$ matrix.
- A scalar λ is said to be an **eigenvalue** of A if there exists a nonzero vector ${\bf x}$ such that

$$A\mathbf{x} = \lambda \mathbf{x}$$
.

• The vector ${\bf x}$ is said to be an **eigenvector belonging to** λ .

Implications

- ullet An eigenvector ${f x}$ and $A{f x}$ have the same direction.
- If x is an eigenvector belonging to λ , so is $c\mathbf{x}$ for any $c \neq 0$.
- If ${\bf x}$ is an eigenvector of A belonging to λ , then ${\bf x}$ is an eigenvector of A^s belonging to λ^s .

Let

$$A = \begin{bmatrix} 0 & -3 \\ 1 & -4 \end{bmatrix}, \mathbf{u} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Then

$$A\mathbf{u} = \begin{bmatrix} 0 & -3 \\ 1 & -4 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -3 \\ -3 \end{bmatrix} = (-3)\mathbf{u}.$$

 $\, \bullet \,$ Thus, -3 is the eigenvalue of A and the corresponding eigenvector is

$$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

• Note that $A\mathbf{x} = \lambda \mathbf{x}$ is equivalent to

$$(A - \lambda I)\mathbf{x} = \mathbf{0}.$$

- The following statements are equivalent:
 - \circ λ is an eigenvalue of A.
 - $(A \lambda I)\mathbf{x} = 0$ has a nontrivial solution.
 - $\bullet \ \mathcal{N}(A \lambda I) \neq \{\mathbf{0}\}$
 - $A \lambda I$ is singular.
- ullet $\mathcal{N}(A-\lambda I)$ is called the **eigenspace** of eigenvalue λ
- \bullet All nonzero vectors in $\mathcal{N}(A-\lambda I)$ are eigenvectors corresponding to λ

• Note that $A\mathbf{x} = \lambda \mathbf{x}$ is equivalent to

$$(A - \lambda I)\mathbf{x} = \mathbf{0}.$$

- The following statements are equivalent:
 - λ is an eigenvalue of A.
 - $(A \lambda I)\mathbf{x} = 0$ has a nontrivial solution.
 - $\bullet \ \mathcal{N}(A \lambda I) \neq \{\mathbf{0}\}.$
 - $A \lambda I$ is singular.
 - $\bullet \ \det(A \lambda I) = 0.$
- $\mathcal{N}(A \lambda I)$ is called the **eigenspace** of eigenvalue λ
- All nonzero vectors in $\mathcal{N}(A \lambda I)$ are eigenvectors corresponding to λI

• Note that $A\mathbf{x} = \lambda \mathbf{x}$ is equivalent to

$$(A - \lambda I)\mathbf{x} = \mathbf{0}.$$

- The following statements are equivalent:
 - \bullet λ is an eigenvalue of A.
 - $(A \lambda I)\mathbf{x} = 0$ has a nontrivial solution.
 - $\bullet \ \mathcal{N}(A \lambda I) \neq \{\mathbf{0}\}.$
 - $A \lambda I$ is singular.
 - $\bullet \det(A \lambda I) = 0.$
- $\mathcal{N}(A \lambda I)$ is called the **eigenspace** of eigenvalue λ .
- All nonzero vectors in $\mathcal{N}(A-\lambda I)$ are eigenvectors corresponding to λ

• Note that $A\mathbf{x} = \lambda \mathbf{x}$ is equivalent to

$$(A - \lambda I)\mathbf{x} = \mathbf{0}.$$

- The following statements are equivalent:
 - λ is an eigenvalue of A.
 - $(A \lambda I)\mathbf{x} = 0$ has a nontrivial solution.
 - $\bullet \ \mathcal{N}(A \lambda I) \neq \{\mathbf{0}\}.$
 - $A \lambda I$ is singular.
 - $\bullet \det(A \lambda I) = 0.$
- $\mathcal{N}(A \lambda I)$ is called the **eigenspace** of eigenvalue λ .
- All nonzero vectors in $\mathcal{N}(A \lambda I)$ are eigenvectors corresponding to λ .

Characteristic polynomial

- $p(\lambda) = \det(A \lambda I)$ is an nth degree polynomial in λ .
- $p(\lambda)$ is called the **characteristic polynomial** of A.
- $p(\lambda) = 0$ is called the **characteristic equation** of A.
- A scalar λ is an eigenvalue of A if and only if $p(\lambda) = 0$.

• The characteristic polynomial of $A=\begin{bmatrix} 3 & 2 \\ 3 & -2 \end{bmatrix}$ is

$$p(\lambda) = \begin{vmatrix} 3 - \lambda & 2 \\ 3 & -2 - \lambda \end{vmatrix} = \lambda^2 - \lambda - 12 = (\lambda - 4)(\lambda + 3) = 0.$$

- Hence, the the eigenvalues of A are $\lambda_1 = 4$ and $\lambda_2 = -3$.
- ullet The eigenvectors belonging to λ_1 are nonzero solutions of

$$(A-4I)\mathbf{x} = \mathbf{0}.$$

The eigenvectors belonging to λ_2 are nonzero solutions of

$$(A+3I)\mathbf{x} = \mathbf{0}.$$

Find the eigenvalues and the corresponding eigenvectors of

$$A = \begin{bmatrix} 2 & -3 & 1 \\ 1 & -2 & 1 \\ 1 & -3 & 2 \end{bmatrix}.$$

Find the eigenvalues and the corresponding eigenvectors of

$$A = \begin{bmatrix} 1 & 2 \\ -2 & 1 \end{bmatrix}.$$

Complex Eigenvalues of Real Matrices

• As $p(\lambda)$ has degree n, $p(\lambda)$ can be factored into the product of n linear terms:

$$p(\lambda) = c(\lambda_1 - \lambda) \cdots (\lambda_n - \lambda), \tag{1}$$

where λ_i is the root of $p(\lambda)$.

- For real valued matrices
 - Complex eigenvalues occur in **conjugate pairs**, i.e., if λ is an eigenvalue so is $\bar{\lambda}$.
 - If z is an eigenvector belonging to a complex eigenvalue λ , then \bar{z} is an eigenvector belonging to $\bar{\lambda}$.

Complex Eigenvalues of Real Matrices

• As $p(\lambda)$ has degree n, $p(\lambda)$ can be factored into the product of n linear terms:

$$p(\lambda) = c(\lambda_1 - \lambda) \cdots (\lambda_n - \lambda), \tag{1}$$

where λ_i is the root of $p(\lambda)$.

- For real valued matrices,
 - Complex eigenvalues occur in **conjugate pairs**, i.e., if λ is an eigenvalue, so is $\bar{\lambda}$.
 - If ${\bf z}$ is an eigenvector belonging to a complex eigenvalue λ , then $\bar{{\bf z}}$ is an eigenvector belonging to $\bar{\lambda}$.

Contents

- Motivation
- Eigenvalues and Eigenvectors
- Properties about Eigenvalues
- Eigenvalue Decomposition
- Singular Value Decomposition

- We know that $\lambda_1, \ldots, \lambda_n$ may not be all distinct.
- Let $\lambda_1, \ldots, \lambda_p$ be the p distinct eigenvalues.
- The eigenvalue λ_k has multiplicity m_k . We know that $\sum_k m_k = n$.
- The characteristic polynomial can be written as

$$p(\lambda) = c(\lambda_1 - \lambda)^{m_1} \cdots (\lambda_p - \lambda)^{m_p}.$$
 (2)

• Example: For $p(\lambda) = (1 - \lambda)^2 (4 - \lambda)^3$, the multiplicity of 1 is 2 and the multiplicity of 4 is 3.

- We know that $\lambda_1, \ldots, \lambda_n$ may not be all distinct.
- Let $\lambda_1, \ldots, \lambda_p$ be the p distinct eigenvalues.
- The eigenvalue λ_k has multiplicity m_k . We know that $\sum_k m_k = n$.
- The characteristic polynomial can be written as

$$p(\lambda) = c(\lambda_1 - \lambda)^{m_1} \cdots (\lambda_p - \lambda)^{m_p}. \tag{2}$$

• Example: For $p(\lambda) = (1 - \lambda)^2 (4 - \lambda)^3$, the multiplicity of 1 is 2 and the multiplicity of 4 is 3.

- We know that $\lambda_1, \ldots, \lambda_n$ may not be all distinct.
- Let $\lambda_1, \ldots, \lambda_p$ be the p distinct eigenvalues.
- The eigenvalue λ_k has multiplicity m_k . We know that $\sum_k m_k = n$.
- The characteristic polynomial can be written as

$$p(\lambda) = c(\lambda_1 - \lambda)^{m_1} \cdots (\lambda_p - \lambda)^{m_p}.$$
 (2)

• Example: For $p(\lambda) = (1 - \lambda)^2 (4 - \lambda)^3$, the multiplicity of 1 is 2 and the multiplicity of 4 is 3.

- We know that $\lambda_1, \ldots, \lambda_n$ may not be all distinct.
- Let $\lambda_1, \ldots, \lambda_p$ be the p distinct eigenvalues.
- The eigenvalue λ_k has multiplicity m_k . We know that $\sum_k m_k = n$.
- The characteristic polynomial can be written as

$$p(\lambda) = c(\lambda_1 - \lambda)^{m_1} \cdots (\lambda_p - \lambda)^{m_p}.$$
 (2)

• Example: For $p(\lambda)=(1-\lambda)^2(4-\lambda)^3$, the multiplicity of 1 is 2 and the multiplicity of 4 is 3.

Product and Sum of the Eigenvalues

- Consider an $n \times n$ square matrix $A = (a_{ij})$.
- Let $\lambda_1, \ldots, \lambda_n$ be the n eigenvalues of A.
- $\bullet \prod_{i=1}^n \lambda_i = \det(A).$
- $\bullet \sum_{i=1}^n \lambda_i = \sum_{i=1}^n a_{ii}.$
- Proof

Product and Sum of the Eigenvalues

- Consider an $n \times n$ square matrix $A = (a_{ij})$.
- Let $\lambda_1, \ldots, \lambda_n$ be the n eigenvalues of A.
- $\bullet \prod_{i=1}^n \lambda_i = \det(A).$
- $\bullet \sum_{i=1}^n \lambda_i = \sum_{i=1}^n a_{ii}.$
- Proof:

Transpose and Inverse

- As $|A-\lambda I|=|A^{\top}-\lambda I|$, A and A^{\top} have same characteristic polynomial, and hence the same eigenvalues.
- If A is singular, 0 is an eigenvalue of A.
- If A is invertible, λ is an eigenvalue of A if and only if λ^{-1} is an eigenvalue of A^{-1} .
- Proof

Transpose and Inverse

- As $|A \lambda I| = |A^{\top} \lambda I|$, A and A^{\top} have same characteristic polynomial, and hence the same eigenvalues.
- ullet If A is singular, 0 is an eigenvalue of A.
- If A is invertible, λ is an eigenvalue of A if and only if λ^{-1} is an eigenvalue of A^{-1} .
- Proof:

Stochastic Matrix

- An $n \times n$ matrix A is a stochastic matrix if
 - 1. all the entries are non-negative $(a_{ij} \geq 0)$;
 - 2. the summation of each column is $1 (\mathbf{1}^{\top} A = \mathbf{1}^{\top})$.
- For any vector $\mathbf{x} \in \mathbb{R}^n$, $A\mathbf{x}$ and \mathbf{x} have the same sum.
- 1 is an eigenvalue of A (and A^{\top}).
- All the eigenvalues λ of A have $|\lambda| \leq 1$.
- Proof:

Contents

- Motivation
- Eigenvalues and Eigenvectors
- Properties about Eigenvalues
- Eigenvalue Decomposition
- Singular Value Decomposition

Spectral Theorem

- If A is a real symmetric matrix, the spectral theorem shows that there
 exists an orthogonal matrix that diagonalize A.
- Every real symmetric matrix A can be factored into $Q\Lambda Q^{\top}$ where Q is an orthogonal matrix and Λ is a real diagonal matrix.
- ullet ullet The diagonal entries λ_i of Λ are eigenvalues of A.
 - ullet The columns ${f q}_i$ of Q are eigenvectors belonging to λ_i , respectively.

Spectral Theorem

- If A is a real symmetric matrix, the spectral theorem shows that there
 exists an orthogonal matrix that diagonalize A.
- Every real symmetric matrix A can be factored into $Q\Lambda Q^{\top}$ where Q is an orthogonal matrix and Λ is a real diagonal matrix.
- ullet ullet The diagonal entries λ_i of Λ are eigenvalues of A.
 - ullet The columns ${f q}_i$ of Q are eigenvectors belonging to λ_i , respectively.

Spectral Theorem

- If A is a real symmetric matrix, the spectral theorem shows that there
 exists an orthogonal matrix that diagonalize A.
- Every real symmetric matrix A can be factored into $Q\Lambda Q^{\top}$ where Q is an orthogonal matrix and Λ is a real diagonal matrix.
- The diagonal entries λ_i of Λ are eigenvalues of A.
 - ullet The columns ${f q}_i$ of Q are eigenvectors belonging to λ_i , respectively.

Spectral Theorem

We can also write

$$A = \begin{bmatrix} \mathbf{q}_1 & \cdots & \mathbf{q}_n \end{bmatrix} \begin{bmatrix} \lambda_1 & & & \\ & \ddots & & \\ & & \lambda_n \end{bmatrix} \begin{bmatrix} \mathbf{q}_1^\top \\ \vdots \\ \mathbf{q}_n^\top \end{bmatrix}$$
$$= \begin{bmatrix} \mathbf{q}_1 & \cdots & \mathbf{q}_n \end{bmatrix} \begin{bmatrix} \lambda_1 \mathbf{q}_1^\top \\ \vdots \\ \lambda_n \mathbf{q}_n^\top \end{bmatrix}$$
$$= \sum_{i=1}^n \lambda_i \mathbf{q}_i \mathbf{q}_i^\top$$

Properties of $A^{\top}A$

Let A be any $m \times n$ matrix A of real numbers.

- \bullet $A^{\top}A$ is symmetric.
- $A^{\top}A$ is diagonalizable by an orthogonal matrix, and the eigenvalues of $A^{\top}A$ are real.
- \bullet rank $(A) = \operatorname{rank}(A^{\top}A)$.
- \bullet The eigenvalues of $A^{\top}A$ are nonnegative.

Contents

- Motivation
- Eigenvalues and Eigenvectors
- Properties about Eigenvalues
- Eigenvalue Decomposition
- Singular Value Decomposition

Singular Value Decomposition

The singular-value decomposition (SVD) of an $m \times n$ matrix A of real numbers is a factorization of the form $U\Sigma V^{\top}$, where

- U is an $m \times m$ orthogonal matrix;
- V is an $n \times n$ orthogonal matrix;
- Σ is an $m \times n$ matrix whose off-diagonal entries are all 0's, and whose diagonal entries σ_i , $i=1,\ldots,n$, called the **singular values** satisfy

$$\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_n \ge 0.$$

Here singular values $\sigma_k = 0$ if $k > \min\{m, n\}$.

SVD exists for any real matrix.

Linear Transformation View

- Suppose A has the SVD: $A = U\Sigma V^{\top}$.
- ullet The columns of U form an orthonormal basis of \mathbb{R}^m .
- The columns of V form an orthonormal basis of \mathbb{R}^n .
- The linear transformation $L(\mathbf{x}) = A\mathbf{x}$ has the matrix representation Σ with respect to the above bases of \mathbb{R}^m and \mathbb{R}^n .
- In other words,

$$L(\mathbf{x}) = U\Sigma V^{\top}\mathbf{x}$$

$$L(\mathbf{x})]_{U} = \Sigma[\mathbf{x}]_{V}$$

$$L(\mathbf{x}) = U$$

$$[\mathbf{x}]_{V} = V^{\top}\mathbf{x}$$

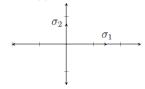
Linear Transformation View

- Suppose A has the SVD: $A = U\Sigma V^{\top}$.
- The columns of U form an orthonormal basis of \mathbb{R}^m .
- The columns of V form an orthonormal basis of \mathbb{R}^n .
- The linear transformation $L(\mathbf{x}) = A\mathbf{x}$ has the matrix representation Σ with respect to the above bases of \mathbb{R}^m and \mathbb{R}^n .
- In other words,

$$L(\mathbf{x}) = U \Sigma V^{\top} \mathbf{x}$$
$$[L(\mathbf{x})]_U = \Sigma [\mathbf{x}]_V$$
$$L(\mathbf{x}) = U$$
$$[\mathbf{x}]_V = V^{\top} \mathbf{x}$$

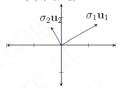
Visualization of SVD

(a) standard axis



(c) scaled by σ_1 and σ_2 , $(\mathbf{u}_1, \mathbf{u}_2)$ axis

(b) $(\mathbf{v}_1, \mathbf{v}_2)$ axis



(d) standard axis

Example

1.

$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix}$$

2.

$$\begin{bmatrix} 2 & 5 & 4 \\ 6 & 3 & 0 \\ 6 & 3 & 0 \\ 2 & 5 & 4 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \end{bmatrix} \begin{bmatrix} 12 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \frac{2}{3} & \frac{2}{3} & \frac{1}{3} \\ -\frac{2}{3} & \frac{1}{3} & \frac{2}{3} \\ \frac{1}{3} & -\frac{2}{3} & \frac{2}{3} \end{bmatrix}$$

Example

1.

$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix}$$

2.

$$\begin{bmatrix} 2 & 5 & 4 \\ 6 & 3 & 0 \\ 6 & 3 & 0 \\ 2 & 5 & 4 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \end{bmatrix} \begin{bmatrix} 12 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \frac{2}{3} & \frac{2}{3} & \frac{1}{3} \\ -\frac{2}{3} & \frac{1}{3} & \frac{2}{3} \\ \frac{1}{3} & -\frac{2}{3} & \frac{2}{3} \end{bmatrix}$$

SVD and Rank

- If $A = U\Sigma V^{\top}$, then the rank of A is equal to the number of **nonzero** singular values.
- Proof Technique:
 - Let r be the number of nonzero singular values of A.
 - Let U_r and V_r be the first r columns of U and V, respectively.
 - Let $\Sigma_r = \operatorname{diag}(\sigma_1, \sigma_2, \dots, \sigma_r)$.

We have $U_r^{\top}U_r = V_r^{\top}V_r = I_r$ and

$$A = U_r \Sigma_r V_r^{\top}. (3)$$

Outer Product Expansion

$$A = U_r \Sigma_r V_r^T$$

$$= \begin{bmatrix} \mathbf{u}_1 & \cdots & \mathbf{u}_r \end{bmatrix} \begin{bmatrix} \sigma_1 & & \\ & \ddots & \\ & & \sigma_r \end{bmatrix} \begin{bmatrix} \mathbf{v}_1^\top \\ \vdots \\ \mathbf{v}_r^\top \end{bmatrix}$$

$$= \begin{bmatrix} \mathbf{u}_1 & \cdots & \mathbf{u}_r \end{bmatrix} \begin{bmatrix} \sigma_1 \mathbf{v}_1^\top \\ \vdots \\ \sigma_r \mathbf{v}_r^\top \end{bmatrix}$$

$$= \sum_{i=1}^r \sigma_i \mathbf{u}_i \mathbf{v}_i^\top$$

Eigenvalues vs Singular Values

ullet For an n imes n square matrix A with SVD and rank r

$$A\mathbf{v}_i = \sigma_i \mathbf{u}_i, i = 1, \dots, r.$$

 The rank of a matrix is always the same as the number of non-zero singular values.

Eigenvalues vs Singular Values

 \bullet If A is diagonalizable, i.e., A has n linearly independent eigenvectors \mathbf{x}_i

$$A\mathbf{x}_i = \lambda_i \mathbf{x}_i, i = 1, \dots, n$$

then the rank of the matrix is equal to the number of non-zero eigenvalues.

But this may not be the case when the matrix is not diagonalizable.

Consider
$$M = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

Property of SVD

Let an $m \times n$ matrix A having SVD $U\Sigma V^{\top}$. Then

- $\sigma_i = \sqrt{\lambda_i}$, i = 1, ..., n, where $\lambda_1 \ge \lambda_2 \ge ... \ge \lambda_n \ge 0$ are eigenvalues of $A^{\top}A$.
- ullet V diagonalizes $A^{\top}A$, and hence \mathbf{v}_{j} 's are eigenvectors of $A^{\top}A$.
- ullet the columns of U satisfy:

$$\mathbf{u}_j = \frac{1}{\sigma_j} A \mathbf{v}_j, \quad j = 1, \dots, r = \text{rank}(A)$$

 $A^{\mathsf{T}} \mathbf{u}_i = \mathbf{0}, \quad j = r + 1, \dots, m.$

Matrix Norm

• Matrix norm $\|A\|_F = \sqrt{\sum_{i,j} |a_{ij}|^2}$, which is also called *Frobenius* norm.

$$\bullet \ \ \text{If} \ A = U \Sigma V^\top \text{, then} \ \|A\|_F^2 = \sigma_1^2 + \dots + \sigma_n^2.$$

Lemma

If Q is an orthogonal matrix, then $||QA||_F = ||A||_F$.

Low rank approximation

For a fixed $m \times n$ matrix A and an integer k, solve

$$\min_{\operatorname{rank}(S) \le k} \|A - S\|_F. \tag{4}$$

Theorem

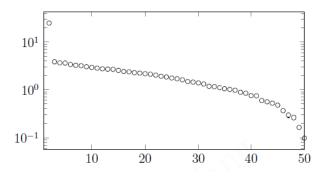
Let $A = U\Sigma V^{\top}$ be an $m \times n$ matrix and let $A_k = U\Sigma_k V^{\top}$ where Σ_k is same as Σ except that the (j,j) entry is 0 for j > k. Then

$$\min_{\text{rank}(S) \le k} ||A - S||_F = ||A - A_k||_F = (\sigma_{k+1}^2 + \dots + \sigma_n^2)^{1/2}.$$

In other words, A_k is the best rank k approximation of A in Frobenius norm.

Example

- \bullet Generate a random 50×50 matrix A using Julia
- ullet Check the rank of matrix A, which should be 64 most of the case.
- Plot the singular values:



Applications

- Eigenvalues with PCA;
- Eigenvalues for extracting information from graph;
- SVD with recommender systems.