An Introduction to Linear Regression

The "Hello, World!" of Al Models

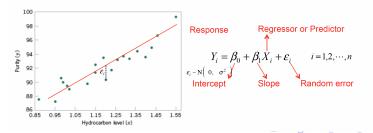
Jie Wang & Zhaoliang Yuan

The Chinese University of Hong Kong, Shenzhen

November 11, 2025

- A foundamental assessment languages to all

- A fundamental **supervised learning** task.
- Goal: Predict a continuous (numerical) output value based on input data.
- Examples:
 - Predicting house prices based on size, location, etc.
 - Forecasting sales based on advertising budget.
 - Estimating a student's final exam score based on hours studied.



The Simplest Model: One Input, One Output

Simple Linear Regression

We start with one input feature (or variable) x to predict one output y.

Example

Input (x): Hours Studied **Output** (y): Exam Score

The Model

We assume a linear (straight-line) relationship:

$$y = \beta_0 + \beta_1 x$$

Breaking Down the Simple Model

$$y = \beta_0 + \beta_1 x$$

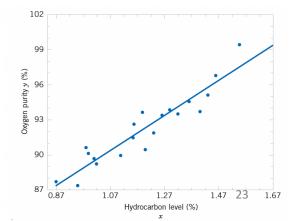
■ *y*: The **predicted** output (e.g., predicted exam score).

Simple Linear Regression

- x: The **input** feature (e.g., hours studied).
- β_1 (Slope): How much y changes for a one-unit change in x.
 - "For each additional hour studied, your score increases by β_1 points."
- β_0 (Intercept): The predicted value of y when x is 0.
 - "The expected score if you didn't study at all." (Often less meaningful)

Finding the Best-Fit Line

- In real data, points don't fall perfectly on a straight line.
- We need to find the line that **best fits** the data.

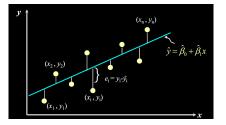


How Do We Measure "Best"? The Cost Function

We use **Ordinary Least Squares (OLS)**.

The Idea

Find the line that minimizes the sum of the squared **errors** (the vertical distances between the data points and the line).



Each white line is an error (or residual): $Error = (True\ Value) - (Predicted\ Value)$

Find "optimal" coefficient of simple regression

Model and Objective

Linear model: $y = \beta_0 + \beta_1 \cdot x$

Minimize Sum of Squared Errors (SSE):

$$\min_{\beta_0,\beta_1} \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i)^2$$

Unconstrained Optimization

- Decision variables: β_0, β_1
- No constraints
- Objective: $f(\beta_0, \beta_1) = \sum_{i=1}^n (y_i \beta_0 \beta_1 x_i)^2$

Find "optimal" coefficient of simple regression

Optimality Conditions

Set derivatives to zero:

$$\frac{\partial f}{\partial \beta_0} = -2\sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i) = 0$$

$$\frac{\partial f}{\partial \beta_1} = -2\sum_{i=1}^n x_i(y_i - \beta_0 - \beta_1 x_i) = 0$$

Solution(do it by yourself!)

$$\begin{array}{l} \beta_0^* = \bar{y} - \beta_1^* \bar{x} \\ \beta_1^* = \frac{\sum_{i=1}^n x_i y_i - n \bar{y} \bar{x}}{\sum_{i=1}^n x_i^2 - n \bar{x}^2} \end{array}$$

The Real World Has Many Factors

What if the exam score depends on more than just study hours?

- Hours of sleep?
- Attendance?
- Previous GPA?

Extending the Model

We can include **multiple input features**:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p$$

Understanding the Multiple Regression Model

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3$$

Example

- y: Exam Score
- *x*₁: Hours Studied
- *x*₂: Hours of Sleep
- x_3 : Attendance (%)
- β_1 : The effect of *one more hour of study* on the score, **while holding sleep and attendance constant**.
- **Each** coefficient (β) shows the **individual contribution** of that feature

Hands-on Lab 1

- Download the MOSEK solver to your local computer. https://www.mosek.com/downloads/
- receive the email from MOSEK and follow the instruction to create a file name "mosek" and put the license into that file
- Use cvxpy to construct linear regression models
- Test the models on Housing-price prediction

A Common Problem: Too Many Features?

What if we have 100 possible features to predict house price?

Simple Linear Regression

Size, bedrooms, bathrooms, zip code, proximity to school, year built, roof color, ...

The Challenge

- Overfitting: A model with too many features becomes overly complex. It memorizes the training data (including noise) but fails to predict new data well.
- Interpretability: A simpler model is easier to understand and explain.

How to Choose the Right Features?

This is called **Variable Selection** or **Feature Selection**.

Common Methods

- **I Expert Knowledge:** Use what you know about the problem.
- **Exploratory Data Analysis:** Look for relationships visually.
- **3** Automated Algorithms:
 - **Forward Selection:** Start with no variables, add one at a time.
 - **Backward Elimination:** Start with all variables, remove the least useful one at a time.

Goal: Find a model that is accurate but also simple and robust.

Original Goal

Find at most k non-zero coefficients:

$$\min_{\beta \in \mathbb{R}^n, \|\beta\|_0 \le k} \|y - X\beta\|_2^2$$

Mixed-Integer Reformulation

Introduce binary variables $q_i \in \{0, 1\}$:

$$\min_{\beta, a} \|y - X\beta\|_2^2 + \lambda \|\beta\|_2^2$$

s.t.
$$\sum_{i=1}^{n} q_{i} \leq k - M \cdot q_{i} \leq \beta_{i} \leq M \cdot q_{i}, \quad i = \{1, \ldots, n\}$$

Key Concepts and Parameters

The Big-M Method

- M: Upper bound on coefficient size
- If $q_i = 0$: $\beta_i = 0$ (feature excluded)
- If $q_i = 1$: $-M < \beta_i < M$ (feature included)

Regularization

- λ : Ridge regularization parameter
- Stabilizes optimization
- Prevents overfitting

Hands-on lab 2

- Using CVXPY to select variables for house pricing problem
- Use MOSEK to solve the problem
- Display the optimal features that satisfy the sparsity constraint

- **Simple Regression:** Models the relationship between one input and one output. $y = \beta_0 + \beta_1 x$
- Multiple Regression: A powerful extension that uses many inputs to make a better prediction. $y = \beta_0 + \beta_1 x_1 + ... + \beta_p x_p$
- Variable Selection: The art and science of choosing the right features to build a model that generalizes well and is easy to interpret.

Why is this in an Al course?

Linear regression is a foundational **predictive model**. Understanding its concepts (features, coefficients, training, prediction) is the first step toward more complex Al like neural networks!

Simple Linear Regression